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Logistics

Homework 4 Due: Dec 3.

Last lecture: Dec 10 Project presentation.

Presentation order: Your assigned Group ID.

Each group has a max of 4 minutes (hard stop) + 1 min Q&A.

OH this week: Wednesday 1-2pm.
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Local connection patterns

The typical image input layer has 3 channels R G B for
color or 1 channel for grayscale.

The hidden layers may have C channels, at each spatial
location (i , j).

Now each hidden neuron zi ,j ,c receives inputs from
xi±k,j±k,·

k is the “kernel” size - do not confuse with the other
kernel we learned.

zi ,j ,c =
P

i 02[i±k],j 02[j±k],c 0 xi 0j 0c 0wi ,j ,i 0-i ,j 0-j ,c 0,c

The spatial awareness (receptive field) of the
neighborhood grows bigger as we go deeper.
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Weight sharing

Still a lot of weights: If we have 100 channels in the second layer, then
200⇥200⇥3⇥100 = 12M

Local information is the same regardless of the position of an element.

Solution: We can tie the weights at different locations.
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2D convolution

Using the same weight connections for
each activation spatial location works like
the “filtering operation” or “convolution”

The neighborhood window is the filter
window.

The weight connection is called
“convolution filter”

zi ,j ,c =P
i 02[i±k],j 02[j±k],c 0 xi 0j 0c 0wi-i 0,j-j 0,c 0,c
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Pooling

Need to summarize global information
more efficiently.

Pooling reduces image / activation
dimensions.

Max-pooling or average-pooling

You can also perform a “strided”
convolution by jumping multiple steps.
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Assembling together: LeNet

Used by USPS to read post code in the 90s.
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Historical development

LeNet has worked and being put to practice in the 1990s.

Neural networks for images start to dominate in the last 10 years (starting 2012) for
understanding general high resolution natural images.

During the years:
Neural networks were difficult to work

People focused on feature engineering

Then apply SVM or random forest (e.g. AdaBoost face detector)

What has changed?
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Gradient learning conditioning
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Optimization challenges

Larger images require deeper networks (more stages of processing at different resolutions)

Optimizing deeper layers of networks is not trivial.

Loss often stalls or blows up.

Why?
Backpropagation: multiplying the Jacobian @y

@x by each layer.

If the maximum singular value of each layer of Jacobian is less than 1: then the
gradient will converge to 0 with more layers.

If the greater than 1: then the gradient will explode with more layers.

The bottom (input) layer may get 0 or infinite gradients.
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Weight initialization

Even with a few layers (>3), optimization is still hard.

If weight initialization is bad (too small or too big), then optimization is hard to kick off.

Consider the distribution of whole dataset in the activation space.
Intuition: upon initialization, the variance of the activations should stay the same
across every layer.
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Kaiming Initialization

Suppose each neuron and weight connection are sampling from a random distribution.

At l-th layer, Var [zl ] = nlVar [wlxl ] (nl = num. input neurons to l-th layer)

If we suppose that ReLU is used as the activation, and wl is symmetric and zero-mean,
xl+1 =

1
2Var [zl ].

Putting altogether, xl+1 =
1
2nlVar [wl ]Var [xl ].

To make the variance constant, we need 1
2nlVar [wl ] = 1, Std [wl ] =

p
2/nl1.

1He et al. Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet. ICCV, 2015.
CSCI-GA 13 / 72



Kaiming Initialization

Suppose each neuron and weight connection are sampling from a random distribution.

At l-th layer, Var [zl ] = nlVar [wlxl ] (nl = num. input neurons to l-th layer)

If we suppose that ReLU is used as the activation, and wl is symmetric and zero-mean,
xl+1 =

1
2Var [zl ].

Putting altogether, xl+1 =
1
2nlVar [wl ]Var [xl ].

To make the variance constant, we need 1
2nlVar [wl ] = 1, Std [wl ] =

p
2/nl1.

1He et al. Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet. ICCV, 2015.
CSCI-GA 13 / 72

One



Kaiming Initialization

Suppose each neuron and weight connection are sampling from a random distribution.

At l-th layer, Var [zl ] = nlVar [wlxl ] (nl = num. input neurons to l-th layer)

If we suppose that ReLU is used as the activation, and wl is symmetric and zero-mean,
xl+1 =

1
2Var [zl ].

Putting altogether, xl+1 =
1
2nlVar [wl ]Var [xl ].

To make the variance constant, we need 1
2nlVar [wl ] = 1, Std [wl ] =

p
2/nl1.

1He et al. Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet. ICCV, 2015.
CSCI-GA 13 / 72

II a

I es 1

o



Kaiming Initialization

Suppose each neuron and weight connection are sampling from a random distribution.

At l-th layer, Var [zl ] = nlVar [wlxl ] (nl = num. input neurons to l-th layer)

If we suppose that ReLU is used as the activation, and wl is symmetric and zero-mean,
xl+1 =

1
2Var [zl ].

