Neural Networks II: Deep Learning

Mengye Ren

(Slides credit to David Rosenberg, He He, et al.)

NYU

Nov 26, 2024

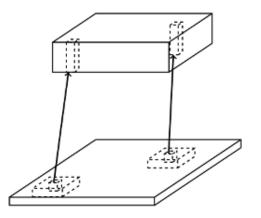
Slides

- Homework 4 Due: Dec 3.
- Last lecture: Dec 10 Project presentation.
- Presentation order: Your assigned Group ID.
- Each group has a max of 4 minutes (hard stop) $+ 1 \min Q\&A$.
- OH this week: Wednesday 1-2pm.

Deog. send slides.

Local connection patterns

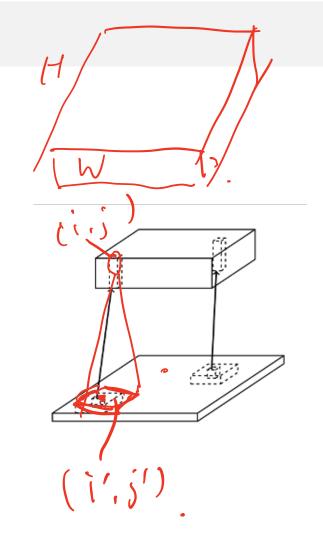
- The typical image input layer has 3 channels R G B for color or 1 channel for grayscale.
- The hidden layers may have C channels, at each spatial location (*i*,*j*).



Local connection patterns

- The typical image input layer has 3 channels R G B for color or 1 channel for grayscale.
- The hidden layers may have C channels, at each spatial location (*i*,*j*).
- Now each hidden neuron $z_{i,j,c}$ receives inputs from $x_{i\pm k,j\pm k,\cdot}$
- *k* is the "kernel" size do not confuse with the other kernel we learned.

•
$$z_{i,j,c} = \sum_{i' \in i \pm k, j' \in j \pm k} c' \overset{X_{i'j'c'}}{\underset{i \neq j \neq j \neq j}{\overset{w_{i,j,i'-i,j'-j,c',c}}{\overset{w_{i,j,c'$$

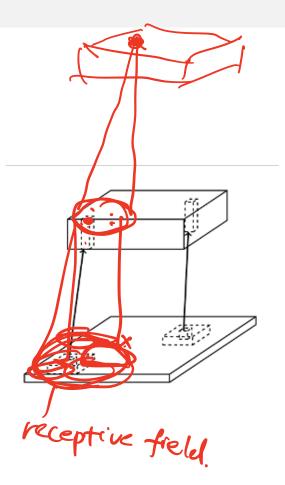


Local connection patterns

- The typical image input layer has 3 channels R G B for color or 1 channel for grayscale.
- The hidden layers may have C channels, at each spatial location (*i*,*j*).
- Now each hidden neuron $z_{i,j,c}$ receives inputs from $x_{i\pm k,j\pm k,\cdot}$
- *k* is the "kernel" size do not confuse with the other kernel we learned.

•
$$z_{i,j,c} = \sum_{i' \in [i \pm k], j' \in [j \pm k], c'} x_{i'j'c'} v_{i,j} - i,j' - j,c',c}$$

• The spatial awareness (receptive field) of the neighborhood grows bigger as we go deeper.



Weight sharing

• Still a lot of weights: If we have 100 channels in the second layer, then $200 \times 200 \times 3 \times 100 = 12M$

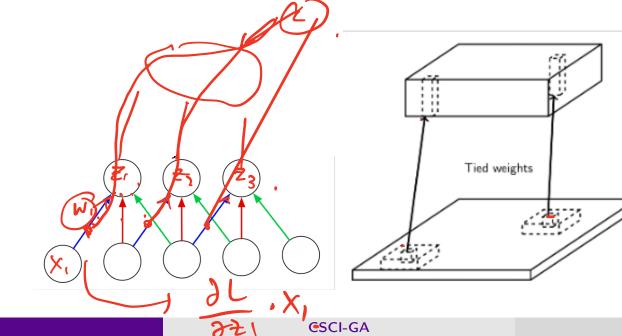
Weight sharing

- Still a lot of weights: If we have 100 channels in the second layer, then $200 \times 200 \times 3 \times 100 = 12M$
- Local information is the same regardless of the position of an element.

Weight sharing

JW

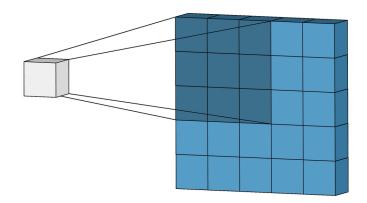
- Still a lot of weights: If we have 100 channels in the second layer, then $200 \times 200 \times 3 \times 100 = 12M$
- Local information is the same regardless of the position of an element.
- Solution: We can tie the weights at different locations.



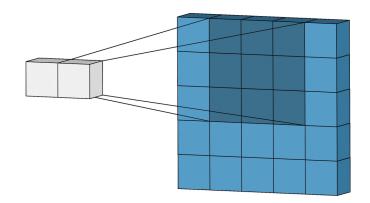
l CNN.

Fully Connected TCocal

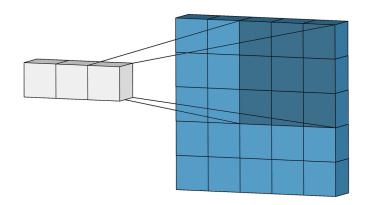
- Using the same weight connections for each activation spatial location works like the "filtering operation" or "convolution"
- The neighborhood window is the filter window.
- The weight connection is called "convolution filter"



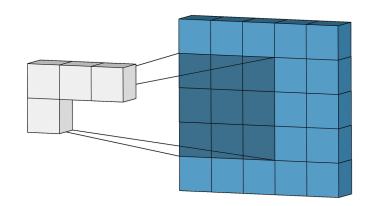
- Using the same weight connections for each activation spatial location works like the "filtering operation" or "convolution"
- The neighborhood window is the filter window.
- The weight connection is called "convolution filter"



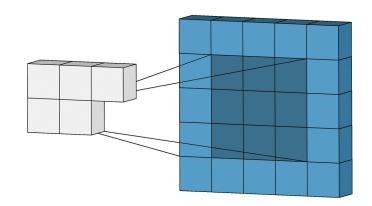
- Using the same weight connections for each activation spatial location works like the "filtering operation" or "convolution"
- The neighborhood window is the filter window.
- The weight connection is called "convolution filter"



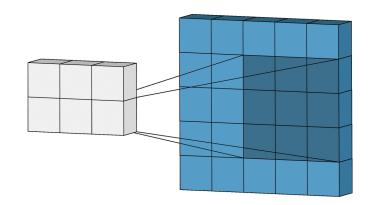
- Using the same weight connections for each activation spatial location works like the "filtering operation" or "convolution"
- The neighborhood window is the filter window.
- The weight connection is called "convolution filter"



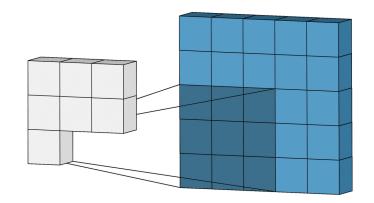
- Using the same weight connections for each activation spatial location works like the "filtering operation" or "convolution"
- The neighborhood window is the filter window.
- The weight connection is called "convolution filter"



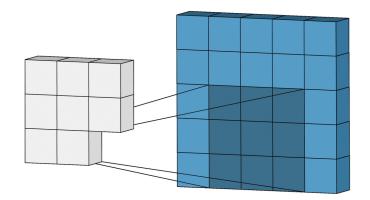
- Using the same weight connections for each activation spatial location works like the "filtering operation" or "convolution"
- The neighborhood window is the filter window.
- The weight connection is called "convolution filter"



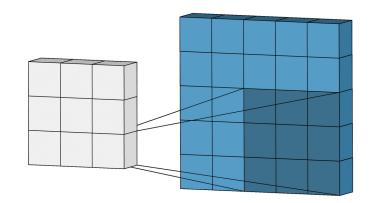
- Using the same weight connections for each activation spatial location works like the "filtering operation" or "convolution"
- The neighborhood window is the filter window.
- The weight connection is called "convolution filter"



- Using the same weight connections for each activation spatial location works like the "filtering operation" or "convolution"
- The neighborhood window is the filter window.
- The weight connection is called "convolution filter"



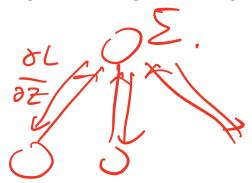
- Using the same weight connections for each activation spatial location works like the "filtering operation" or "convolution"
- The neighborhood window is the filter window.
- The weight connection is called "convolution filter"

