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K-means Clustering J
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Unsupervised learning

Goal Discover interesting structure in the data.
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Unsupervised learning

Goal Discover interesting structure in the data.
Formulation Density estimation: p(x;0) (often with /latent variables).

Examples @ Discover clusters: cluster data into groups.

@ Discover factors: project high-dimensional data to a small number of
“meaningful” dimensions, i.e. dimensionality reduction.

@ Discover graph structures: learn joint distribution of correlated variables, i.e.

graphical models.
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Example: Old Faithful Geyser

Wait Time Since Last Eruption (minutes)
o
1

@ Looks like two clusters.

Old Faithful Geyser Eruptions

3 4 5
Duration (minutes)

@ How to find these clusters algorithmically?
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k-Means: By Example

@ Standardize the data.

@ Choose two cluster centers.

From Bishop's Pattern recognition and machine learning, Figure 9.1(a).
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k-means: by example

@ Assign each point to closest center.

From Bishop's Pattern recognition and machine learning, Figure 9.1(b).



k-means: by example

@ Compute new cluster centers.

From Bishop’s Pattern recognition and machine learning, Figure 9.1(c).



k-means: by example

@ Assign points to closest center.

From Bishop's Pattern recognition and machine learning, Figure 9.1(d).



k-means: by example

@ Compute cluster centers.

From Bishop’s Pattern recognition and machine learning, Figure 9.1(e).



k-means: by example

@ lterate until convergence.

From Bishop’s Pattern recognition and machine learning, Figure 9.1(i).



Suboptimal Local Minimum

@ The clustering for k =3 below is a local minimum, but suboptimal:
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Would be better to have U S
one cluster here . e o2
... and two clusters here
From Sontag's DS-GA 1003, 2014, Lecture 8.
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Formalize k-Means

o Dataset D ={x1,...,x,} C X where X =R?.
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Formalize k-Means

o Dataset D ={x1,...,x,} C X where X =R?.

o Goal: Partition data D into k disjoint sets Cy,..., Cx.

—_—

° Let@e {1,..., k} be the cluster assignment of x;.

—_—
—
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Formalize k-Means

@ Dataset D ={xy, ..., x,} C X where X =R,

@ Goal: Partition data D into k disjoint sets Cy, ..., Ck.

?;N )
\.~

@ Let ¢; €{1,..., k} be the cluster assignment of x;. X /7}‘\ \
)
@ The centroid of C; is defined to be >;1 K
i b
//\\. = a‘\ﬂ(\“"\ Z \\ X- M (
M EX  x¢ Ci
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Formalize k-Means

o Dataset D ={x1,...,x,} C X where X =R?.
@ Goal: Partition data D into k disjoint sets Cq,..., Ck.
@ Let ¢; €{1,..., k} be the cluster assignment of x;.

@ The centroid of C; is defined to be

—_—

@ The k-means objective is to minimize the distance between each example and its cluster
centroid:

J_/C,/u>\:‘ ; l i(l"/"‘g/ﬁ

OS (gD Ment Centroiff
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k-Means: Algorithm

@ Initialize: Randomly choose initial centroids wy,..., 1w, € RY.
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k-Means: Algorithm

@ Initialize: Randomly choose initial centroids wy,..., 1w, € RY.

@ Repeat until convergence (i.e. ¢; doesn’t change anymore):
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k-Means: Algorithm

@ Initialize: Randomly choose initial centroids wy,..., 1w, € RY.

@ Repeat until convergence (i.e. ¢; doesn’t change anymore):

@ Foralli,set  p¢diopnanmt
P

(i argmin i — >
J . —_—

e

CSCI-GA 2565

(1)

14 /75



k-Means: Algorithm

@ Initialize: Randomly choose initial centroids uq, ..., w, € RY.

@ Repeat until convergence (i.e. ¢; doesn’t change anymore):
® For all /, set

()« argmin 1x;— ;2 (1)
J

mhﬂ.
@ For all j, set F@COV“{’W"Q Yhe G
1
W= ) x. (2)
ol 2
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k-Means: Algorithm

@ Initialize: Randomly choose initial centroids wy,..., 1w, € RY.

@ Repeat until convergence (i.e. ¢; doesn’t change anymore):
® For all /, set

¢i +— argmin [|x; — %, (1)

J

® For all j, set

W%ZX. ()

J xeCj

o Recall the objective: J(c, 1) =" 1 |Ixi — ue||*




k-Means: Algorithm

@ Initialize: Randomly choose initial centroids wy,..., 1w, € RY.

@ Repeat until convergence (i.e. ¢; doesn’t change anymore):
® For all /, set

Cj < argmin || x; — w2 Minimize J w.r.t. ¢ while fixing n (1)
J

® For all j, set

W%ZX. ()

J xeCj

o Recall the objective: J(c, 1) =" 1 |Ixi — ue||*



k-Means: Algorithm

@ Initialize: Randomly choose initial centroids wy,..., 1w, € RY.

@ Repeat until convergence (i.e. ¢; doesn’t change anymore):
® For all /, set

Cj < argmin || x; — w2 Minimize J w.r.t.@rvhile fixing u (1)

J ‘
® For all j, set

1
e — . Mini r.t. hile fixing c. 2
uj<—‘C‘ZX inimze J w.r @W|e|xmgc (2)

J -
xeCj

o Recall the objective: J(c, 1) =" 1 |Ixi — ue||*



Avoid bad local minima

k-means converges to a local minimum.

@ J is non-convex, thus no guarantee to converging to the global minimum.
-—/

Avoid getting stuck with bad local minima:

@ Re-run with random initial centroids.

—m—
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Avoid bad local minima

k-means converges to a local minimum.

@ J is non-convex, thus no guarantee to converging to the global minimum.

Avoid getting stuck with bad local minima:

@ Re-run with random initial centroids.

