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Logistics

@ Homework 4 Due: Dec 3.

(25,
send . POF.

@ Last lecture: Dec 10 Project presentation. DQ/& 0( .

o Presentation order: Your assigned Group ID. =

r\__ﬁ—_‘

@ Each group has a max of 4 minutes (hard stop) + 1 min Q&A.

~—— —

@ OH this week: Wednesday 1-2pm.
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Local connection patterns

@ The typical image input layer has 3 channels R G B for
color or 1 channel for grayscale.

@ The hidden layers may have C channels, at each spatial
location (/,/).
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Local connection patterns —

@ The typical image input layer has 3 channels R G B for
color or 1 channel for grayscale.

@ The hidden layers may have C channels, at each spatial )
location (/,;). C“ ¢

@ Now each hidden neuron z; ; - receives inputs from N
Xitk, j+k,

@ k is the "kernel” size - do not confuse with the other
kernel we learned. =)t T

° Zi,j,c:;[i}@@ Ry ¢/ Xile Wi i el b dfa, /
l )L"_L.‘:;T"_"): /-
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Local connection patterns

@ The typical image input layer has 3 channels R G B for \/v/

color or 1 channel for grayscale.

@ The hidden layers may have C channels, at each spatial
location (/,/).

@ Now each hidden neuron z; ; - receives inputs from
Xi+k,jtk,

@ k is the “kernel” size - do not confuse with the other
kernel we learned.

® Zijc= 2 jrclithlje [jik],c’Xi’J"C"—i,j’_—__j,c’,c

@ The spatial awareness (receptive field) of the
neighborhood grows bigger as we go deeper.




Weight sharing

e Still a lot of weights: If we have 100 channels in the second layer, then
200 x 200 x 3 x 100 =12M
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Weight sharing

e Still a lot of weights: If we have 100 channels in the second layer, then
200 x 200 x 3 x 100 =12M

@ Local information is the same regardless of the position of an element.
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Weight sharing Helly Copnected
4 7&;&(
e Still a lot of weights: If we have 100 channels in the second layer, then v
200 x 200 x 3 x 100 =12M
' (,,Qlﬁld’
@ Local information is the same regardless of the position of an element. V ¢ W\S
@ Solution: We can tie the weights at different locations. \l/
CNN -

Tied weights
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2D convolution

@ Using the same weight connections for
each activation spatial location works like
the “filtering operation” or “convolution”

@ The neighborhood window is the filter
window.

@ The weight connection is called
“convolution filter”

@ Zjjc=

Zi’e[i:l:k],j’e [j:l:k],c’Xi’j’c’Wi—i’,j—j’,c’,c
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2D convolution

@ Using the same weight connections for
each activation spatial location works like
the “filtering operation” or “convolution”

@ The neighborhood window is the filter
window.

flff

@ The weight connection is called
“convolution filter”

@ Zjjc=
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2D convolution

@ Using the same weight connections for
each activation spatial location works like
the “filtering operation” or “convolution”

@ The neighborhood window is the filter
window.

@ The weight connection is called
“convolution filter”

@ Zjjc=
Z., . - Xt W
i €lik] jreljEkl, e Xilre Wiiti e ——

Poshlo b inpet Chan)
i’\d@( a*fp“*' dbsmqq

— csciGa Vi



Pooling

@ Need to summarize global information
more efficiently.

@ Pooling reduces image / activation
dimensions.

@ Max-pooling or average-pooling

5L E;'
Vi
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Pooling

Max-pooling

@ Need to summarize global information
more efficiently.

@ Pooling reduces image / activation
dimensions.

@ Max-pooling or average-pooling

@ You can also perform a “strided”
convolution by jumping multiple steps.

CSCI-GA 7/72




Pooling

Max- poolmg

@ Need to summarize global mformatlon

more efficiently. " I

@ Pooling reduces image / activation
dimensions.
5% prr

@ Max-pooling or average-pooling

@ You can also perform a “strided”
convolution by jumping multiple steps.