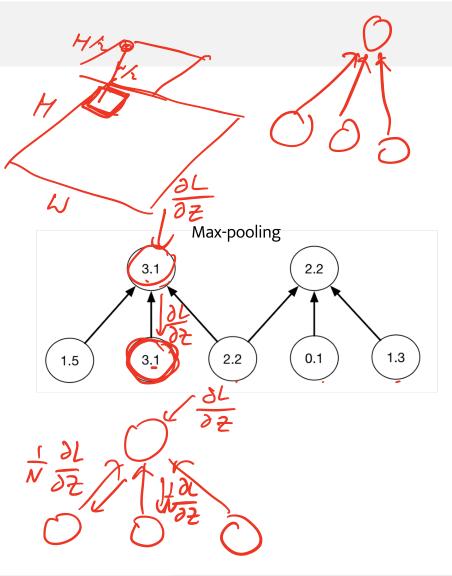


•
$$z_{i,j,c} = \sum_{i' \in [i \pm k], j' \in [j \pm k], c'} x_{i'j'c'} w_{i-i',j-j',c',c}$$

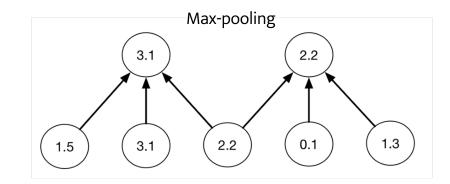
Noighborhood input channel
index autput channel
CSCI-GA

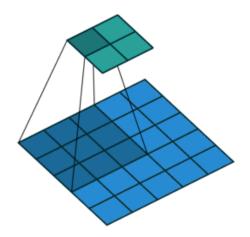
- Need to summarize global information more efficiently.
- Pooling reduces image / activation dimensions.
- Max-pooling or average-pooling

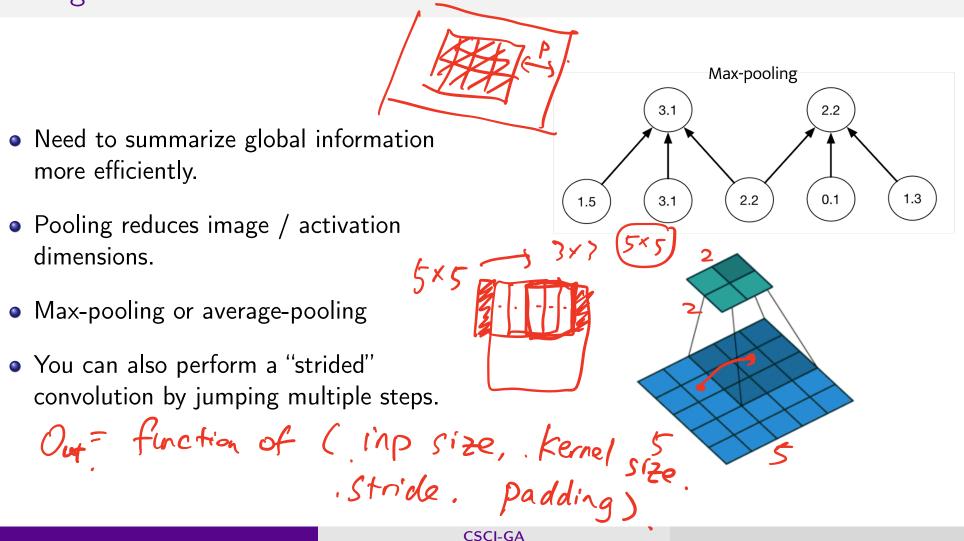




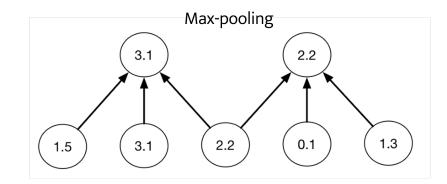
- Need to summarize global information more efficiently.
- Pooling reduces image / activation dimensions.
- Max-pooling or average-pooling
- You can also perform a "strided" convolution by jumping multiple steps.

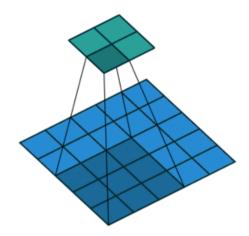




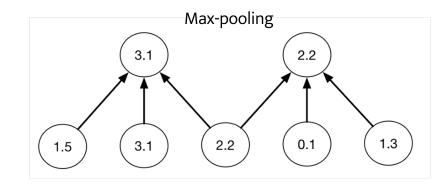


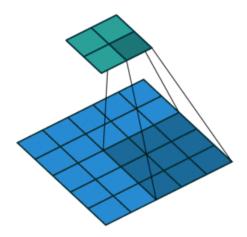
- Need to summarize global information more efficiently.
- Pooling reduces image / activation dimensions.
- Max-pooling or average-pooling
- You can also perform a "strided" convolution by jumping multiple steps.



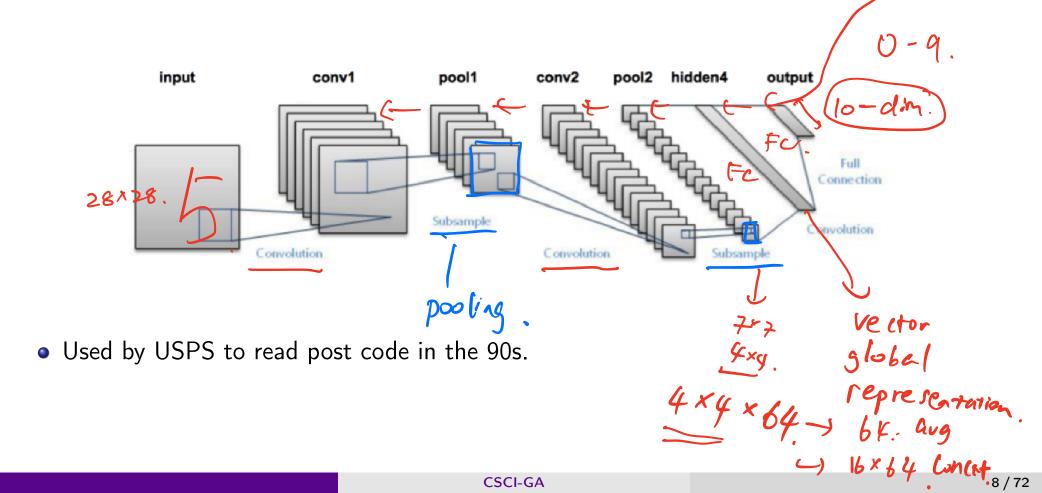


- Need to summarize global information more efficiently.
- Pooling reduces image / activation dimensions.
- Max-pooling or average-pooling
- You can also perform a "strided" convolution by jumping multiple steps.





Assembling together: LeNet



Cross entropy

Historical development

• LeNet has worked and being put to practice in the 1990s.

- LeNet has worked and being put to practice in the 1990s.
- Neural networks for images start to dominate in the last 10 years (starting 2012) for understanding general high resolution natural images.

- LeNet has worked and being put to practice in the 1990s.
- Neural networks for images start to dominate in the last 10 years (starting 2012) for understanding general high resolution natural images.
- During the years:
 - Neural networks were difficult to work
 - People focused on feature engineering
 - Then apply SVM or random forest (e.g. AdaBoost face detector)
 - What has changed?

Gradient learning conditioning

Optimization challenges

- Larger images require deeper networks (more stages of processing at different resolutions)
- Optimizing deeper layers of networks is not trivial.
- Loss often stalls or blows up.

Optimization challenges

- Larger images require deeper networks (more stages of processing at different resolutions)
- Optimizing deeper layers of networks is not trivial.
- Loss often stalls or blows up.
- Why?

Optimization challenges

- Larger images require deeper networks (more stages of processing at different resolutions)
- Optimizing deeper layers of networks is not trivial.
- Loss often stalls or blows up.
- Why?
 - Backpropagation: multiplying the Jacobian $\frac{\partial y}{\partial x}$ by each layer.
 - If the maximum singular value of each layer of Jacobian is less than 1: then the gradient will converge to 0 with more layers.

M

- If the greater than 1: then the gradient will explode with more layers.
- The bottom (input) layer may get 0 or infinite gradients.

• Even with a few layers (>3), optimization is still hard.

- Even with a few layers (>3), optimization is still hard.
- If weight initialization is bad (too small or too big), then optimization is hard to kick off.

- Even with a few layers (>3), optimization is still hard.
- If weight initialization is bad (too small or too big), then optimization is hard to kick off.
- Consider the distribution of whole dataset in the activation space.
 - Intuition: upon initialization, the variance of the activations should stay the same across every layer

-

• Suppose each neuron and weight connection are sampling from a random distribution.