@ k-means++: choose initial centroids that spread over all data points.
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Avoid bad local minima B /&/
c<" .‘Q’ ..

[

.. L
k-means converges to a local minimum. o

@ J is non-convex, thus no guarantee to converging to the global minimum.

Avoid getting stuck with bad local minima: B(

@ Re-run with random initial centroids.

@ k-means++: choose initial centroids that spread over all data points.
o Randomly choose the first centroid from the data points D.
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Avoid bad local minima

k-means converges to a local minimum.

@ J is non-convex, thus no guarantee to converging to the global minimum.

Avoid getting stuck with bad local minima:

@ Re-run with random initial centroids.

@ k-means++: choose initial centroids that spread over all data points.
o Randomly choose the first centroid from the data points D.

o Sequentially choose subsequent centroids from points that are farther away from
current centroids:
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Avoid bad local minima

k-means converges to a local minimum.

@ J is non-convex, thus no guarantee to converging to the global minimum.

Avoid getting stuck with bad local minima:

@ Re-run with random initial centroids.

@ k-means++: choose initial centroids that spread over all data points.
o Randomly choose the first centroid from the data points D.

o Sequentially choose subsequent centroids from points that are farther away from
current centroids:

e Compute distance between each x; and the closest already chosen centroids.
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Avoid bad local minima

k-means converges to a local minimum.

@ J is non-convex, thus no guarantee to converging to the global minimum.

Avoid getting stuck with bad local minima:

@ Re-run with random initial centroids.

@ k-means++: choose initial centroids that spread over all data points.
o Randomly choose the first centroid from the data points D.
o Sequentially choose subsequent centroids from points that are farther away from
current centroids:

e Compute distance between each x; and the closest already chosen centroids.

@ Randomly choose next centroid with probability proportional to the computed distance squared.
\_/'




Summary

We've seen
@ Clustering—an unsupervised learning problem that aims to discover group assignments.

@ k-means:

o Algorithm: alternating between assigning points to clusters and computing cluster
centroids.

o Objective: minmizing some loss function by coordinate descent.

- -

o Converge to a local minimum.
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Summary

We've seen

@ Clustering—an unsupervised learning problem that aims to discover group assignments.

@ k-means:

o Algorithm: alternating between assigning points to clusters and computing cluster
centroids.

o Objective: minmizing some loss function by coordinate descent.

o Converge to a local minimum.

Next, probabilistic model of clustering.

@ A generative model of x.
—_———

e Maximum likelihood estimation.



Gaussian Mixture Models J
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Gaussian mixture model (GMM)

Generative story of GMM with k mixture components:
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= 0.2

Gaussian mixture model (GMM)
[atent yorabh O ./

G
Generative story of GMM with k ryrﬁjre components: (% D

Q) Choote claster” 2 Categriad (0, - T,)
()(-)C\TO ngxl% /\,N(}AE'Z\] Qﬁv

Probability density of x:

@ Sum over (marginalize) the latent variable z.

PCX) P(Y'%)

Z pxz) plz)
L

2
— %k/\/(/ukf Zk) 'n—k.
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|dentifiability Issues for GMM

@ Suppose we have found parameters

Cluster probabilities : @ (711, ..., 70) O

Cluster means: w= (1, ..., ug)

Cluster covariance matrices: 2 (Xq,... Z)

e

—

that are at a local minimum.
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|dentifiability Issues for GMM @

@ Suppose we have found parameters

Cluster probabilities : = (711, ..., 70)
Cluster means:: w= (K, .., k)
Cluster covariance matrices: S =(XZq,...Z¢)

that are at a local minimum.

@ What happens if we shuffle the clusters? e.g. Switch the labels for clusters 1 and 2.

CSCI-GA 2565 19/ 75



|dentifiability Issues for GMM

@ Suppose we have found parameters

Cluster probabilities : = (711, ..., 70)
Cluster means:: w= (K, .., k)
Cluster covariance matrices: S =(XZq,...Z¢)

that are at a local minimum.

@ What happens if we shuffle the clusters? e.g. Switch the labels for clusters 1 and 2.

o We'll get the same likelihood. How many such equivalent settings are there?
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|dentifiability Issues for GMM

@ Suppose we have found parameters

Cluster probabilities : = (711, ..., 70)
Cluster means:: w= (K, .., k)
Cluster covariance matrices: S =(XZq,...Z¢)

that are at a local minimum.
@ What happens if we shuffle the clusters? e.g. Switch the labels for clusters 1 and 2.
o We'll get the same likelihood. How many such equivalent settings are there?

@ Assuming all clusters are distinct, there ar@quivalent solutions.



Learning GMMs

How to learn the parameters 71, Wy, 27
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Learning GMMs

How to learn the parameters 71, Wy, 27

@ MLE (also called maximize marginal likelihood).

@ Log likelihood of data:
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Learning GMMs

How to learn the parametersfﬁk, uk,Zk?\J =Q.

@ MLE (also called maximize marginal likelihood). /
N
o Log likelihood of data: Sy — .
og likelihood of data L(e)— Z [OjPCX-'Ie),
=t

@ Cannot push log into the sum... z and x are coupled.

@ No closed-form solution for GMM—try to compute the gradient yourself!
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Gradient Descent / SGD for GMM

@ What about running gradient descent or SGD on

J(m ) = Z|0g{z \ N(xi|pz, X )}?
\ _ J
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Gradient Descent / SGD for GMM

@ What about running gradient descent or SGD on

n k
J(mw2) = Zlog{zﬂzN(Xilumzz)}?
i=1 z=1

@ Can be done, in principle — but need to be clever about it.
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Gradient Descent / SGD for GMM

@ What about running gradient descent or SGD on

n k
J(mw2) = Z'Og{zﬂzN(Xile,Zz)}?
i=1 z=1

@ Can be done, in principle — but need to be clever about it.