On= flretion of ( 11p ¢ize, el S
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Assembling together: LeNet Cross entripy

input convi pool1 conv2 pool2 hiddend

— R
;Zg,ﬁlg‘ Ztr* e ti
== [ == AR
. </
Pw L,l\ﬁ > %l’;_ Ve Ch"
@ Used by USPS to read post code in the 90s. % x ,oég\l
2. 3

4 X¢
:::::Z.Z !5;?-5; br. bvg
<) lbxi{y Clont
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Historical development

@ LeNet has worked and being put to practice in the 1990s.
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@ LeNet has worked and being put to practice in the 1990s.

@ Neural networks for images start to dominate in the last 10 years (starting 2012) for
understanding general high resolution natural images.
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Historical development

@ LeNet has worked and being put to practice in the 1990s.

@ Neural networks for images start to dominate in the last 10 years (starting 2012) for
understanding general high resolution natural images.

@ During the years:
e Neural networks were difficult to work

o People focused on feature engineering

o Then apply SVM or random forest (e.g. AdaBoost face detector)
o What has changed?
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Gradient learning conditioning J
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Optimization challenges

@ Larger images require deeper networks (more stages of processing at different resolutions)

@ Optimizing deeper layers of networks is not trivial.

——————————————

@ Loss often stalls or blows up.
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Optimization challenges

@ Larger images require deeper networks (more stages of processing at different resolutions)
@ Optimizing deeper layers of networks is not trivial.

@ Loss often stalls or blows up.

e Why?
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Optimization challenges

@ Larger images require deeper networks (more stages of processing at different resolutions)

@ Optimizing deeper layers of networks is not trivial.

@ Loss often stalls or blows up. ‘
e Why? ] @Di ‘T’ l

" U
o Backpropagation: multiplying the Jacobia @» each layer. U
N

o If the maximum singular value of each layer™of Jacobian is less than 1: then the
gradient will converge to 0 with more layers.

o If the greater than 1: then the gradient will explode with more layers.

o The bottom (input) layer may get 0 or infinite gradients.



Weight initialization

e Even with a few layers (>3), optimization is still hard.
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Weight initialization

e Even with a few layers (>3), optimization is still hard.

o If weight initialization is bad (too small or too big), then optimization is hard to kick off.
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Weight initialization

e Even with a few layers (>3), optimization is still hard.
o If weight initialization is bad (too small or too big), then optimization is hard to kick off.

@ Consider the distribution of whole dataset in the activation space.
o Intuition: upon initialization, the variance orf the activations should stay the same

across every layer - \
CoL e e 3
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Kaiming Initialization

@ Suppose each neuron and weight connection are sampling from a random distribution.

1He et al. Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet. ICCV, 2015.



Kaiming Initialization

@ Suppose each neuron and weight connection are sampling from a random distribution.

e At /-th layer, Var[z] @Var[w,x/] (n; = num. input neurons to /-th Iaye%
e G

1He et al. Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet. ICCV, 2015.



Kaiming Initialization
E ) . (/q/‘ X ' e~ -

(4

@ Suppose each neuron and weight connection are sampling from a random distribution.

o At /-th layer, Varlz] = n;Var[w;x;] (nj = num. input neurons to /-th layer)

@ If we suppose that RelLU is used as the activation, and w; is symmetric and zero-mean,
RS

1He et al. Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet. ICCV, 2015.



Kaiming Initialization

@ Suppose each neuron and weight connection are sampling from a random distribution.
o At /-th layer, Varlz] = n;Var[w;x;] (nj = num. input neurons to /-th layer)

@ If we suppose that RelLU is used as the activation, and w; is symmetric and zero-mean,

X1 = %Var[z/]. ‘f—\"

e Putting altogethe%/ﬂ} %@Var[w,] Var|x].
! - J

1He et al. Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet. ICCV, 2015.



Kaiming Initialization

@ Suppose each neuron and weight connection are sampling from a random distribution.
o At /-th layer, Varlz] = n;Var[w;x;] (nj = num. input neurons to /-th layer)

o If we suppose that RelLU is used as the activation, and w; is symmetric and zero-mean,

XI+1 =3 Var[z/] More |I\P N fon (
e Putting altogether, x; 11 = %n/ Var{w;] Var|x;]. Srell et . "f' lr’e"'”]l‘\‘\'s .
@ To make the variance constant, we need| 5 n;Var{w,] = 1) Std[wl]' =./2/nt. O
} o Nne.
l’“/o rely

1He et al. Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet. ICCV, 2015.