¹He et al. Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet. ICCV, 2015.

- Suppose each neuron and weight connection are sampling from a random distribution.
- At *I*-th layer, $Var[z_I] = n Var[w_I x_I]$ ($n_I = \text{num. input neurons to } I$ -th layer)

¹He et al. Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet. ICCV, 2015.

• Suppose each neuron and weight connection are sampling from a random distribution.

Kaiming Initialization

- At *I*-th layer, $Var[z_I] = n_I Var[w_I x_I]$ ($n_I = \text{num. input neurons to } I$ -th layer)
- If we suppose that ReLU is used as the activation, and w_l is symmetric and zero-mean, $x_{l+1} = \frac{1}{2} Var[z_l].$

¹He et al. Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet. ICCV, 2015.

- Suppose each neuron and weight connection are sampling from a random distribution.
- At *I*-th layer, $Var[z_I] = n_I Var[w_I x_I]$ ($n_I = \text{num. input neurons to$ *I*-th layer)
- If we suppose that ReLU is used as the activation, and w_l is symmetric and zero-mean, $x_{l+1} = \frac{1}{2} Var[z_l].$
- Putting altogether, $x_{l+1} = \frac{1}{2}n_l Var[w_l] Var[x_l]$.

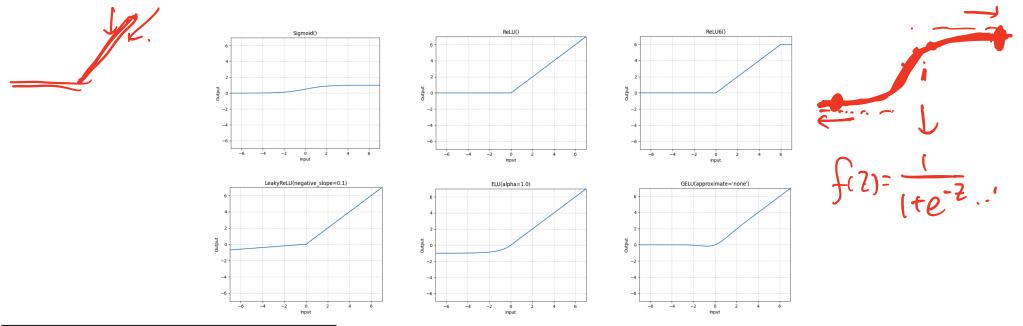
¹He et al. Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet. ICCV, 2015.

- Suppose each neuron and weight connection are sampling from a random distribution.
- At *I*-th layer, $Var[z_I] = n_I Var[w_I x_I]$ ($n_I = \text{num. input neurons to } I$ -th layer)
- If we suppose that <u>ReLU</u> is used as the activation, and w_l is symmetric and zero-mean, $x_{l+1} = \frac{1}{2} Var[z_l].$
- $x_{l+1} = \frac{1}{2} Var[z_l].$ Putting altogether, $x_{l+1} = \frac{1}{2} n_l Var[w_l] Var[x_l].$ Putting altogether, $x_{l+1} = \frac{1}{2} n_l Var[w_l] Var[x_l].$ To make the variance constant, we need $\frac{1}{2} n_l Var[w_l] = 1$, $Std[w_l] = \sqrt{2/n_l}^1.$

¹He et al. Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet. ICCV, 2015.

Activation functions

- ReLU was proposed in 2009-2010²³, and was successfully used in AlexNet in 2012^4 .
- Address the vanishing gradient issue in activations, comparing to sigmoid or tanh.



 2 Jarrett et al. What is the Best Multi-Stage Architecture for Object Recognition? ICCV, 2009.

 3 Nair & Hinton/ Rectified Linear Units Improve Restricted Boltzmann Machines. ICML, 2010.

⁴Krizhevsky et al. ImageNet Classification with Deep Convolutional Neural Networks. NIPS, 2012.

SGD Learning Rate

 In stochastic training, the learning rate also influences the fluctuations due to the stochasticity of the gradients.

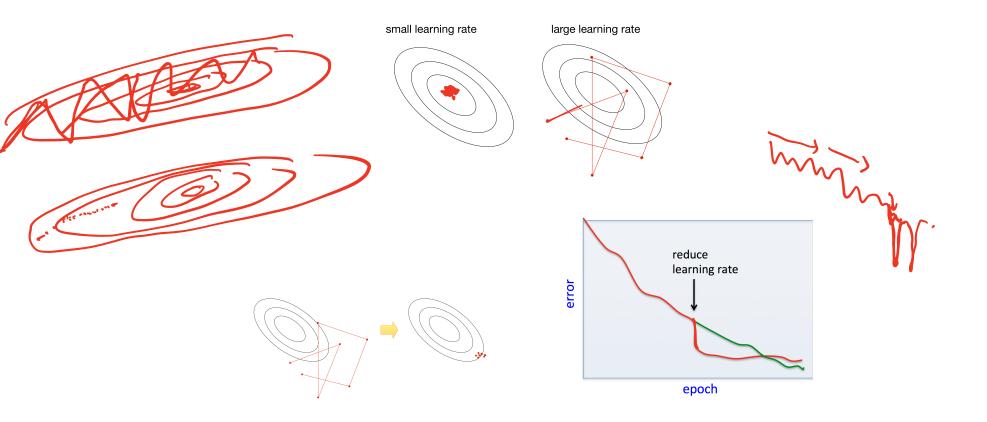
Mini - batch

- Typical strategy:
 - Use a large learning rate early in training so you can get close to the optimum
 - Gradually decay the learning rate to reduce the fluctuations.

lower.

Learning Rate Decay

• We also need to be aware about the impact of learning rate due to the stochasticity.



RMSprop and Adam

- Recall: SGD takes large steps in directions of high curvature and small steps in directions of low curvature.
- **RMSprop** is a variant of SGD which rescales each coordinate of the gradient to have norm 1 on average. It does this by keeping an exponential moving average *s_j* of the squared gradients.

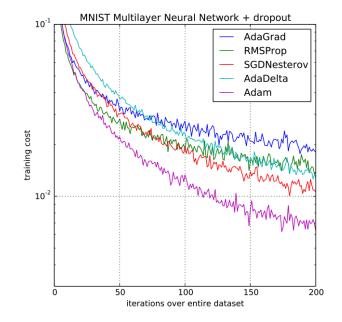
RMSprop and Adam

- Recall: SGD takes large steps in directions of high curvature and small steps in directions of low curvature.
- RMSprop is a variant of SGD which rescales each coordinate of the gradient to have norm 1 on average. It does this by keeping an exponential moving average *s_j* of the squared gradients.
- The following update is applied to each coordinate *j* independently:

$$\begin{array}{c} s_{j} \leftarrow (1-\gamma)s_{j} + \gamma \left[\frac{\partial L}{\partial \theta_{j}}\right]^{2} \\ \theta_{j} \leftarrow \theta_{j} - \frac{\alpha}{\sqrt{s_{j} + \epsilon}} \frac{\partial L}{\partial \theta_{j}} \end{array} \xrightarrow{\begin{subarray}{c} exponential \\ moving \ 0.2020 \\ \hline f \ norm \ is \ Smill \end{array}$$

Adam optimizer

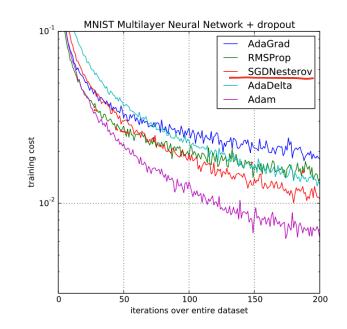
- Adam = RMSprop + momentum = Adaptive Momentum estimation
- Smoother estimate of the average gradient and gradient norm.



Adam optimizer

- Adam = RMSprop + momentum = Adaptive
 Momentum estimation
- Smoother estimate of the average gradient and gradient norm.
- m_t : exponential moving average of gradient.
- v_t : exponential moving average of gradient squared.
- \hat{m}_t , \hat{v}_t : Bias correction.
- $\theta_t \leftarrow \theta_{t-1} \alpha \hat{m}_t / (\sqrt{\hat{v}_t} + \epsilon)$
- The "default" optimizer for modern networks.