Putting altogether, xl+1 =
1
2nlVar [wl ]Var [xl ].

To make the variance constant, we need 1
2nlVar [wl ] = 1, Std [wl ] =

p
2/nl1.

1He et al. Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet. ICCV, 2015.
CSCI-GA 13 / 72



Kaiming Initialization

Suppose each neuron and weight connection are sampling from a random distribution.

At l-th layer, Var [zl ] = nlVar [wlxl ] (nl = num. input neurons to l-th layer)

If we suppose that ReLU is used as the activation, and wl is symmetric and zero-mean,
xl+1 =

1
2Var [zl ].

Putting altogether, xl+1 =
1
2nlVar [wl ]Var [xl ].

To make the variance constant, we need 1
2nlVar [wl ] = 1, Std [wl ] =

p
2/nl1.

1He et al. Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet. ICCV, 2015.
CSCI-GA 13 / 72

more up neurons
small std ofweights

I I
wo relu



Activation functions

ReLU was proposed in 2009-201023, and was successfully used in AlexNet in 20124.

Address the vanishing gradient issue in activations, comparing to sigmoid or tanh.

2Jarrett et al. What is the Best Multi-Stage Architecture for Object Recognition? ICCV, 2009.
3Nair & Hinton/ Rectified Linear Units Improve Restricted Boltzmann Machines. ICML, 2010.
4Krizhevsky et al. ImageNet Classification with Deep Convolutional Neural Networks. NIPS, 2012.
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SGD Learning Rate

In stochastic training, the learning rate also influences the fluctuations due to the
stochasticity of the gradients.

Typical strategy:
Use a large learning rate early in training so you can get close to the optimum.

Gradually decay the learning rate to reduce the fluctuations.

CSCI-GA 15 / 72
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Learning Rate Decay

We also need to be aware about the impact of learning rate due to the stochasticity.

CSCI-GA 16 / 72
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RMSprop and Adam

Recall: SGD takes large steps in directions of high curvature and small steps in directions
of low curvature.

RMSprop is a variant of SGD which rescales each coordinate of the gradient to have norm
1 on average. It does this by keeping an exponential moving average sj of the squared
gradients.

The following update is applied to each coordinate j independently:

sj  (1-�)sj +�[ @L@✓j
]2

✓j  ✓j -
↵

p
sj +✏

@L

@✓j
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Adam optimizer

Adam = RMSprop + momentum = Adaptive
Momentum estimation

Smoother estimate of the average gradient and
gradient norm.

mt : exponential moving average of gradient.

vt : exponential moving average of gradient squared.

m̂t , v̂t : Bias correction.

✓t  ✓t-1-↵m̂t/(
p
v̂t +✏)

The “default” optimizer for modern networks.
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Normalization

Weight initialization is tricky, and there is no guarantee that the distribution of activations
will stay the same over the learning process.

What if the weights keep grow bigger and activation may explode?

We can “normalize” the activations.

The idea is to control the activation within a normal range: zero-mean, uni-variance.

CSCI-GA 19 / 72
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Batch Normalization (BN)

In CNNs, neurons across different spatial locations
are also samples of the same feature channel.

Batch norm: Normalize across N H W dimensions,
leaving C channels.

x̃ = � x-µ
� +�

�,�: learnable parameters. µ,�: statistics from the
training batch.

Test time: using the mean and variance from the
entire training set.

CSCI-GA 20 / 72
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BN Alternatives

Need a considerable batch size to estimate mean and variance correctly.

Training is different from testing.

Alternatives consider the C channel dimension instead of N batch dimension.

5

5Wu and He. Group normalization. ECCV 2018.
CSCI-GA 21 / 72

GATE In resnet
I O

EYE fi

am
Thesmaller normalization field



Going Deeper

The progress of normalization allowed us to train even deeper networks.

The networks are no longer too sensitive with initialization.

But the best networks were still around 20 layers and deeper results in worse performance.

CSCI-GA 22 / 72



Residual Networks (ResNet)

Recall in gradient boosting, we are iteratively adding a function to the model to expand
the capacity.

Residual connection: Skip connection to prevent gradient vanishing.6

6He et al. Deep Residual Learning for Image Recognition. CVPR 2016.
CSCI-GA 23 / 72
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ResNet Success

Now able to train over 100 layers.

One of the most important network design choices in the past decade.

Prevalent in almost all network architectures, including Transformers.

Loss landscape view: Skip connections makes loss smoother -> easier to optimize 7.

7Li et al. Visualizing the Loss Landscape of Neural Nets. NIPS 2018.
CSCI-GA 24 / 72
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Dropout8

Want to reduce overfitting in neural networks.

Stochastically turning off neurons in propagation.

Training to preserve redundancy.

Test time: multiplying activations with probability. Model ensembling effect.