Activation functions

@ RelLU was proposed in 2009-20102%3, and was successfully used in AlexNet in 2012%.

/

@ Address the vanishing gradient issue in activations, comparing to sigmoid or tanh.

/ Sigmoid() ReLU() ReLUS()
.
6 6 6
4 4 4
2 2 2
—_— s " "
g o 2 o+ 2 o+
3 3 3
2 2 2

wwwww Input Input

LeakyReLU(negative_slope=0.1) ELU(alpha=1.0) GELU(approximate="'none')

2Jarrett et al. What is the Best Multi-Stage Architecture for Object Recognition? ICCV, 2009.
3Nair & Hinton/ Rectified Linear Units Improve Restricted Boltzmann Machines. ICML, 2010.
Krizhevsky et al. ImageNet Classification with Deep Convolutional Neural Networks. NIPS, 2012.



SGD Learning Rate .
in' - hatch

@ In stochastic training, the learning rate also influences the fluctuations ue’ tVre
stochasticity of the gradients.

@ Typical strategy: f

o Use a large learning rate early in training so you can get close to the optimum

o Gradually decay the learning rate to reduce the fluctuations. \/\

——

Fosrer
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Learning Rate Decay

@ We also need to be aware about the impact of learning rate due to the stochasticity.

small learning rate large learning rate

reduce
learning rate

l

error

epoch
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RMSprop and Adam

@ Recall: SGD takes large steps in directions of high curvature and small steps in directions
of low curvature.

@ RMSprop is a variant of SGD which rescales each coordinate of the gradient to have norm

1 on average. It does this by keeping an exponential moving average s; of the squared
gradients.
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RMSprop and Adam

@ Recall: SGD takes large steps in directions of high curvature and small steps in directions
of low curvature.

@ RMSprop is a variant of SGD which rescales each coordinate of the gradient to have norm
1 on average. It does this by keeping an exponential moving average s; of the squared
gradients.

@ The following update is applied to each coordinate j independently:

— +\’
Gy @vgrviger et

28 Nov.:
0.0 0, x 0L . 73 0. 0.-90°|
PN SFe00;, Wnerm is S|

-
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Adam optimizer

@ Adam = RMSprop + momentum = Adaptive
Momentum estimation

@ Smoother estimate of the average gradient and
gradient norm.

CSCI-GA

training cost

10*

MNIST Multilayer Neural Network + dropout

— AdaGrad
RMSProp
SGDNesterov
AdaDelta
Adam

50

1 1
100 150
iterations over entire dataset

200
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Adam optimizer

S Ada- W .
@ Adam = RMSprop + momentum = Adaptive L——
Momentum estimation

10° MNIST Multilayer Neural Network + dropout

@ Smoother estimate of the average gradient and EEASE%
@ m;: exponential moving average of gradient. ;

@ v;: exponential moving average of gradient squared. [P I MORAL " PR R 1
@ m;, V;: Bias correction.

@ 0; —0; 17—/ (\/Ve+€) ° ;°iterations o e 200

@ The “default” optimizer for modern networks.



Normalization :

A

-‘—(("\L \\}
o .

@ Weight initialization is tricky, and there is no guarantee that the distribution of activations
will stay the same over the learning process.

@ What if the weights keep grow bigger and activation may explode?
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Normalization

@ Weight initialization is tricky, and there is no guarantee that the distribution of activations
will stay the same over the learning process.

@ What if the weights keep grow bigger and activation may explode?
@ We can “normalize” the activations.

@ The idea is to control the activation within a normal range: zero-mean, uni-variance.
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Batch Normalization (BN)

@ In CNNs, neurons across different spatial locations
are also samples of the same feature channel.

Batch Norm
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Batch Normalization (BN)

@ In CNNs, neurons across different spatial locations
are also samples of the same feature channel.

@ Batch norm: Normalize across N H W dimensions,
leaving C channels.

CSCI-GA
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Batch Normalization (BN)

N

@ In CNNs, neurons across different spatial locations
are also samples of the same feature channel.