@ For example, each covariance matrix X1,..., X has to be positive semidefinite.
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Gradient Descent / SGD for GMM

@ What about running gradient descent or SGD on /

n k
J(mw2) = Z'Og{zﬂzN(Xile,Zz)}?
i=1 z=1

@ Can be done, in principle — but need to be clever about it.
@ For example, each covariance matrix X1,..., X has to be positive semidefinite.

@ How to maintain that constraint?
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Gradient Descent / SGD for GMM

@ What about running gradient descent or SGD on

n k
J(mw2) = Z'Og{zﬂzN(Xile,Zz)}?
i=1 z=1

@ Can be done, in principle — but need to be clever about it.
@ For example, each covariance matrix X1,..., X has to be positive semidefinite.

@ How to maintain that constraint?
o Rewrite X; = M,-M,-T, where M, is an unconstrained matrix.
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Gradient Descent / SGD for GMM

@ What about running gradient descent or SGD on

n k
Jmu k) = —Zlog ZWZN(XilFLz,Zz)}?
=1 z=1

@ Can be done, in principle — but need to be clever about it.

@ For example, each covariance matrix X1,..., X has to be positive semidefinite.

@ How to maintain that constraint?
o Rewrite X; Where M; is an unconstrained matrix.

o Then X; is positive semidefinite.



Gradient Descent / SGD for GMM

@ What about running gradient descent or SGD on

n k
J(mw2) = Z'Og{zﬂzN(Xile,Zz)}?
i=1 z=1

@ Can be done, in principle — but need to be clever about it.
@ For example, each covariance matrix X1,..., X has to be positive semidefinite.

@ How to maintain that constraint?
o Rewrite X; = M,-M,-T, where M, is an unconstrained matrix.

o Then X; is positive semidefinite.



Learning GMMSs: observable case

Suppose we observe cluster assignments z. Then MLE is easy:

n
n, = Z 1z = Z] # examples in each cluster (3)
i=1

(6)
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Learning GMMSs: observable case

Suppose we observe cluster assignments z. Then MLE is easy:

n
n, = Z 1z = Z] # examples in each cluster (3)
i=1
n
f(z) == fraction of examples in each cluster (4)
n

(6)
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Learning GMMSs: observable case

Suppose we observe cluster assignments z. Then MLE is easy:

n, = Z 1[z; = z] # examples in each cluster (3)
i=1
n . .
f(z) = — fraction of examples in each cluster  (4)
n
1 .
iy = — Z X empirical cluster mean (5)
Z .
i:z;=z
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Learning GMMSs: observable case

Suppose we observe cluster assignments@ Then MLE is easy:

n, = Z 1z = Z] # examples in each cluster (3)
~ n i i
#(z) | — fraction of examples in each cluster  (4)
n
iy = — X empirical cluster mean (5)
Z zi=z
o 1 . . y .
), = — (x; — (i) (x; — [i,) T empirical cluster covariance (6)
Z
i:zj==z

CSCI-GA 2565 22 /75




Learning GMMSs: inference

The inference problem: observe x, want to know z.

Ne—
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Learning GMMSs: inference

The inference problem: observe x, want to know z. ‘) ( X, %:J )

plz=] | x) = A

PLx ) .
= plz=;) ptxlz=) &

> P(Z=ED pix V2o
=k

@ p(z|x) is a soft assignment.

e If we know the parameterhis would be easy to compute.



EM for GMM

Let's compute the cluster assignments and the parameters iteratively.
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EM for GMM

DO

Let's compute the cluster assignments and the parameters iteratively. G

The expectation-minimization (EM) algorithm:

O Initialize parametert ;)Z,Tt randomly.
@ Run until convergencé: ¢ -
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EM for GMM

Let's compute the cluster assignments and the parameters iteratively.

The expectation-minimization (EM) algorithm:
© Initialize parameters u, X, 7t randomly.

@ Run until convergence: o £ _ e}Pecru+l'an, PCZ (x),
@ E-step: fill in latent variables by inference”

@ compute soft assignments p(z | x;) for all J.
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EM for GMM

Let's compute the cluster assignments and the parameters iteratively.

The expectation-minimization (EM) algorithm:
© Initialize parameters u, X, 7t randomly.

@ Run until convergence:
® E-step: fill in latent variables by inference.
@ compute soft assignments p(z] x;) for all J.
® M-step: standard MLE fof u, X, mygiven “observed™ variables.
e Equivalent to MLE in the observable case on data weighted bﬁ)(z | x;).
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M-step for GMM
T

@ Let p(z|x) be the soft assignments: /@
T[oIdN X/ | uold Zold)
P25 ) @b
>

L TOIN (x| pold, Told)

@ Exercise: show that

e = ) i
i=1
1 n
@\ — ) YiXi
Nz 27
L 1y
N
2 F 2 Vi i) b — ™)
Z =1
n
W 72
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EM for GMM

@ Initialization

27 .
2%
..: ’o.o.
o. ‘
Or 0"
'o.'!.’ o "' °
° 00‘
) A
-2 0

From Bishop's Pattern recognition and machine learning, Figure 9.8.
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EM for GMM

@ First soft assignment:

2t .
., 362
o SN\t
. |
0 K o.°
wihte ¥
° se®
-2 1
-2 0 (b) 2

From Bishop's Pattern recognition and machine learning, Figure 9.8.
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EM for GMM

@ First soft assignment:

From Bishop's Pattern recognition and machine learning, Figure 9.8.



EM for GMM

@ After 5 rounds of EM:

From Bishop's Pattern recognition and machine learning, Figure 9.8.



EM for GMM

@ After 20 rounds of EM:;

From Bishop's Pattern recognition and machine learning, Figure 9.8.



EM for GMM: Summary

@ EM is a general algorithm for learning latent variable models.

D
o Key idea: if data was fully observed, then(MLEJs easy.
o E-step: fill in latent variables by computing p(z | x, 9).

o M-step: standard MLE given fully observed data.