Adam W

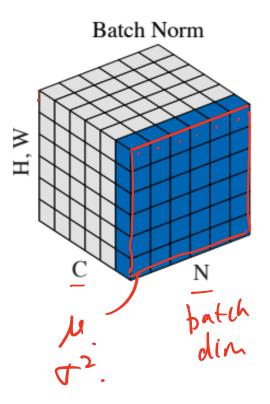


Normalization

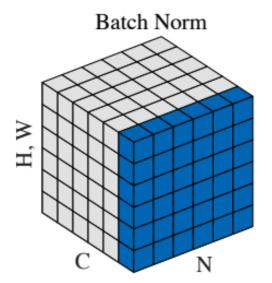
- Weight initialization is tricky, and there is no guarantee that the distribution of activations will stay the same over the learning process.
- What if the weights keep grow bigger and activation may explode?

- Weight initialization is tricky, and there is no guarantee that the distribution of activations will stay the same over the learning process.
- What if the weights keep grow bigger and activation may explode?
- We can "normalize" the activations.
- The idea is to control the activation within a normal range: zero-mean, uni-variance.

• In CNNs, neurons across different spatial locations are also samples of the same feature channel.



- In CNNs, neurons across different spatial locations are also samples of the same feature channel.
- Batch norm: Normalize across N H W dimensions, leaving C channels.

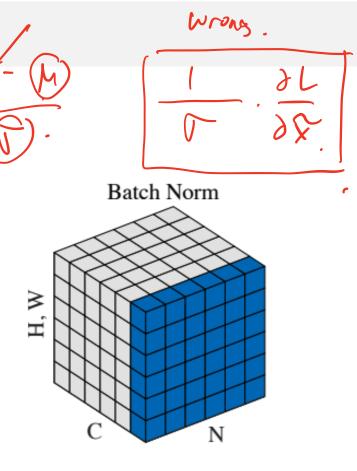


- In CNNs, neurons across different spatial locations are also samples of the same feature channel.
- Batch norm: Normalize across N H W dimensions, leaving C channels.

$$\tilde{x} = \gamma \frac{x - \mu}{\sigma} + \beta - channe | C.$$

 γ , β: learnable parameters. μ , σ: statistics from the training batch.

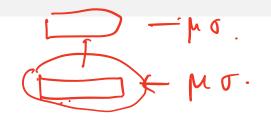
& Batch - normalized activation.

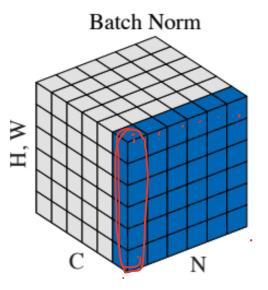


- In CNNs, neurons across different spatial locations are also samples of the same feature channel.
- Batch norm: Normalize across N H W dimensions, leaving C channels.

pma

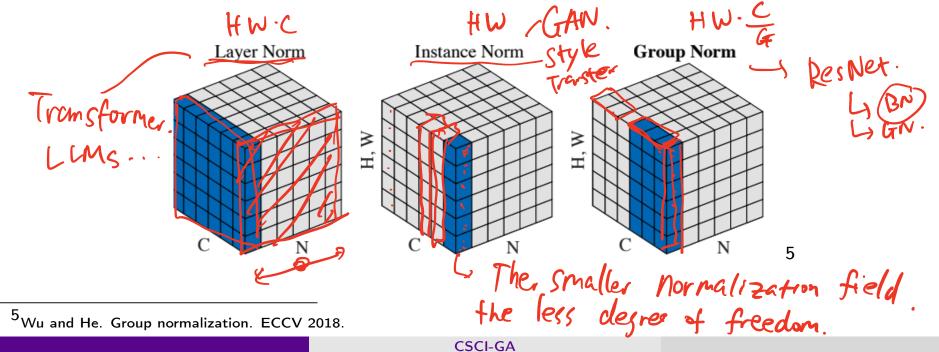
- $\tilde{x} = \gamma \frac{x \mu}{c} + \beta$
- γ , β : learnable parameters. μ , σ : statistics from the training batch.
- Test time: using the mean and variance from the entire training set.



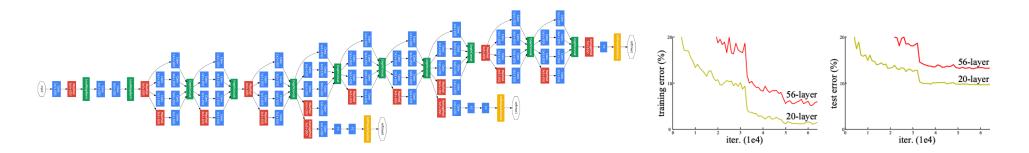


BN Alternatives

- Need a considerable batch size to estimate mean and variance correctly.
- Training is different from testing.
- Alternatives consider the C channel dimension instead of N batch dimension.

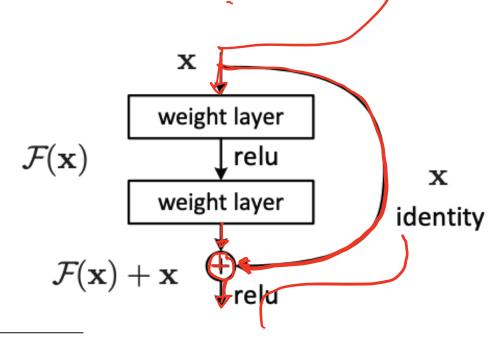


- The progress of normalization allowed us to train even deeper networks.
- The networks are no longer too sensitive with initialization.
- But the best networks were still around 20 layers and deeper results in worse performance.



Residual Networks (ResNet)

- Recall in gradient boosting, we are iteratively adding a function to the model to expand the capacity.
- Residual connection: Skip connection to prevent gradient vanishing.⁶



 $^{^{6}}$ He et al. Deep Residual Learning for Image Recognition. CVPR 2016.

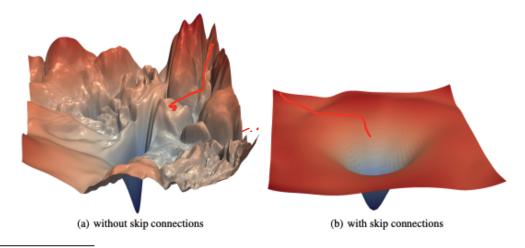
ResNet Success

- Now able to train over 100 layers.
- One of the most important network design choices in the past decade.
- Prevalent in almost all network architectures, including Transformers.

⁷Li et al. Visualizing the Loss Landscape of Neural Nets. NIPS 2018.

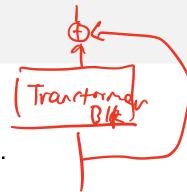
ResNet Success

- Now able to train over 100 layers.
- One of the most important network design choices in the past decade.
- Prevalent in almost all network architectures, including Transformers.
- Loss landscape view: Skip connections makes loss smoother -> easier to optimize ⁷.



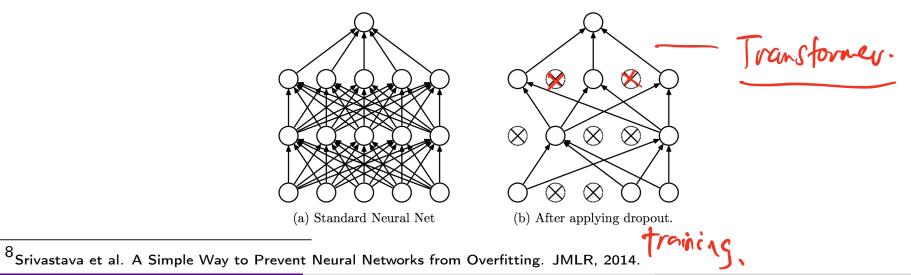
CSCI-GA

¹Li et al. Visualizing the Loss Landscape of Neural Nets. NIPS 2018.



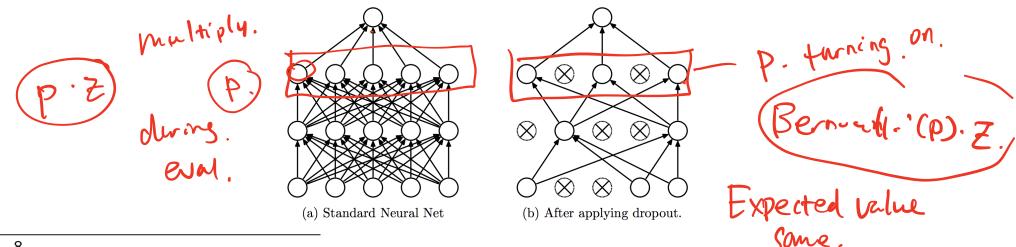
Dropout⁸

- Want to reduce overfitting in neural networks.
- Stochastically turning off neurons in propagation.



Dropout⁸

- Want to reduce overfitting in neural networks.
- Stochastically turning off neurons in propagation.
- Training to preserve redundancy.
- Test time: multiplying activations with probability. Model ensembling effect.