@ Batch norm: Normalize across N H W dimensions,
leaving C channel

Y, PB: learnable parameters. u, o: statistics from the
training batch.

Ratch - norm/l[zéo( aetivatiaag

CSCI-GA
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Batch Normalization (BN)

@ In CNNs, neurons across different spatial locations
are also samples of the same feature channel.

@ Batch norm: Normalize across N H W dimeniiops,
Moma

leaving C channels.
tE€ le-# -

@ v, : learnable parameters. , o: statistics from the
training batch.

@ Test time: using the mean and variance from the
entire training set. one (‘MjQ,,

-—



BN Alternatives

@ Need a considerable batch size to estimate mean and variance correctly.

-

@ Training is different from testing.

@ Alternatives consider the C channel dimension instead of N batch dimension.
Kw-C W AN HW-Z
Layer Norm

>~ — P\@gNU(
u@
L .

5
g
<
\
0

{)

WL AN NN
-\

e —

A\

WS R TA

VS OONN W
MNANEWN
\ =

C N 5

s Norralizatrom 73'@/4
5Wu and He. Group normalization. ECCV 2018. {“\f [9{{ C[ejre’ 4 f,”edeN ‘
——————————————— cscicA W




Going Deeper

@ The progress of normalization allowed us to train even deeper networks.
@ The networks are no longer too sensitive with initialization.

@ But the best networks were still around 20 layers and deeper results in worse performance.

/ s
\\ 9 = n 20
H-BHE- -
& \¥/ >
10 A
K 56-layer

20-layer

M

20-layer

training error (%)
test error (%)

2 3 4 5 6 1 2 3 4
iter. (1e4) iter. (1e4)

CSCI-GA 22 /72



Residual Networks (ResNet)

@ Recall in gradient boosting, we are iterati a function to the model to expand

the capacity.

@ Residual connection: Skip connection to prevent gradienf vanishing.®

X
weight layer
F (x) l relu <
weight layer identity
F(x) +x )

6He et al. Deep Residual Learning for Image Recognition. CVPR 2016.



ResNet Success

@ Now able to train over 100 layers.
@ One of the most important network design choices in the past decade.

@ Prevalent in almost all network architectures, including Transformers.

7Li et al. Visualizing the Loss Landscape of Neural Nets. NIPS 2018.



ResNet Success

1
@ Now able to train over 100 layers. (Tm,\r-/—wlr;,
@ One of the most important network design choices in the past decade.

@ Prevalent in almost all network architectures, including Transformers.

N

@ Loss landscape view: Skip connections makes loss smoother -> easier to optimize ’.

(a) without skip connections (b) with skip connections

7Li et al. Visualizing the Loss Landscape of Neural Nets. NIPS 2018.
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Dropout®

@ Want to reduce overfitting in neural networks.

@ Stochastically turning off neurons in propagation.

A

{ )
‘.
) )
{)

S 7
)

{/
R
!
"
()

'vl';‘
X
s
Q!
(X

A\
3
A
\/
Q
%

\!
Q)
X
>
%,
/
&5
7

(a) Standard Neural Net (b) After applying dropout.

3 Tf e
Srivastava et al. A Simple Way to Prevent Neural Networks from Overfitting. JMLR, 2014. \
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Dropout®

@ Want to reduce overfitting in neural networks.
@ Stochastically turning off neurons in propagation.
@ Training to preserve redundancy.

@ Test time: multiplying activations with probability. Model ensembling effect.

2

®?,.©®
o

S
ENM

(a) Standard Neural Net (b) After applying dropout. E)Qpe Ct_e‘t VL"lu"‘L

Comee .
8Srivastava et al. A Simple Way to Prevent Neural Networks from Overfitting. JMLR, 2014.
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GELU®

@ Gaussian Error Linear Unit - A smoother

activation function.

@ Motivated by Dropout.

9Hendrycks & Gimpel. Gaussian Error Linear Unit (GELU).

Output
o

CoRR abs/1606.08415
CSCI-GA

Rt

4 olead ot

GELU(approximate='none')

, 2016.
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GELU®

@ Gaussian Error Linear Unit - A smoother
activation function. 6

GELU(approximate='none')

@ Motivated by Dropout.

o f(x)=Elx-m].

