Neural Networks II: Deep Learning J

Mengye Ren
NYU

Nov 28, 2023

Mengye Ren (NYU) CSCI-GA Nov 28, 2023 1/76



Fully connected vs. locally connected
@ So far we apply a layer where all output neurons are connected to all input neurons.
@ In matrix form, z= Wx.
@ This is also called a fully connected layer or a dense layer or a linear layer.

@ For 200 x 200 image and 1000 hidden units, the matrix of a single layer will have 40M
parameters!

1000 hidden units

densely connected
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Fully connected vs. locally connected
@ An alternative strategy is to use local connection.
@ For neuron i, only connects to its neighborhood (e.g. [i+k, i-k])
@ For images, we index neurons with three dimensions i, j, and c.

@ i = vertical index, j = horizontal index, ¢ = channel index.

Mengye Ren (NYU) CSCI-GA Nov 28, 2023 3/76



Local connection patterns

@ The typical image input layer has 3 channels R G B for
color or 1 channel for grayscale.

@ The hidden layers may have C channels, at each spatial
location (/,/).

@ Now each hidden neuron z; j . receives inputs from
Xitk,j+k,-

@ k is the “kernel” size - do not confuse with the other
kernel we learned.

® Zjjc= Z;fe[iik],j'e[jik},c/Xi’j’c’Wi,j,i’—i,j’—j,c’,c

@ The spatial awareness (receptive field) of the
neighborhood grows bigger as we go deeper.
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Weight sharing

o Still a lot of weights: If we have 100 channels in the second layer, then
200 x 200 x 3 x 100 = 12M

@ Local information is the same regardless of the position of an element.

@ Solution: We can tie the weights at different locations.

Tied weights

0,
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2D convolution
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Pooling

Max-pooling

@ Need to summarize global information ‘
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Assembling together: LeNet

input convi pool1 conv2 pool2 hiddend output

— |||

(T

@ Used by USPS to read post code in the 90s.
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Historical development

@ LeNet has worked and being put to practice in the 1990s.

@ Neural networks for images start to dominate in the last 10 years (starting 2012) for
understanding general high resolution natural images.

@ During the years:
o Neural networks were difficult to work
o People focused on feature engineering
o Then apply SVM or random forest (e.g. AdaBoost face detector)
o What has changed?
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Gradient learning conditioning J
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Optimization challenges

@ Larger images require deeper networks (more stages of processing at different resolutions)
@ Optimizing deeper layers of networks is not trivial.

@ Loss often stalls or blows up.

e Why?

o Backpropagation: multiplying the Jacobian % by each layer.

o If the maximum singular value of each layer of Jacobian is less than 1: then the
gradient will converge to 0 with more layers.

o If the greater than 1: then the gradient will explode with more layers.

o The bottom (input) layer may get 0 or infinite gradients.
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Weight initialization

e Even with a few layers (>3), optimization is still hard.
o If weight initialization is bad (too small or too big), then optimization is hard to kick off.

@ Consider the distribution of whole dataset in the activation space.

o Intuition: upon initialization, the variance of the activations should stay the same
across every layer.
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Kaiming Initialization

@ Suppose each neuron and weight connection are sampling from a random distribution.

At I-th layer, Var[z]] = n;Var[w;xj] (n; = num. input neurons to /-th layer)

If we suppose that ReLU is used as the activation, and w; is symmetric and zero-mean,
X|+1 = % Var[z,].

Putting altogether, x;, 1 = %n/ Var[w;] Var[x].

To make the variance constant, we need 2 snVarlw] =1, Std[w] = V2/nt.

1He et al. Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet. ICCV, 2015.
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Activation functions

@ Rel.U was proposed in 2009-2010%3, and was successfully used in AlexNet in 20124

@ Address the vanishing gradient issue in activations, comparing to sigmoid or tanh.

2 Jarrett et al. What is the Best Multi-Stage Architecture for Object Recognition? ICCV, 2009.
3Nair & Hinton/ Rectified Linear Units Improve Restricted Boltzmann Machines. ICML, 2010.
4Krizhevsky et al. ImageNet Classification with Deep Convolutional Neural Networks. NIPS, 2012.
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SGD Learning Rate

@ In stochastic training, the learning rate also influences the fluctuations due to the
stochasticity of the gradients.

o Typical strategy:
o Use a large learning rate early in training so you can get close to the optimum.

o Gradually decay the learning rate to reduce the fluctuations.
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Learning Rate Decay

@ We also need to be aware about the impact of learning rate due to the stochasticity.

small learning rate large learning rate

T

y

reduce
learning rate

error

epoch
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RMSprop and Adam

@ Recall: SGD takes large steps in directions of high curvature and small steps in directions
of low curvature.