@ Simpler and more efficient than gradient methods.

@ Can prove that EM monotonically improves the likelihood and converges to a local
minimum.

@ k-means is a special case of EM for GMM with hard assignments, also called hard-EM.
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Latent Variable Models J
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General Latent Variable Model

@ Two sets of random variables: z an@
@ z consists of unobserved hidden variables.

@ x consists of observed variables.
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General Latent Variable Model

@ Two sets of random variables: z and x.
@ z consists of unobserved hidden variables.
@ x consists of observed variables.

@ Joint probability model parameterized by 0 € ©O:

—_—
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General Latent Variable Model

@ Two sets of random variables: z and x.
@ z consists of unobserved hidden variables.
@ x consists of observed variables.
@ Joint probability model parameterized by 0 € ©O:
p(x,z|0)
Definition

A latent variable model is a probability model for which certain variables are never observed.
Y TR
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General Latent Variable Model

@ Two sets of random variables: z and x.
@ z consists of unobserved hidden variables.
@ x consists of observed variables.

@ Joint probability model parameterized by 0 € ©O:
p(x,z|0)

Definition

A latent variable model is a probability model for which certain variables are never observed.

e.g. The Gaussian mixture model is a latent variable model.



Complete and Incomplete Data

@ Suppose we observe some data (xi,...,Xn).
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Complete and Incomplete Data

@ Suppose we observe some data (xi,...,Xn).

@ To simplify notation, take x to represent the entire dataset
X =(x1,...,Xn),

and z to represent the corresponding unobserved variables
z=1(z1,....2n).

@ An observation of x is called an incomplete data set.

@ An observation (x, z) is called a complete data set.

\ [}




Our Objectives

@ Learning problem: Given incomplete dataset x, find MLE

@: argmaxp(x | 9).
0

CSCI-GA 2565 35/75



Our Objectives

@ Learning problem: Given incomplete dataset x, find MLE

6= argmaxp(x | 9).
0

@ Inference problem: Given x, find conditional distribution over@

p(z]x,0).

T e
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Our Objectives

@ Learning problem: Given incomplete dataset x, find MLE

6= argmaxp(x | 9).
0

@ Inference problem: Given x, find conditional distribution over z:
p(z|x,0).
@ For Gaussian mixture model, learning is hard, iw

@ For more complicated models, inference can also be hard.
< —
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Log-Likelihood and Terminology

@ Note that

argmaxp(x | 0) = argmaxllog p(x | 0)].
0 0
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Log-Likelihood and Terminology

@ Note that

argmaxp(x | 0) =argmax|logp(x|0)].
0 0

@ Often easier to work with this “log-likelihood".
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Log-Likelihood and Terminology

@ Note that

argmaxp(x | 0) = argmaxllog p(x | 0)].

) 0

@ Often easier to work with this “log-likelihood".

@ We often call p(x) the marginal likelihood,

o because it i With@“marginalized out™
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Log-Likelihood and Terminology

@ Note that

argmaxp(x | 0) =argmax|logp(x|0)].
0 0

@ Often easier to work with this “log-likelihood".

@ We often call p(x) the marginal likelihood,

o because it is p(x,z) with z “marginalized out™

p(x)=) p(x,2)

e We often call p(x,z) the joint. (for “joint distribution”)
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Log-Likelihood and Terminology

@ Note that

argmaxp(x | 0) =argmax|logp(x|0)].
0 0

@ Often easier to work with this “log-likelihood".

@ We often call p(x) the marginal likelihood,
o because it is p(x,z) with z “marginalized out™

p(x)=) p(x,2)

e We often call p(x,z) the joint. (for “joint distribution”)

e Similarly, log p(x) is the marginal log-likelihood.



EM Algorithm J

CSCI-GA 2565 37 /75



Intuition

Problem: marginal log-likelihood Iggp(x;éi is hard to optimize (observing only x)
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Intuition

Problem: marginal log-likelihood log p(x;0) is hard to optimize (observing only x)

Observation: complete data log-likelihoo

and z)

is easy to optimize (observing both x
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Intuition

Problem: marginal log-likelihood log p(x;0) is hard to optimize (observing only x)

Observation: complete data log-likelihood log p(x, z;0) is easy-te-optimize (observing both x
. e
)

|dea: guess a distribution of the latent variable§ 7)) soft assignments)
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Intuition

Problem: marginal log-likelihood log p(x;0) is hard to optimize (observing only x)

Observation: complete data log-likelihood log p(x, z;0) is easy to optimize (observing both x

and z)

ldea: guess a distribution of the latent variable (soft assignments)

Maximize the expected complete data log-likelihood:

maqu )logp(x,z;0)

. |
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Intuition

Problem: marginal log-likelihood log p(x;0) is hard to optimize (observing only x)

Observation: complete data log-likelihood log p(x, z;0) is easy to optimize (observing both x
and z) F(}\ x ) )

ldea: guess a distribution of the latent variables g(z) (soft assignments)

Maximize the expected complete data log-likelihood:

maqu )logp(x,z;0)
zeZ

EM assumption: the expected complete data log-likelihood is easy to optimize

Why should this work?



Math Prerequisites J
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Jensen’s Inequality

Theorem (Jensen's Inequality)

If f:R— R is a convex function, and x is a random variable, then

Ef(x) > f(Ex).
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Jensen’s Inequality

Theorem (Jensen's Inequality)

If f:R— R is a convex function, and x is a random variable, then

Ef(x) > f(Ex).