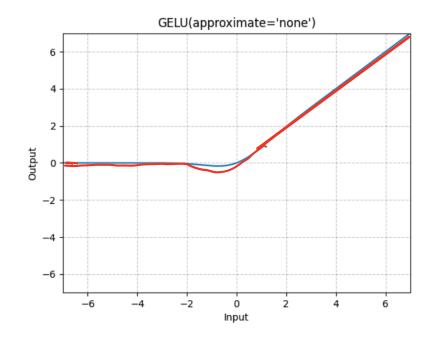


⁸Srivastava et al. A Simple Way to Prevent Neural Networks from Overfitting. JMLR, 2014.

GELU⁹

50° Rell. J dend unit.

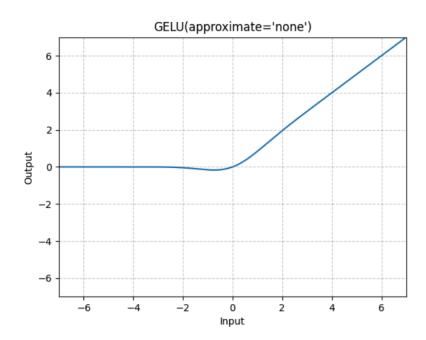
- Gaussian Error Linear Unit A smoother activation function.
- Motivated by Dropout.



⁹Hendrycks & Gimpel. Gaussian Error Linear Unit (GELU). CoRR abs/1606.08415, 2016.

GELU⁹

- Gaussian Error Linear Unit A smoother activation function.
- Motivated by Dropout.
- $f(x) = \mathbb{E}[x \cdot m]$.

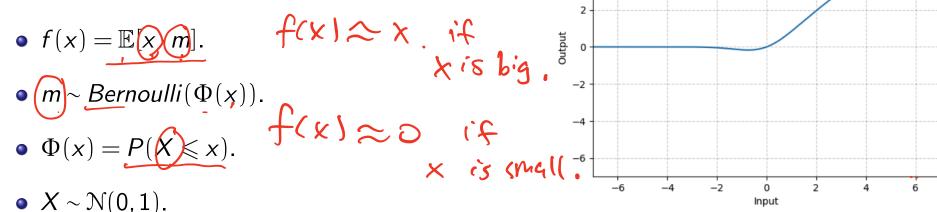


⁹Hendrycks & Gimpel. Gaussian Error Linear Unit (GELU). CoRR abs/1606.08415, 2016.

GELU⁹

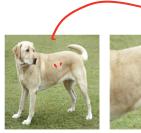
Transformer.

 Gaussian Error Linear Unit - A smoother activation function.
 Motivated by Dropout.



⁹Hendrycks & Gimpel. Gaussian Error Linear Unit (GELU). CoRR abs/1606.08415, 2016.

- Leverage the invariances of images
- Create more data points for free



(a) Original

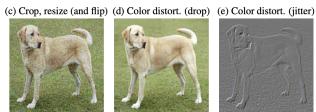
(b) Crop and resize

(g) Cutout

(f) Rotate $\{90^\circ, 180^\circ, 270^\circ\}$

(h) Gaussian noise

(i) Gaussian blur



(j) Sobel filtering

 $^{^{10}}$ Chen et al. A Simple Framework for Contrastive Learning of Visual Representations. ICML 2020.

- Leverage the invariances of images
- Create more data points for free
 - Random cropping

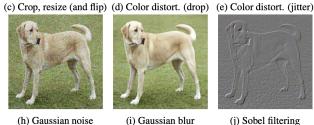
(a) Original

(f) Rotate $\{90^\circ, 180^\circ, 270^\circ\}$

(b) Crop and resize

(g) Cutout

(h) Gaussian noise



(j) Sobel filtering

 $^{^{10}}$ Chen et al. A Simple Framework for Contrastive Learning of Visual Representations. ICML 2020.

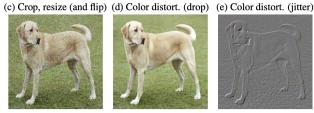
- Leverage the invariances of images
- Create more data points for free
 - Random cropping
 - Left+right flipping

(a) Original

(f) Rotate $\{90^\circ, 180^\circ, 270^\circ\}$

(b) Crop and resize

(i) Gaussian blur



(j) Sobel filtering

(g) Cutout (h) Gaussian noise

¹⁰Chen et al. A Simple Framework for Contrastive Learning of Visual Representations. ICML 2020.

- Leverage the invariances of images
- Create more data points for free
 - Random cropping
 - Left+right flipping
 - Random color jittering

(a) Original

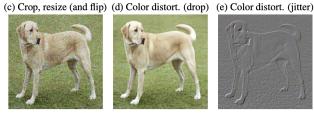
(f) Rotate $\{90^\circ, 180^\circ, 270^\circ\}$

(b) Crop and resize

(g) Cutout

(h) Gaussian noise

(i) Gaussian blur



(j) Sobel filtering

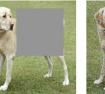
 $^{^{10}}$ Chen et al. A Simple Framework for Contrastive Learning of Visual Representations. ICML 2020.

- Leverage the invariances of images
- Create more data points for free
 - Random cropping
 - Left+right flipping
 - Random color jittering
 - Random blurring

(a) Original

(b) Crop and resize

(g) Cutout



(f) Rotate $\{90^\circ, 180^\circ, 270^\circ\}$

(h) Gaussian noise

(i) Gaussian blur

(c) Crop, resize (and flip) (d) Color distort. (drop) (e) Color distort. (jitter)

(j) Sobel filtering

 $^{^{10}}$ Chen et al. A Simple Framework for Contrastive Learning of Visual Representations. ICML 2020.

- Leverage the invariances of images
- Create more data points for free
 - Random cropping
 - Left+right flipping
 - Random color jittering
 - Random blurring
 - Affine warping
 - Etc.

Image credit¹⁰

(c) Crop, resize (and flip) (d) Color distort. (drop) (e) Color distort. (jitter)

(a) Original

(f) Rotate $\{90^\circ, 180^\circ, 270^\circ\}$

(b) Crop and resize

(g) Cutout

(h) Gaussian noise

(i) Gaussian blur

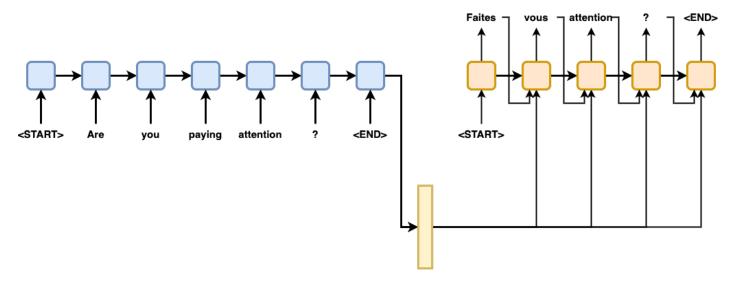
(j) Sobel filtering

¹⁰Chen et al. A Simple Framework for Contrastive Learning of Visual Representations. ICML 2020.

Language and sequential signals

What about natural language

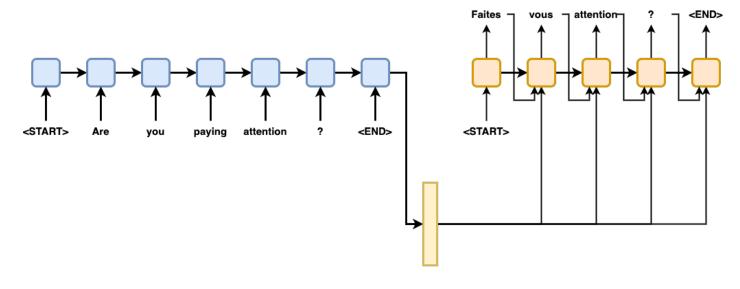
• Neural networks are great for dealing with naturalistic and unstructured signals.



Context Vector (C)

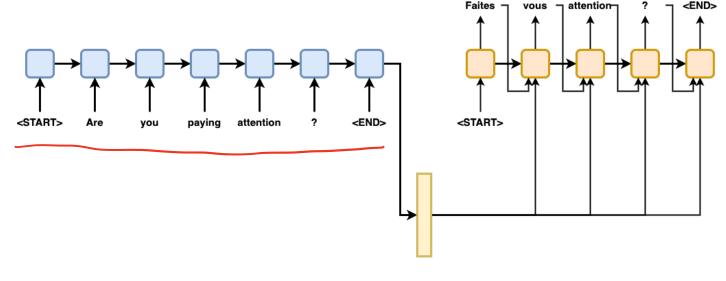
What about natural language

- Neural networks are great for dealing with naturalistic and unstructured signals.
- Past lectures: Feature functions in structured models, but still primitive.