Output
o

9Hendrycks & Gimpel. Gaussian Error Linear Unit (GELU). CoRR abs/1606.08415, 2016.



GELU®
Trans former.

@ Gaussian Error Linear Unit - A smoother
activation function.

@ Motivated by Dropout.

o f(x)=E[)n. folax 1§

' X s byg
o NbB’efnou//i(CI_)(x)).

(¢ ~ '
o O(x)=P(KX x). Wxo &

X s e l( N

e X ~N(0,1).

9Hendrycks & Gimpel. Gaussian Error Linear Unit (GELU). CoRR abs/1606.08415

Output

-2 1

—4 -

GELU(approximate='none')

, 2016.
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Data augmentation

@ Leverage the invariances of
Images

@ Create more data points for free NgAT L |

(a) Original

(b) Crop and resize  (c) Crop, resize (and flip) (d) Color distort. (drop) (e) Color distort. (jitter)

(f) Rotate {90°, 180°,270°} (g) Cutout (h) Gaussian noise (i) Gaussian blur (j) Sobel filtering

Image credit!®

10Chen et al. A Simple Framework for Contrastive Learning of Visual Representations. ICML 2020.
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Data augmentation

@ Leverage the invariances of
Images

@ Create more data points for free
o Random cropping

(f) Rotate {90°, 180°,270°} (g) Cutout (h) Gaussian noise (i) Gaussian blur (j) Sobel filtering

Image credit!®

10Chen et al. A Simple Framework for Contrastive Learning of Visual Representations. ICML 2020.
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Data augmentation

@ Leverage the invariances of
Images

By, Y RN

@ Create more data points for free
o Random cropping

o Left+right flipping

(f) Rotate {90°, 180°,270°} (g) Cutout (h) Gaussian noise (i) Gaussian blur (j) Sobel filtering

Image credit!®

10Chen et al. A Simple Framework for Contrastive Learning of Visual Representations. ICML 2020.
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Data augmentation

@ Leverage the invariances of
Images

s Y

@ Create more data points for free

(b) Crop and resize  (c) Crop, resize (and flip) (d) Color distort. (drop) (e) Color distort. (jitter)

o Random cropping

o Left+right flipping

o Random color jittering

(f) Rotate {90°, 180°,270°} (g) Cutout (h) Gaussian noise (i) Gaussian blur (j) Sobel filtering

Image credit!®

10Chen et al. A Simple Framework for Contrastive Learning of Visual Representations. ICML 2020.
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Data augmentation

@ Leverage the invariances of
Images

s Y

@ Create more data points for free

(b) Crop and resize  (c) Crop, resize (and flip) (d) Color distort. (drop) (e) Color distort. (jitter)

o Random cropping

o Left+right flipping

o Random color jittering

o Random blurring

(f) Rotate {90°, 180°,270°} (g) Cutout (h) Gaussian noise (i) Gaussian blur (j) Sobel filtering

Image credit!®

10Chen et al. A Simple Framework for Contrastive Learning of Visual Representations. ICML 2020.
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Data augmentation

@ Leverage the invariances of
Images

@ Create more data points for free
o Random cropping
o Left+right flipping
o Random color jittering
o Random blurring

° Afflne warpin

(f) Rotate {90°, 180°,270°}

'\ '- :

(g) Cutout

Image credlt10

10

CSCI-GA

(h) Gaussian noise

Chen et al. A Simple Framework for Contrastive Learning of Visual Representations. ICML 2020.

(i) Gaussian blur

(j) Sobel filtering
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Language and sequential signals J
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What about natural language

@ Neural networks are great for dealing with naturalistic and unstructured signals.

Faites vous attentio ? <END>

NN

FUETTTT Cah

<START> Are you paying attention ? <END> <START>

Context Vector (C)

CSCI-GA 29 /72



What about natural language

@ Neural networks are great for dealing with naturalistic and unstructured signals.

@ Past Iectures:(F/eature fu@in structured models, but still primitive.
-1

Faites vous attentio ? <END>

NN

FUETTTT Cah

<START> Are you paying attention ? <END> <START>

Context Vector (C)
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What about natural language

@ Neural networks are great for dealing with naturalistic and unstructured signals.
@ Past lectures: Feature functions in structured models, but still primitive.