Moreover, if f is strictly convex, then equality implies that x = Ex with probability 1 (i.e. x is
a constant).
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Jensen’s Inequality

Theorem (Jensen's Inequality)

If f:R— R is a convex function, and x is a random variable, then

——
=

£F()> f(Ex)

Moreover, if f is strictly convex, then equality implies that x = IEx with probability 1 (i.e. x is
a constant).

o e.g. f(x)=x2is convex. So Ex2 > (Ex)°. Thus

Var (x) = Ex? — (Ex)? > 0.
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Kullback-Leibler Divergence

@ Let p(x) and g(x) be probability mass functions (PMFs) on X.

@ How can we measure how “different” p and g are?
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Kullback-Leibler Divergence

@ Let p(x) and g(x) be probability mass functions (PMFs) on X.

@ How can we measure how “different” p and g are?

@ The Kullback-Leibler or “KL"” Divergence is defined by

X
KL x)1 —.
(pllq) Z plx)log 5

(Assumes g(x) =0 implies p(x) =0.)
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Kullback-Leibler Divergence

@ Let p(x) and g(x) be probability mass functions (PMFs) on X.

@ How can we measure how “different” p and g are?

@ The Kullback-Leibler or “KL"” Divergence is defined by

X
KL x)1 —.
(Plla) = D _plx)log e

xeX

(Assumes g(x) =0 implies p(x) =0.)

@ Can also write this as

KL(pllqg) =( Ex-pjog——-
q(x)

CSCI-GA 2565

41/75



Gibbs Inequality (KL(p||q) > 0 and KL(p||p) =0)

Theorem (Gibbs Inequality)
Let p(x) and q(x) be PMFs on X. Then

KL(p|q) =0,

with equality iff p(x) = q(x) for all x € X.
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Theorem (Gibbs Inequality)
Let p(x) and q(x) be PMFs on X. Then

KL(p|q) =0,

with equality iff p(x) = q(x) for all x € X.

@ KL divergence measures the “distance” between distributions.
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Gibbs Inequality (KL(p||q) > 0 and KL(p||p) =0)

Theorem (Gibbs Inequality)
Let p(x) and q(x) be PMFs on X. Then

KL(p|q) =0,

with equality iff p(x) = q(x) for all x € X.

@ KL divergence measures the “distance” between distributions.

o Note: kL(F“‘V) kL ( 7/“193‘

o KL divergence not a metric.

o KL divergence is not symmetric. GQ:'@H/&A'\' :



Gibbs Inequality: Proof

KL(pllq) = E, [—log<w)]
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Gibbs Inequality: Proof

(Jensen'’s)

KL(pllq) = E, [—log<—)
px) /.
)
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Gibbs Inequality: Proof

Kiipl) = Ep |-los (707)
@b[ (56). -

(Jensen'’s)
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Gibbs Inequality: Proof

KL(pllq) = E, [—log<%)
g, (A2Y ,
> —log |Ep (p(x))_ (Jensen’s)
L qu}
= —log P20
o0 P
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Gibbs Inequality: Proof

KL(pllq) = E, [—log<%)
g, (A2Y ,
> —log |Ep (p(x))_ (Jensen’s)
L qu}
= —log P20
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Gibbs Inequality: Proof

q_) (Jensen'’s)

: p(x) — =
— log p(x)‘”x)}
om0y P
— —log Zq(x)]
| xeX
= —logl=0

@ Since —log is strictly convex, we have strict equality iff g(x)/p(x) is a constant, which
implies g=p . -



The ELBO: Family of Lower Bounds on log p(x | 0) }
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The Maximum Likelihood Estimator

l3plxlo)

)
-~
E \
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Lower bound of the marginal log-likelihood

log ptxje) = |25 Z pLx2i9),

B < P(xz— o)

= [93 i_ %z) L;_)‘J

@ S ) (e PR ) [ Sere)
> (1/ J o,L%)

= 1.(¢,9),
~Z
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MLE, EM, and the ELBO

@ The MLE is defined as a maximum over O:

OmLE = argmax[log p(x | 8)].
0

CSCI-GA 2565 47 /75



MLE, EM, and the ELBO

@ The MLE is defined as a maximum over 0O:

OmLE = argmax[log p(x | 8)].
0

e For any PMF@ we have a lower bound on the marginal log-likelihood

logp(x10) > L(q,0).
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MLE, EM, and the ELBO

@ The MLE is defined as a maximum over 0O:

OmLE = argmax[log p(x | 8)].
0

@ For any PMF qg(z), we have a lower bound on the marginal log-likelihood
logp(x|0) > L(q,0).

@ In EM algorithm, we maximize the lower bound (ELBO) over 0 and g:

Oem ~ arg max [maxL(q, 9)]
0 q
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MLE, EM, and the ELBO

@ The MLE is defined as a maximum over 0O:

OmLE = argmax[log p(x | 8)].
0

@ For any PMF qg(z), we have a lower bound on the marginal log-likelihood
logp(x|0) > L(q,0).

@ In EM algorithm, we maximize the lower bound (ELBO) over 6 and g:

Oem ~ arg max [maxL(q, 9)]
0 q

@ In EM algorithm, g ranges over all distributions on z.



EM: Coordinate Ascent on Lower Bound

@ Choose sequence of g's and 0's by “coordinate ascent” on £(q,9).
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EM: Coordinate Ascent on Lower Bound

@ Choose sequence of g's and 0's by “coordinate ascent” on £(q,9).

e EM Algorithm (high level):

@ Choose initia
Q Let@: argmaxqﬁ(q,eo'd)

—
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EM: Coordinate Ascent on Lower Bound

@ Choose sequence of g's and 0's by “coordinate ascent” on £(q,9).

e EM Algorithm (high level):
@ Choose initial 8°4.
Q Let g" =argmax,L(q, gold)

© Let 0™ =argmaxpy L(q*,0).
Y
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EM: Coordinate Ascent on Lower Bound

@ Choose sequence of g's and 0's by “coordinate ascent” on £(q,9).

o EM Algorithm (high level):
@ Choose initial 8°4.
Q Let g" =argmax,L(q, gold)
© Let 0" =argmaxg L(q",0).
Q@ Go to step 2, until converged.
o Will show: p(x|0™W) > p(x |6°Md)

L __—

@ Get sequence of 0’s with monotonically increasing likelihood.
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EM: Coordinate Ascent on Lower Bound

© Start at 0°9,

From Bishop's Pattern recognition and machine learning, Figure 9.14.