What about natural language

- Neural networks are great for dealing with naturalistic and unstructured signals.
- Past lectures: Feature functions in structured models, but still primitive.
- Design neural networks to accomodate sequential signals such as language.



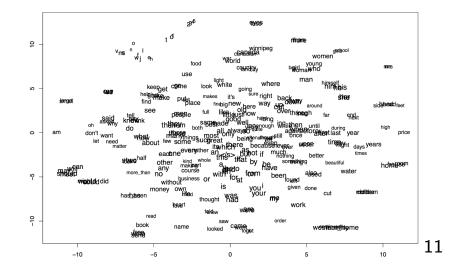
Word embeddings

О

2

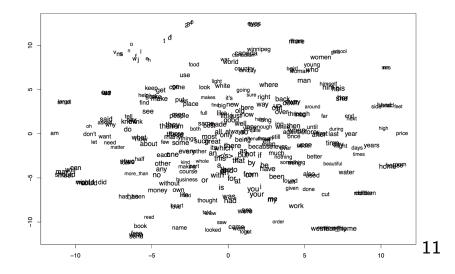
Word embeddings

- Neural networks are best dealing with real valued vectors.
- Need to convert words (discrete) into vectors (continuous).



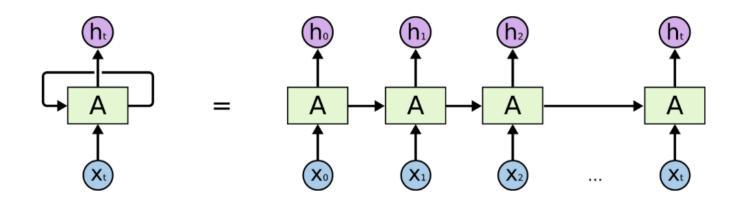
Word embeddings

- Neural networks are best dealing with real valued vectors.
- Need to convert words (discrete) into vectors (continuous).
- A large matrix of $V \times D$. V = vocab size, D = network embedding size.



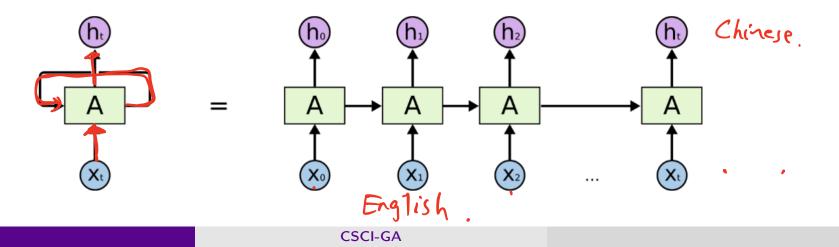
Convolutional vs. recurrent networks

- Recall in images we used the convolution operation.
- We can also use the idea of convolution for temporal signals.



Convolutional vs. recurrent networks

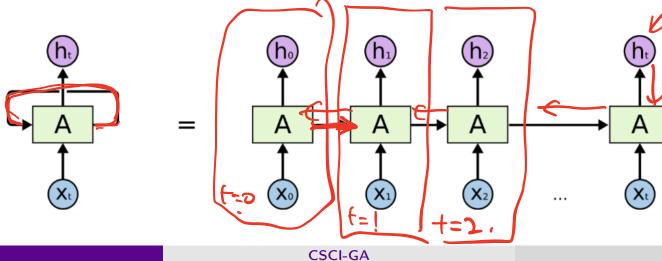
- Recall in images we used the convolution operation.
- We can also use the idea of convolution for temporal signals.
- Another alternative is to use a type of network called recurrent networks.
- Two inputs: x_t is the current input, and h_t is the historical hidden state. Weight Sharing on temperal level.



RNN

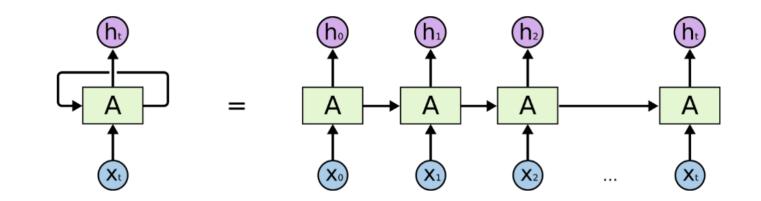
Convolutional vs. recurrent networks

- Recall in images we used the convolution operation.
- We can also use the idea of convolution for temporal signals.
- Another alternative is to use a type of network called recurrent networks.
- Two inputs: x_t is the current input, and h_t is the historical hidden state.
- We can unroll the computation graph into a direct acyclic graph (DAG).



Recurrent neural networks (RNNs)

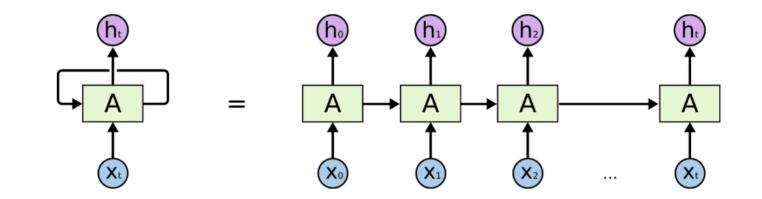
• A simple RNN can be made similar to a standard NN with one hidden layer.



¹²Image credit: Chris Olah https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Recurrent neural networks (RNNs)

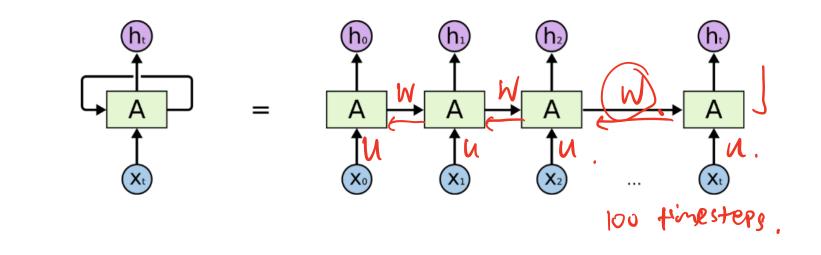
- A simple RNN can be made similar to a standard NN with one hidden layer.
- $h_t = \tanh(Wh_{t-1} + Ux_t)$.



¹²Image credit: Chris Olah https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Recurrent neural networks (RNNs)

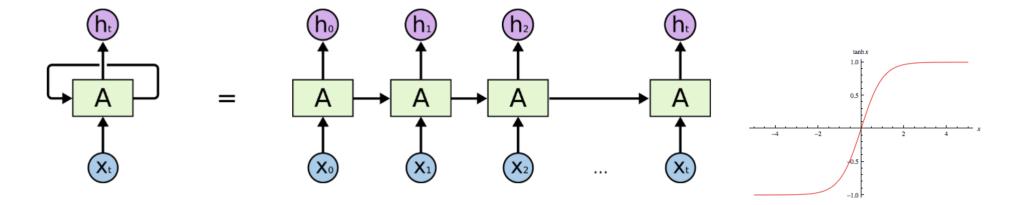
- A simple RNN can be made similar to a standard NN with one hidden layer.
- $h_t = \tanh(W_{t-1} + U_{x_t})$
- $y_t = \text{Softmax}(Vh_t)$.



¹²Image credit: Chris Olah https://colah.github.io/posts/2015-08-Understanding-LSTMs/

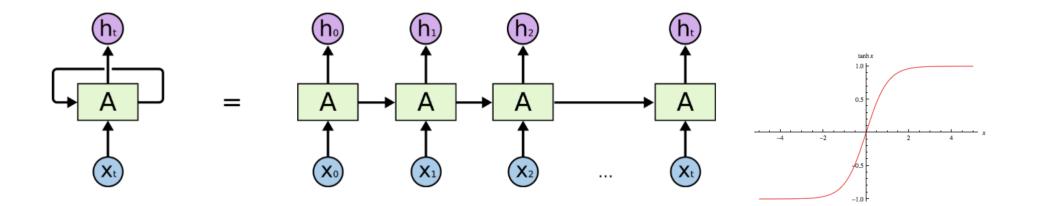
Gradient vanishing

• Every iteration, we multiply the hidden state h_{t-1} from the previous iteration with the same W. Recall the definition of Jacobian.