@ Design neural networks to accomodate sequential signals such as language.

Faites vous attentio ? <END>

NN

TR

<START> paying attention <END> <START>

—

Context Vector (C)

CSCI-GA 29 /72



Word embeddings
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1 https://aelang.github.io/word-embeddings.html
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https://aelang.github.io/word-embeddings.html

Word embeddings

@ Neural networks are best dealing with real valued vectors.

@ Need to convert words (discrete) into vectors (continuous).
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Word embeddings

@ Neural networks are best dealing with real valued vectors.

@ Need to convert words (discrete) into vectors (continuous).

@ A large matrix of V x& V = vocab size, D = network embedding size.
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Convolutional vs. recurrent networks

@ Recall in images we used the convolution operation.

@ We can also use the idea of convolution for temporal signals.
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Convolutional vs. recurrent networks

@ Recall in images we used the convolution operation.
@ We can also use the idea of convolution for temporal signals.
@ Another alternative is to use a type of network called recurrent networks.

RAN

@ Two inputs: x; is the current input, and h; is the historical hidden state.
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Convolutional vs. recurrent networks

@ Recall in images we used the convolution operation.
@ We can also use the idea of convolution for temporal signals.
@ Another alternative is to use a type of network called recurrent networks.

@ Two inputs: x; is the current input, and h; is the historical hidden state. @

@ We can unroll the computation graph into a direct acyclic graph (DAG)./

[\7@? | ®
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Recurrent neural networks (RNNs)

@ A simple RNN can be made similar to a standard NN with one hidden layer.
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Recurrent neural networks (RNNs)

@ A simple RNN can be made similar to a standard NN with one hidden layer.

@ h; =tanh(Whi_1+ Ux:).
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Recurrent neural networks (RNNs)

@ A simple RNN can be made similar to a standard NN with one hidden layer.

) ht:tanh ‘LO

Q@ Vi —= SOftmaX Vht

® ® ® ® ©

A

LA - A\%A::N»AQ_\L'AJ
7' AM fuu AM. A
0o $esteps

12

2Image credit: Chris Olah https://colah.github.io/posts/2015-08-Understanding-LSTMs/


https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Gradient vanishing

@ Every iteration, we multiply the hidden state h; 1 from the previous iteration with the
same W. Recall the definition of Jacobian.
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Gradient vanishing

@ Every iteration, we multiply the hidden state h; 1 from the previous iteration with the

same W. Recall the definition of Jacobian.

@ If the largest singular value of W is less than one then back-propagation will be attenuated.
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Gradient vanishing

@ Every iteration, we multiply the hidden state h; 1 from the previous iteration with the

same W. Recall the definition of Jacobian.

@ If the largest singular value of W is less than one then back-propagation will be attenuated.

e Similarly, we apply tanh activation every iteration — further reducing gradient flow.
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Gating functions in LSTM

@ Long short-term memory is a network that addresses the gradient vanishing problem by
introducing gating functions.

@ Gating functions provide “shortcuts’, like ResNet.
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Gating functions in LSTM

@ Long short-term memory is a network that addresses the gradient vanishing problem by
introducing gating functions.

@ Gating functions provide “shortcuts’, like ResNet.

@ Originally proposed by Hochreiter and Schmidhuber in 1997.
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Gating functions in LSTM

o Input gate: ip = o(Wilhe 1, x]+b;). Gt qer ot 1
—~
e Forget geie_:@: o( Welhe—1, x¢:] + br). ® ® ©
@ z; —tanh(w,|hi—_1x:] + by). T“ Lo T\= 1
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| . g
&) Q) &)

CSCI-GA 35/72



Gating functions in LSTM

@ Input gate: iy = o(W;lhs_1,x:] + b;).

o Forget gate: f; = o(Wrlhi_1, x¢] + br). ® ® ©
t t t
@ z; = tanh(wy,lhi—1x:] + by). Ll o N,
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Gating functions in LSTM

@ Input gate: iy = o(W;lhs_1,x:] + b;).

o Forget gate: f; = o(Wrlht—1, x¢] + br). @ ® )
t t t
@ z; =tanh(w,lhi—1x:] + b,). Ll o N,
. A QL s Mma A
@ ¢t =FOCG_1+1tOz. > Ty -
| |
@ Output gate: o = o(Wplhs—1,x¢] + bo ). &) ) &)

o ht = O¢ @tanh(ct).