@ RMSprop is a variant of SGD which rescales each coordinate of the gradient to have norm
1 on average. It does this by keeping an exponential moving average s; of the squared
gradients.

@ The following update is applied to each coordinate j independently:

Sj (1—Y)5j+Y[§T;Lj]2
oL
PR
site€ eJ
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Adam optimizer

@ Adam = RMSprop + momentum = Adaptive
Momentum estimation

10

o MNIST Multilayer Neural Network + dropout

— AdaGrad

— RMSProp

— SGDNesterov
AdaDelta

— Adam

@ Smoother estimate of the average gradient and
gradient norm.

@ m;: exponential moving average of gradient.

training cost

@ v;: exponential moving average of gradient squared. w0°

@ my, v:: Bias correction.

0 0p — 0r_1— i/ (\/ Ve +€)

@ The "default” optimizer for modern networks.
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Normalization

o Weight initialization is tricky, and there is no guarantee that the distribution of activations
will stay the same over the learning process.

@ What if the weights keep grow bigger and activation may explode?
@ We can “normalize” the activations.

@ The idea is to control the activation within a normal range: zero-mean, uni-variance.
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Batch Normalization (BN)

@ In CNNs, neurons across different spatial locations
are also samples of the same feature channel.

@ Batch norm: Normalize across N H W dimensions,
leaving C channels.

o X=yTE+B

@ v, B: learnable parameters. ,o: statistics from the
training batch.

@ Test time: using the mean and variance from the
entire training set.
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BN Alternatives

@ Need a considerable batch size to estimate mean and variance correctly.
@ Training is different from testing.

@ Alternatives consider the C channel dimension instead of N batch dimension.

Instance Norm

Group Norm

5Wu and He. Group normalization. ECCV 2018.
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Going Deeper

@ The progress of normalization allowed us to train even deeper networks.
@ The networks are no longer too sensitive with initialization.

@ But the best networks were still around 20 layers and deeper results in worse performance.

20-layer

__ 20-ayer

test error (%)

training error (%)

iter. (led) T er (et
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Residual Networks (ResNet)

@ Recall in gradient boosting, we are iteratively adding a function to the model to expand

the capacity.

@ Residual connection: Skip connection to prevent gradient vanishing.

6

X
4
weight layer
F(x) Jrelu <
weight layer identity
F(x) +x

SHe et al. Deep Residual Learning for Image Recognition. CVPR 2016.
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ResNet Success

@ Now able to train over 100 layers.

@ One of the most important network design choices in the past decade.

Prevalent in almost all network architectures, including Transformers.

7

Loss landscape view: Skip connections makes loss smoother -> easier to optimize

(a) without skip connections (b) with skip connections.

7Li et al. Visualizing the Loss Landscape of Neural Nets. NIPS 2018.
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Dropout®

@ Want to reduce overfitting in neural networks.
@ Stochastically turning off neurons in propagation.
@ Training to preserve redundancy.

@ Test time: multiplying activations with probability. Model ensembling effect.

(a) Standard Neural Net

8Srivastava et al. A Simple Way to Prevent Neural Networks from Overfitting. JMLR, 2014.
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GELU®

Gaussian Error Linear Unit - A smoother
activation function. .

GELU(approximate='none’)

Motivated by Dropout.

o f(x)=Elx-m].

Output
o

e m~ Bernoulli(®(x)). ]

-6 -4 -2 0 2 4 6

9Hendrycks & Gimpel. Gaussian Error Linear Unit (GELU). CoRR abs/1606.08415, 2016.
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Data augmentation

@ Leverage the invariances of
images

e N

(b) Crop and resize  (c) Crop, resize (and flip) (d) Color distort. (drop) (e) Color distort. (jtter)

e Create more data points for free

o Random cropping

Left+right flipping

o Random color jittering

Random blurring

(D Rotate (90°, 180°, 270° ) (g) Cutout (h) Gaussian noise () Gaussian blur () Sobel filtering

o Affine warping
o Etc.

Image credit!®

10Chen et al. A Simple Framework for Contrastive Learning of Visual Representations. ICML 2020.
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Language and sequential signals J
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What about natural language

@ Neural networks are great for dealing with naturalistic and unstructured signals.
@ Past lectures: Feature functions in structured models, but still primitive.