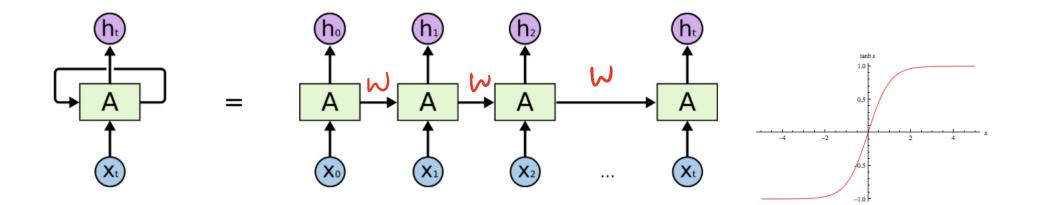
Gradient vanishing

- Every iteration, we multiply the hidden state h_{t-1} from the previous iteration with the same W. Recall the definition of Jacobian.
- If the largest singular value of W is less than one then back-propagation will be attenuated.

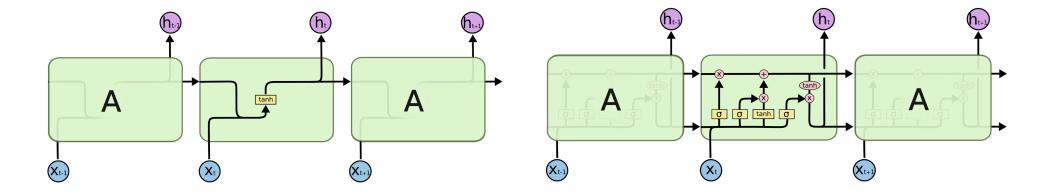


Gradient vanishing

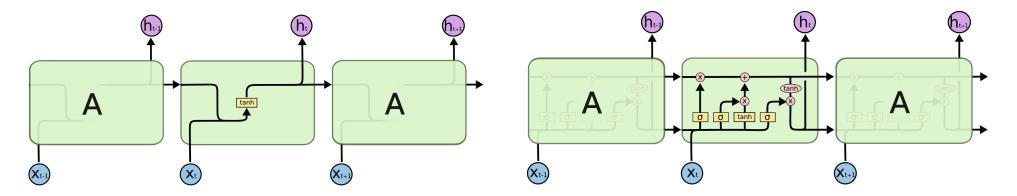
- Every iteration, we multiply the hidden state h_{t-1} from the previous iteration with the same W. Recall the definition of Jacobian.
- If the largest singular value of W is less than one then back-propagation will be attenuated.
- Similarly, we apply tanh activation every iteration further reducing gradient flow.

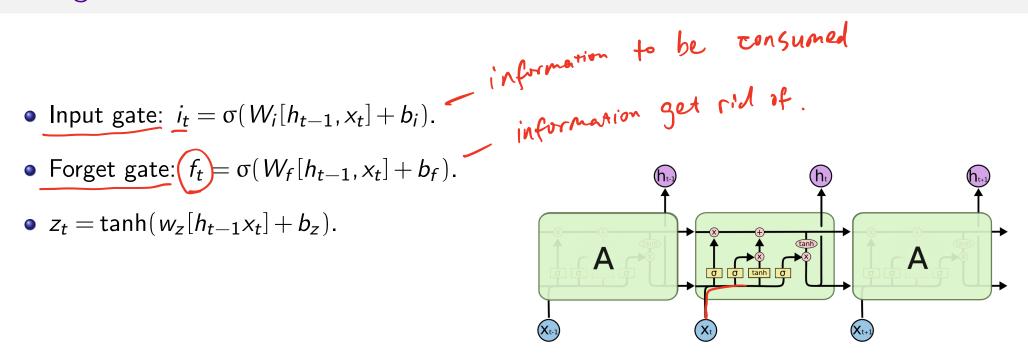


- Long short-term memory is a network that addresses the gradient vanishing problem by introducing gating functions.
- Gating functions provide "shortcuts", like ResNet.



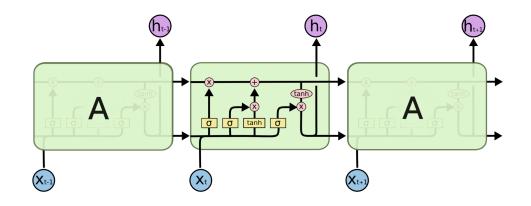
- Long short-term memory is a network that addresses the gradient vanishing problem by introducing gating functions.
- Gating functions provide "shortcuts", like ResNet.
- Originally proposed by Hochreiter and Schmidhuber in 1997.



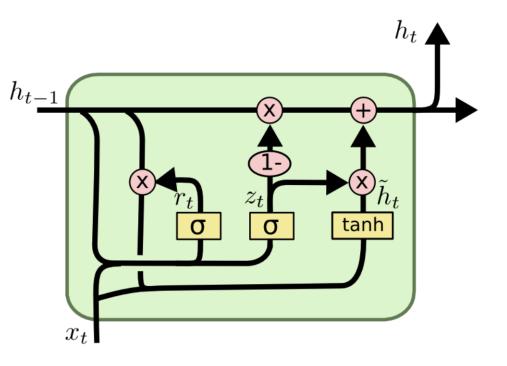


- Input gate: $i_t = \sigma(W_i[h_{t-1}, x_t] + b_i)$.
- Forget gate: $f_t = \sigma(W_f[h_{t-1}, x_t] + b_f)$. • $z_t = \tanh(w_z[h_{t-1}x_t] + b_z)$. • $c_t = \underbrace{f_t \odot c_{t-1}}_{U_t \odot z_t}$. • dL• dL•

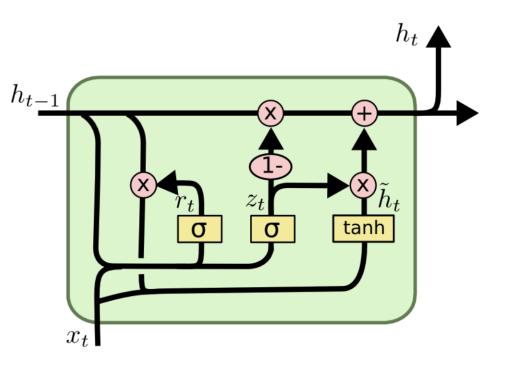
- Input gate: $i_t = \sigma(W_i[h_{t-1}, x_t] + b_i)$.
- Forget gate: $f_t = \sigma(W_f[h_{t-1}, x_t] + b_f)$.
- $z_t = \tanh(w_z[h_{t-1}x_t] + b_z).$
- $c_t = f_t \odot c_{t-1} + i_t \odot z_t$.
- Output gate: $o_t = \sigma(W_o[h_{t-1}, x_t] + b_o)$.
- $h_t = o_t \odot tanh(c_t)$.



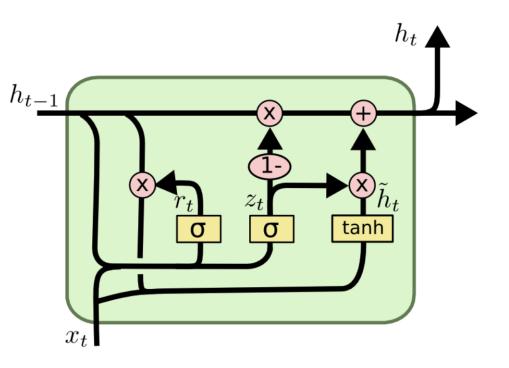
• Proposed by Chung et al. in 2015, a simplified variant compared to LSTM.



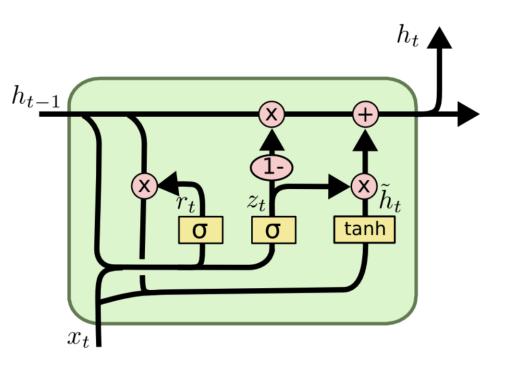
- Proposed by Chung et al. in 2015, a simplified variant compared to LSTM.
- Input gate $i_t = \sigma(W_i[h_{t-1}, x_t] + b_i)$.



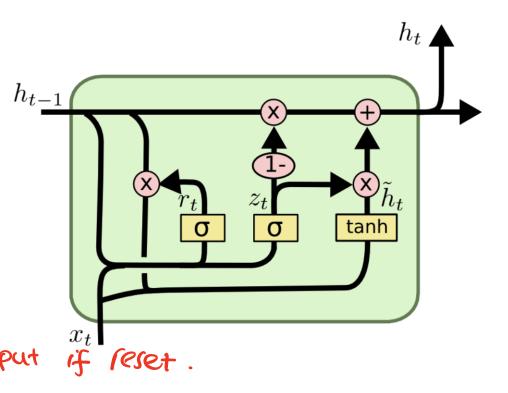
- Proposed by Chung et al. in 2015, a simplified variant compared to LSTM.
- Input gate $i_t = \sigma(W_i[h_{t-1}, x_t] + b_i)$.
- Reset gate $r_t = \sigma(W_r[h_{t-1}, x_t] + b_r)$.