EM: Coordinate Ascent on Lower Bound

001d enew

@ Start at 0°9.
@ Find g giving best lower bound a:> L(q,0).

From Bishop's Pattern recognition and machine learning, Figure 9.14.



EM: Coordinate Ascent on Lower Bound

001d anew

@ Start at 0°.
@ Find q giving best lower bound at 8°¢ — £(q,0).
© 0" =argmaxg L£(q,9).

From Bishop's Pattern recognition and machine learning, Figure 9.14.




Is ELBO a "good" lowerbound?

L£(q,0) =) q(z) Iogp(X'Z ) —
c2 - q(z) Cxett
N s PE X 0)p(x |0 inferenne
- _ Z q(z)log 9(2) + Z q(z)logp(x|0)
= p(z|x,0)
—KL(g(2)llp(z]x,6)) JKl\ogp(x )

e KL divergence: measures “distance” between two distributions (not symmetric!)
o KL(q|lp) > 0 with equality iff qg(z) = p(z | x).

@ ELBO = evidence - KL < evidence
e CSCI-GA 2565 50 /75



Maximizing over g for fixed 0.

@ Find g maximizing

L(q.0) = —KLlq(z),p(z]x,6)]+logp(x]|6)

C — I
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Maximizing over g for fixed 0.

@ Find g maximizing

L(q,0) = —KLlg(z),p(z]x,0)]+logp(x|6)

Ve

no g here
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Maximizing over g for fixed 0.

@ Find g maximizing

£(q,0) = —KLlg(z),p(z]x,6)]+logp(x|6)

7

Ve

no g here

e Recall KL(pl||g) >0, and KL(p||p) =0.
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Maximizing over g for fixed 0.

@ Find g maximizing

L(q,0) = —KLlg(z),p(z]x,0)]+logp(x|6)

Ve

no g here

e Recall KL(pl||g) >0, and KL(p||p) =0.

@ Best gis g*(z) =p(z | x,0) and
-
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Maximizing over g for fixed 0.

@ Find g maximizing

L(q,0) = —KLlg(z),p(z]x,0)]+logp(x|6)

Ve

no g here

e Recall KL(pl||g) >0, and KL(p||p) =0.

@ Best gis g*(z) =p(z | x,0) and
£(q",0) = —KL[p(z| x,0). pl(z | x, 0)] +log plx | 0

— =

=0
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Maximizing over g for fixed 0.

@ Find g maximizing

L(q,0) = —KLlg(z),p(z]x,0)]+logp(x|6)

Ve

no g here

e Recall KL(pl||g) >0, and KL(p||p) =0.

@ Best g is g*(z) = p(z] x,0) and @)

Llg™.0) = —KLIp(z|x,6),p(z|x,0)]+logp(x|0) Q/ZP(ZN)

~\"

=0

@ Summary:

) Fo, sup is attained at q(z) = p(z| x, 0).

CSCI-GA 2565 51/75
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Marginal Log-Likelihood IS the Supremum over Lower Bounds

lijCXle).

L\

o \ / &
(9.5)
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Summary

Latent variable models: clustering, latent structure, missing lables etc.
Parameter estimation: maximum marginal log-likelihood
Challenge: directly maximize the evidence log p(x;0) is hard

Solution: maximize the evidence lower bound:

< )
ELBO = £(q,0) = —KL(g(2)]|p(z | x;6)) +log p(x; 6)

Ny ~

Why does it work?

q*(z) =p(z]|x;0) V€O
L(g*,0%) = mgxlogp(x;@)
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EM algorithm

Coordinate ascent on £(q,0)
@ Random initialization: 6°'d «+ 9,
@ Repeat until convergence
@ qg(z)«+ arg maqu(q,Go'd)

Expectation (the E-step): z) = p(z| x;e°'i)

@ 0" <« argmaxg L(g*,0)

0" < argmax J(0)

e ——

Maximization (the M-step):

—
—_—
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EM Algorithm

© Expectation Step
o Let g*(z) = p(z] x,0°9). [¢g* gives best lower bound at 9°']
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EM Algorithm

© Expectation Step

o Let g*(z) = p(z] x,0°9). [¢g* gives best lower bound at 9°']
o Let

R

7

~"

expectatlon w.r.t. z~g*(2)
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EM Algorithm

© Expectation Step
o Let g*(z) = p(z] x,0°9). [¢g* gives best lower bound at 9°']

o Let
J(0):= Zq Iog( XZle))

q*(z)

7

~"

expectatlon w.r.t. z~g*(2)

© Maximization Step

enew

—argmaxJ(0).
0

CSCI-GA 2565 55 /75



EM Algorithm

© Expectation Step
o Let g*(z) = p(z] x,0°9). [¢g* gives best lower bound at 9°']

o Let |6)
X Z
HO)=4 Z" '°g< 2 )

—— )
~

expectatlon w.r.t. z~g*(2)

© Maximization Step

enew

—argmaxJ(0).
0

[Equivalent to maximizing expected complete log-likelihood.]
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EM Algorithm

© Expectation Step
o Let g*(z) = p(z] x,0°9). [¢g* gives best lower bound at 9°']

o Let
J(0) = Zq Iog( XZle))

q*(z)

7

~"

expectatlon w.r.t. z~g*(2)

© Maximization Step

enew

—argmaxJ(0).
0

[Equivalent to maximizing expected complete log-likelihood.]

EM puts no constraint on g in the E-step and assumes the M-step is easy. In general, both
steps can be hard.