8Srivastava et al. A Simple Way to Prevent Neural Networks from Overfitting. JMLR, 2014.
CSCI-GA 25 / 72
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GELU9

Gaussian Error Linear Unit - A smoother
activation function.

Motivated by Dropout.

f (x) = E[x ·m].

m ⇠ Bernoulli(�(x)).

�(x) = P(X 6 x).

X ⇠N(0,1).

9Hendrycks & Gimpel. Gaussian Error Linear Unit (GELU). CoRR abs/1606.08415, 2016.
CSCI-GA 26 / 72
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Data augmentation

Leverage the invariances of
images

Create more data points for free

Random cropping

Left+right flipping

Random color jittering

Random blurring

Affine warping

Etc.

Image credit
10

10Chen et al. A Simple Framework for Contrastive Learning of Visual Representations. ICML 2020.
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Language and sequential signals
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What about natural language

Neural networks are great for dealing with naturalistic and unstructured signals.

Past lectures: Feature functions in structured models, but still primitive.

Design neural networks to accomodate sequential signals such as language.

CSCI-GA 29 / 72



What about natural language

Neural networks are great for dealing with naturalistic and unstructured signals.

Past lectures: Feature functions in structured models, but still primitive.

Design neural networks to accomodate sequential signals such as language.

CSCI-GA 29 / 72



What about natural language

Neural networks are great for dealing with naturalistic and unstructured signals.

Past lectures: Feature functions in structured models, but still primitive.

Design neural networks to accomodate sequential signals such as language.

CSCI-GA 29 / 72



Word embeddings

Neural networks are best dealing with real valued vectors.

Need to convert words (discrete) into vectors (continuous).

A large matrix of V ⇥D. V = vocab size, D = network embedding size.

11

11https://aelang.github.io/word-embeddings.html
CSCI-GA 30 / 72
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Convolutional vs. recurrent networks

Recall in images we used the convolution operation.

We can also use the idea of convolution for temporal signals.

Another alternative is to use a type of network called recurrent networks.

Two inputs: xt is the current input, and ht is the historical hidden state.

We can unroll the computation graph into a direct acyclic graph (DAG).
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Recurrent neural networks (RNNs)

A simple RNN can be made similar to a standard NN with one hidden layer.

ht = tanh(Wht-1+Uxt).

yt = Softmax(Vht).

12
12Image credit: Chris Olah https://colah.github.io/posts/2015-08-Understanding-LSTMs/
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Gradient vanishing

Every iteration, we multiply the hidden state ht-1 from the previous iteration with the
same W . Recall the definition of Jacobian.

If the largest singular value of W is less than one then back-propagation will be attenuated.

Similarly, we apply tanh activation every iteration – further reducing gradient flow.
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Gating functions in LSTM

Long short-term memory is a network that addresses the gradient vanishing problem by
introducing gating functions.

Gating functions provide “shortcuts”, like ResNet.

Originally proposed by Hochreiter and Schmidhuber in 1997.
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Gating functions in LSTM

Input gate: it = �(Wi [ht-1,xt ]+bi ).

Forget gate: ft = �(Wf [ht-1,xt ]+bf ).

zt = tanh(wz [ht-1xt ]+bz).

ct = ft � ct-1+ it � zt .

Output gate: ot = �(Wo [ht-1,xt ]+bo).

ht = ot � tanh(ct).

CSCI-GA 35 / 72
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Gated Recurrent Unit

Proposed by Chung et al. in 2015, a
simplified variant compared to LSTM.

Input gate it = �(Wi [ht-1,xt ]+bi ).

Reset gate rt = �(Wr [ht-1,xt ]+br ).

h̃t = tanh(Wh[rt �ht ,xt ]+bh).

ht = (1- it)�ht-1+ it � h̃t .
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Attention Mechanisms

Earlier content will decay more.

Hard to refer back to the raw content.

Reverse order better than forward order
[abcde -> a’b’c’d’e’ vs. abcde ->
e’d’c’b’a’].

Attending to arbitrary sequence tokens.

st = f (st-1,yt-1,ct)

ct =
P

⌧↵t,⌧h⌧, ↵t,⌧ = exp(a(st-1,hk))P
k
exp(a(st-1,hk))

a(st-1,hk) = v
>
a tanh(Wa[si-1,hk ])

Bahdanau et al., 2014
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Transformers (“Attention is All You Need”)

The previous architecture is very complicated.
1 RNN for encoding the tokens.

Attention mechanisms for accessing content

1 RNN for combining attended tokens.

RNNs have the ability to incorporate past information, so does attention.

13

13Image credit: Google Research Blog
CSCI-GA 38 / 72
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Positional encoding

Attention operation is permuation equivariant.

Solution: Encode the position of each token.

PE (pos,2i) = sin(p/k2i/d),PE (pos,2i +1) = cos(p/k2i/d).
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