CSCI-GA 35/72



Gated Recurrent Unit

@ Proposed by Chung et al. in 2015, a
simplified variant compared to LSTM. hi 1
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Gated Recurrent Unit

@ Proposed by Chung et al. in 2015, a
simplified variant compared to LSTM.

e Input gate ir = o( Wilhi—1, x:] + b;).
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Gated Recurrent Unit

@ Proposed by Chung et al. in 2015, a
simplified variant compared to LSTM.

e Input gate ir = o( Wilhi—1, x:] + b;).

o Reset gate ry = o(W,[hi(—1, x:] + b;).
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Gated Recurrent Unit

@ Proposed by Chung et al. in 2015, a
simplified variant compared to LSTM.

e Input gate ir = o( Wilhi—1, x:] + b;).

o Reset gate ry = o(W,[hi(—1, x:] + b;).
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Gated Recurrent Unit

@ Proposed by Chung et al. in 2015, a
simplified variant compared to LSTM. hi 1

o Input gate iy = o(W;lhi(—1, x:] + b;).

o Reset gate ry = o(W,[hi(—1, x:] + b;).
° Et:tanh(Wh@Q@,gt]erh).
- |
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Attention Mechanisms

@ Earlier content will decay more.
@ Hard to refer back to the raw content.

@ Reverse order better than forward order
[abcde -> a’'b'c’d’e’ vs. abcde ->
ed'c’ba’l.

@ Attending to arbitrary sequence tokens.
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Attention Mechanisms

@ Earlier content will decay more.

@ Hard to refer back to the raw content.

@ Reverse order better than forward order
[abcde -> a’'b'c’d’e’ vs. abcde ->
ed'c’ba’l.

@ Attending to arbitrary sequence tokens. — =] -

@ S5t = f(st—l,)/t—l@j) ~An OVJ"‘W\’\ )
— ~~_, Content wd& ® |h b e <h

X, X X Xr

Bahdanau et al., 2014
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Attention Mechanisms

@ Earlier content will decay more.
@ Hard to refer back to the raw content.

@ Reverse order better than forward order
[abcde -> a’'b'c’d’e’ vs. abcde ->
ed'c’ba’l.

@ Attending to arbitrary sequence tokens.

@ S5t = f(st—L)/t—l, Ct)
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Attention Mechanisms

@ Earlier content will decay more.

@ Hard to refer back to the raw content.

@ Reverse order better than forward order
[abcde -> a’'b'c’d’e’ vs. abcde ->

ed'c’ba’l.
@ Attending to arbitrary sequencerizkens. E i Fl; i R;“’ i ﬁ;
||£PHW
® 5 =1f(S—1,Yt—1,Ct) o - - - -
-~ - - -]
exp(a(se—1,hi)) n, . s i

@ ¢ = ZT (xt,’th"tv (xt,’f — Zkexp(a(st_l,hk))

X %) X Xr

( hi) = v, tanh(W,[si—_1, hel) = Cca
° a V> tanh( ’[S 1 hd) = (w' Bahdanau et al., 2014
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Transformers (“Attention is All You Need"”)

@ The lous architecture is very complicated.
1 RNN for encoding the tokens. X

o Attention mechanisms for accessing content

o(1 RNN for combining attended tokens. <
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Transformers (“Attention is All You Need"”)

@ The previous architecture is very complicated.
o 1 RNN for encoding the tokens.

o Attention mechanisms for accessing content

o 1 RNN for combining attended tokens.

@ RNNSs have the ability to incorporate past information, so does attention.
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Positional encoding
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@ Attention operation is permuation equivariant.
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Positional encoding

@ Attention operation is permuation equivariant.

@ Solution: Encode the position of each token.
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Positional encoding

@ Attention operation is permuation equivariant. D

° Solution@osition of ea@

o PE(pos,2i) =sin(p/k*/9), PE(pos,2i+1) = cos(p/k?/9).

(S5 pos.
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