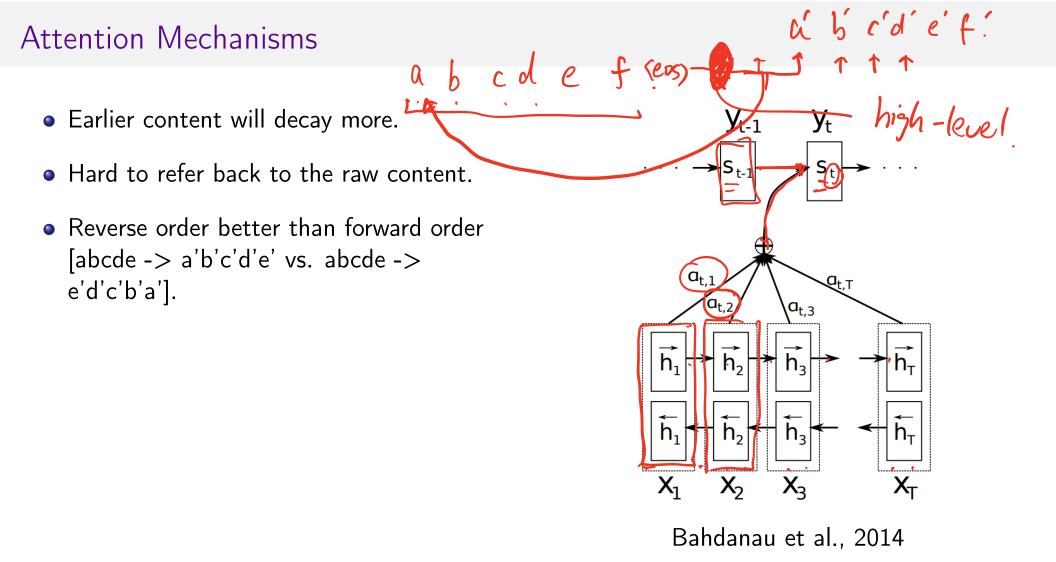


- Proposed by Chung et al. in 2015, a simplified variant compared to LSTM.
- Input gate $i_t = \sigma(W_i[h_{t-1}, x_t] + b_i)$.
- Reset gate $r_t = \sigma(W_r[h_{t-1}, x_t] + b_r)$.
- $\tilde{h}_t = \operatorname{tanh}(W_h[r_t \odot h_t, x_t] + b_h).$

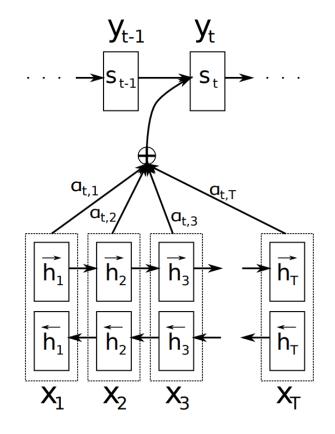


- Proposed by Chung et al. in 2015, a simplified variant compared to LSTM.
- Input gate $i_t = \sigma(W_i[h_{t-1}, x_t] + b_i)$.
- Reset gate $r_t = \sigma(W_r[h_{t-1}, x_t] + b_r)$.
- $\tilde{h}_t = \tanh(W_h[r_t \odot h_t, x_t] + b_h).$ • $h_t = (1 - i_t) \odot h_{t-1} + i_t \odot \tilde{h}_t.$ Current input





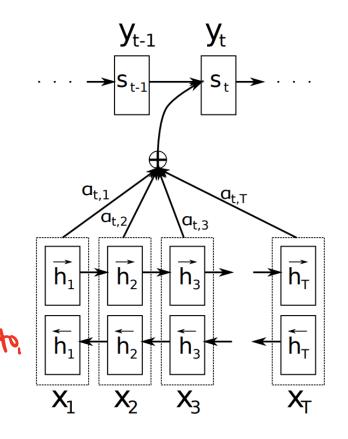
- Earlier content will decay more.
- Hard to refer back to the raw content.
- Reverse order better than forward order [abcde -> a'b'c'd'e' vs. abcde -> e'd'c'b'a'].
- Attending to arbitrary sequence tokens.



Bahdanau et al., 2014

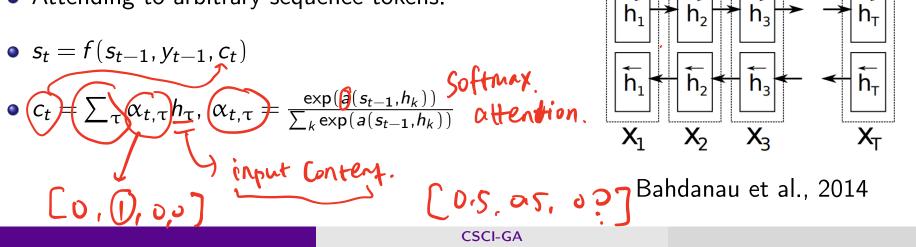
- Earlier content will decay more.
- Hard to refer back to the raw content.
- Reverse order better than forward order [abcde -> a'b'c'd'e' vs. abcde -> e'd'c'b'a'].
- Attending to arbitrary sequence tokens.

•
$$s_t = f(s_{t-1}, y_{t-1}, c_t)$$
 ran output.
• Contert attends



Bahdanau et al., 2014

- Earlier content will decay more.
- Hard to refer back to the raw content.
- Reverse order better than forward order [abcde -> a'b'c'd'e' vs. abcde -> e'd'c'b'a'].
- Attending to arbitrary sequence tokens.



 Y_{t-1}

⊦|S_{t-1}⊦

a_{+ 1}

y_t

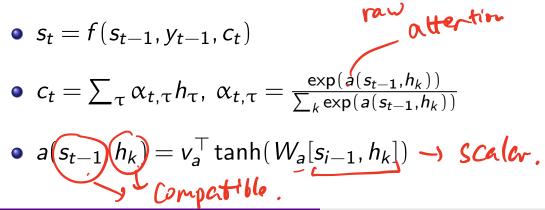
 \mathbf{S}_{t}

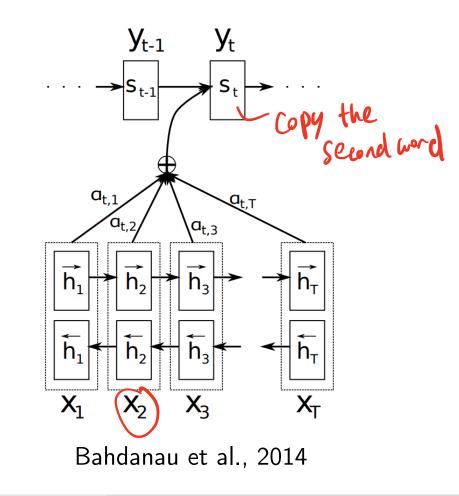
a_{t,>}

37 / 72

۵_{t,3}

- Earlier content will decay more.
- Hard to refer back to the raw content.
- Reverse order better than forward order [abcde -> a'b'c'd'e' vs. abcde -> e'd'c'b'a'].
- Attending to arbitrary sequence tokens.





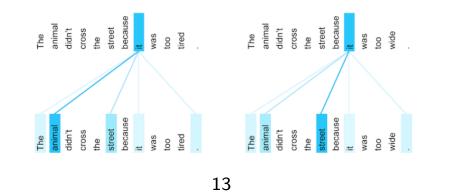
Transformers ("Attention is All You Need")

- The previous architecture is very complicated.
 - 1 RNN for encoding the tokens.
 - Attention mechanisms for accessing content
 - (1 RNN for combining attended tokens. \times

X

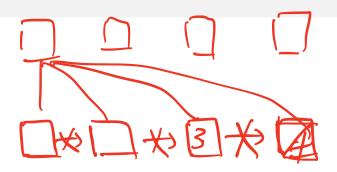
Transformers ("Attention is All You Need")

- The previous architecture is very complicated.
 - 1 RNN for encoding the tokens.
 - Attention mechanisms for accessing content
 - 1 RNN for combining attended tokens.
- RNNs have the ability to incorporate past information, so does attention.



Positional encoding

• Attention operation is permuation equivariant.



Positional encoding

- Attention operation is permuation equivariant.
- Solution: Encode the position of each token.

Positional encoding

- Attention operation is permuation equivariant.
- Solution Encode the position of each token.
- $PE(pos, 2i) = \sin(p/k^{2i/d}), PE(pos, 2i+1) = \cos(p/k^{2i/d}).$