Monotonically increasing likelihood

. : Tgold e :
Exercise: prove that EM increases the marginal likelihood monotonically

log p(x; 0™Y) > log p(x; 06°9) .

Does EM converge to a M[n/um?



Variations on EM J
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EM Gives Us Two New Problems

@ The "E" Step: Computing

() =2(q",0) = Y g (z)log (P2 )
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EM Gives Us Two New Problems

@ The "E" Step: Computing

J(0): Zq Iog( (x,z!@))

q*(z)

@ The "M" Step: Computing

enew

—argmaxJ(0).
0

r
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EM Gives Us Two New Problems

@ The "E" Step: Computing

J(0): Zq Iog( (x,z!@))

q*(z)

@ The "M" Step: Computing

enew

—argmaxJ(0).
0
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EM Gives Us Two New Problems

@ The "E" Step: Computing

J(0): Z q*(2) log (QZ )e%

q*(z

@ The "M" Step: Computing

enew

—argmaxJ(0).
R 9 )

@ Either of these can be too hard to do in practice.
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Generalized EM (GEM)

@ Addresses the problem of a difficult “M" step.
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Generalized EM (GEM)

@ Addresses the problem of a difficult “M" step.

@ Rather than finding

find any 0"®W for which

e —
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Generalized EM (GEM)

@ Addresses the problem of a difficult “M" step.

@ Rather than finding

enew

0

find any 0"W for which

@ Can use a standard nonlinear optimization strategy
o e.g. take a gradient step on J.
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Generalized EM (GEM)

@ Addresses the problem of a difficult “M" step.

@ Rather than finding

enew

—argmaxJ(0),
0

find any 0"W for which

@ Can use a standard nonlinear optimization strategy
o e.g. take a gradient step on J.

@ We still get monotonically increasing likelihood.

CSCI-GA 2565

59 /75



EM and More General Variational Methods

et -
@ Suppose “E" step is difficult: / QLo W

o Hard to take expectation w.r.t. g*(z) = p(z] x, 6°!9).
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EM and More General Variational Methods

@ Suppose “E" step is difficult:
o Hard to take expectation w.r.t. g*(z) = p(z] x, 6°!9).

@ Solution: Restrict to distributions Q that are easy to work with.

CSCI-GA 2565 60 /75



EM and More General Variational Methods

@ Suppose “E" step is difficult:
o Hard to take expectation w.r.t. g*(z) = p(z] x, 6°!9).

@ Solution: Restrict to distributions Q that are easy to work with.

@ Lower bound now looser:

q* = argminKL[g(z), p(z | x,0°)]
qgeQ
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Deep Latent Variable Models

@ Neural network is a flexible function class to
represent transformation between random
variables e.g., g(z).

CSCI-GA 2565
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Deep Latent Variable Models

@ Neural network is a flexible function class to
represent transformation between random
variables e.g., g(z).

@ In neural networks, the hidden activations do
not have probabilistic interpretation as they
are not random variables.
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Deep Latent Variable Models

@ Neural network is a flexible function class to
represent transformation between random
variables e.g., g(z).

@ In neural networks, the hidden activations do
not have probabilistic interpretation as they
are not random variables.

@ What if we let the hidden represent some
learned latent code?

CSCI-GA 2565

Input

Latent
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Variational Autoencoders (VAE) !

@ An autoencoder (AE) is a neural network that reconstructs the same input.

Input

Wy

L2\%) .

W,

Latent

O

W3

p(xk25-

Reconstruction

W,

OOO0O000

OOO00O

x@

1Diederik P Kingma, Max Welling. Auto-Encoding Variational Bayes. ICLR 2014.

@,
O

V4

OOO00O
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Variational Autoencoders (VAE) !

@ An autoencoder (AE) is a neural network that reconstructs the same input.

@ The first half is an encoder, from input to latent. The second half is a decoder.

Input

OOO0O000

Reconstruction

X

%

1Diederik P Kingma, Max Welling. Auto-Encoding Variational Bayes. ICLR 2014.
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Variational Autoencoders (VAE) 1

@ An autoencoder (AE) is a neural network that reconstructs the same input.

@ The first half is an encoder, from input to latent. The second half is a decoder.

@ How to make g a probability distribution?

N/loo .

Wy

w, ||©

Reconstruction

W,

OOO0O000

1Diederik P Kingma, Max Welling. Aufﬁ)ding Variational Bayes. ICLR 2014.
CSCI-GA 2565
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= .

e
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Reparameterization Trick

=1
©

e

—+

@ Let's assume that g(z|x) is a Gaussian
distribution.

Latent

=
e

OO0

N
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=
o
S
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Reparameterization Trick

@ Let's assume that g(z|x) is a Gaussian
distribution.

@ Instead of letting the neural network to
output a stochastic variable, we can let it
predict deterministically the distribution
parameters 1 and o©.
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Reparameterization Trick

@ Let's assume that g(z|x) is a Gaussian
distribution.

@ Instead of letting the neural network to
output a stochastic variable, we can let it
predict deterministically the distribution
parameters 1 and o©.

o ochastic z can be sampled {
Ny, 09): z= u+o-e, where(e ~N(0,1)

CSCI-GA 2565
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Variational Lower Bound

@ Encoder g weights: ¢; Decoder p weights: 0.
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Variational Lower Bound

@ Encoder g weights: ¢; Decoder p weights: 0.

@ Now maximize ELBO:

(10)
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Variational Lower Bound

@ Encoder g weights: ¢; Decoder p weights: 0.

@ Now maximize ELBO:

L(q;$,0) Zq |og

IX)
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Variational Lower Bound

@ Encoder g weights: ¢; Decoder p weights: 0.

@ Now maximize ELBO:

Lgi$.0) = Y qlz)log 22%:2)

—— 5 g (z]x)

— IE‘:z~q[_ |Og de (Z’X) T |ng9 (X, Z)]
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Variational Lower Bound

@ Encoder g weights: ¢; Decoder p weights: 0.

@ Now maximize ELBO:

L(g:$.0) =) q(z) Z|X§ (7)
:Ez q[—|0gCIq>(Z\X)+|OgPe(X Z)] (8)
—E,-q[—log gy (z|x) + log po (x|2) + log pe (2)] (9)

(10)

CSCI-GA 2565 64 /75



Variational Lower Bound

@ Encoder g weights: ¢; Decoder p weights: 0.

@ Now maximize ELBO:

Pe X,Z)
0) 7
L(g: &, ;q & a0 (20 (7)
:Ez~q[_|oqu) (Z’X)Jr'OgPe (X Z)] gifl\ﬂ(fe, (8)
= E,ql—log g (|x) + log po (x|2) +log pe 2 G (9)

— —KL(qy(zlx)lIpe(2)) + Ez~qF Eho! x!z (10)

Divergence between g and the prior distribution = Reconstruction based on z

/
N(O,I)
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Stochastic Gradient

@ The loss function needs to take expectation over g:

L(q;$,0) =—KL(qq (z|x)llpe(z +]@|ng9 (x]2))

©
—+
el
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>
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=
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OO00000
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Stochastic Gradient
2= p o)
@ The loss function needs to take expectation over g: p— : :

L(g:$,0) =—KL(qe (zlx)llpe(z)) +E,-q(log pe(x|z))

@ Turns out we just need to have a Monte Carlo sample size of 1:

AL

o For each x, sample one z from q(z|x). a% '

(\'9-/ .
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Stochastic Gradient

@ The loss function needs to take expectation over g:

L(g:$,0) =—KL(qe (zlx)llpe(z)) +E,-q(log pe(x|z))

@ Turns out we just need to have a Monte Carlo sample size of 1:
o For each x, sample one z from q(z|x).

@ Backprop through reparameterization.

Input

O

OOO0000O

2
=
=
\J

X

V4

O

) O O
Q) Q W, Q W, Q
Q> @, O O
logo Q Q

O O

O
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Latent

e 2O
M
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| earned Manifold
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Today's Summary

@ Motivation: Unsupervised learning
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Today's Summary

@ Motivation: Unsupervised learning
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@ Making k-means probabilistic: Gaussian mixture models
@ More generally: Latent variable models
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Today's Summary

@ Motivation: Unsupervised learning

@ K-means: A simple algorithm for discovering clusters

@ Making k-means probabilistic: Gaussian mixture models
@ More generally: Latent variable models

@ Learning of latent variable models: EM

@ Underlying principle: Maximizing ELBO

@ VAE: Introducing variational inference to neural networks. A classic starting example for
deep generative modeling.



Conclusion and Outlook J
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Acknowledgement

@ Most content developed by David Rosenberg (now at Bloomberg).
@ Later adapted by He He, Tal Linzen, and others.
@ This is a very challenging grad-level course.

@ Congrats, you are almost done.
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Next Lecture: Project Presentation

in—person presentations.

@ 22 groups, 120mins.

@ Aim for 3 mins per group, hard stop at 4 mins, and 1 min max for Q&A.

—_—
————

@ Send your slides in PDF with your group number by Dec 9 11:59pm (via Google form).
M -
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Linear Perceptron, conditional probability models, SVMs
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How to choose the model family?

o Trade-offs:
o approximation error and estimation error (bias and variance),

o accuracy and efficiency (during both training and inference).
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Models

Linear Perceptron, conditional probability models, SVMs

Non-linear Kernelized models, trees, basis function models, neural nets

How to choose the model family?

o Trade-offs:
o approximation error and estimation error (bias and variance),

o accuracy and efficiency (during both training and inference).
@ Start from the task requirements, e.g. amount of data, computation resource

@ The best lesson is to practice!
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Objectives

Loss functions How far off a prediction is from the target, e.g. 0-1 loss, margin-based loss,
squared loss.
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Objectives

Loss functions How far off a prediction is from the target, e.g. 0-1 loss, margin-based loss,
squared loss.

Risk Expected loss - but expectation over what?
@ Frequentist approach: expectation over data.

o Empirical risk minimization, i.e. average loss on the training data.

o Regularization: balance estimation error and generalization error.

@ Bayesian approach: expectation over parameters.
o Posterior: prior belief updated by observed data.

o Bayes action minimizes the posterior risk.
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Algorithms

Learning Find model parameters—often an optimization problem.
@ (Stocahstic) (sub)gradient descent

@ Functional gradient descent (gradient boosting)

@ Convex vs non-convex objectives

Inference Answer questions given a learned model.

@ Bayesian inference: compute various quantities given the posterior.

@ Dynamic programming: compute argmax in structured prediction.
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Do We Still Need ML?

@ Deep Learning (DL) has been overwhelmingly popular in the past few years.
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Do We Still Need ML?

@ Deep Learning (DL) has been overwhelmingly popular in the past few years.
@ Many ML methods are considered out-dated.

@ However, DL is not necessarily good for all types of data (data availability, data quality,
data modality etc.). Classic methods may also have their sweet spots.

@ Classic ML sheds new insight into understand DL.

@ Classic ML lays down foundation when we innovate in DL algorithms.
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Other ML Related Advanced Courses in CS/DS

@ Bayesian Machine Learning(Andrew Wilson)

@ Computer Vision (Saining Xie)

@ Deep Learning (Yann LeCun)

@ Deep Reinforcement Learning (Lerrel Pinto)

@ Enbodied Learning and Vision (Mengye Ren)

@ Foundations of Deep Learning Theory (Matus Telgarsky)

@ Inference and Representation (Joan Bruna)

@ Learning with Large Language and Vision Models (Saining Xie)

@ Mathematics of Deep Learning (Joan Bruna)

@ Natural Language Processing (He He)
————————— R e Y