@ Design neural networks to accomodate sequential signals such as language.

Faites vous attentiol ? <END>

NERENERE
T

<START> Are you paying  attention ? <END> <START>

Context Vector (C)
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Word embeddings

@ Neural networks are best dealing with real valued vectors.
@ Need to convert words (discrete) into vectors (continuous).

@ A large matrix of V x D. V = vocab size, D = network embedding size.
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Convolutional vs. recurrent networks
@ Recall in images we used the convolution operation.
@ We can also use the idea of convolution for temporal signals.
@ Another alternative is to use a type of network called recurrent networks.
@ Two inputs: x; is the current input, and h; is the historical hidden state.

@ We can unroll the computation graph into a direct acyclic graph (DAG).

® ® ©® ©® W ®

A

A = |
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Recurrent neural networks (RNNs)

@ A simple RNN can be made similar to a standard NN with one hidden layer.
(] ht = tanh(Wht,1 + UXt).
Q Vi = SOftmaX( Vht)

®
ﬂk
A = |

®

® ®
SR SRS
& & @

12Image credit: Chris Olah https://colah.github.io/posts/2015-08-Understanding-LSTMs/
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https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Gradient vanishing
@ Every iteration, we multiply the hidden state h;_; from the previous iteration with the
same W. Recall the definition of Jacobian.
o If the largest singular value of W is less than one then back-propagation will be attenuated.

o Similarly, we apply tanh activation every iteration — further reducing gradient flow.

] !

.
FUE
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Gating functions in LSTM

@ Long short-term memory is a network that addresses the gradient vanishing problem by
introducing gating functions.

@ Gating functions provide “shortcuts”, like ResNet.

@ Originally proposed by Hochreiter and Schmidhuber in 1997.

( ©» ®» W
¢ o @ I S
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Gating functions in LSTM

o Input gate: iy = o(W;lhi—1,x:] + b;).

o Forget gate: fp = o Welhe—1,x¢] + br). ® ® ()
@ z; = tanh(w,[hi—1x:] + b,). T’ S I” N !

0 =10 1+itOz. ‘ & ),jj,/; 2 J:
o Output gate: o = (W, [hs—1,x:] + bo). é (’%@ @b

@ hy =o:@tanh(c).
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Gated Recurrent Unit

Proposed by Chung et al. in 2015, a

simplified variant compared to LSTM.

Input gate iy = o(W;[hs—1,x¢] + b;).

Reset gate rp = o(W,[hi—1,x:] + b, ).

o hy =tanh(Wylre ® he, x¢e] + bp).

o hy=(1—it)®h_1+ir @ hy.

Mengye Ren (NYU)

hy
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Attention Mechanisms

@ Earlier content will decay more.
o Hard to refer back to the raw content.

@ Reverse order better than forward order
[abcde -> a'b'c'd’e’ vs. abcde ->
e'd'c'b’a’].

o Attending to arbitrary sequence tokens. === —

@ 5t = f(st—l.}/t—l, Ct)

B _ explalst—1,hk))
o ¢ _ZT OCt,ThTy Xt = %

X X X pa

o a(st—1,hk) = v, tanh(W,[s;i—1, hil) Bahdanau et al., 2014
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Transformers (“Attention is All You Need")

@ The previous architecture is very complicated.
o 1 RNN for encoding the tokens.

o Attention mechanisms for accessing content

o 1 RNN for combining attended tokens.

@ RNNs have the ability to incorporate past information, so does attention.

because

13

13|mage credit: Google Research Blog
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https://blog.research.google/2017/08/transformer-novel-neural-network.html

Positional encoding

@ Attention operation is permuation equivariant.
@ Solution: Encode the position of each token.

o PE(pos,2i) =sin(p/k*/?), PE(pos,2i +1) = cos(p/k*/?).

Embedding Dimer
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Multi-headed attention

@ Map tokens into query, key, and value. Multi-Head Attention
; — QKT
o Attention(Q, K, V) = Softmax( NG V.
o H; = Attention(QWS, KWK, vWVY).
o MultiHead(Q,K,V) = [Hi, ..., H ] W©° . JJZ h
| LN LA 11

@ More advantageous to have multiple set of ['Lin:ear]}[’un:aar],]['un;ar]}
attentions for each token, so it can more
efficiently incorporate information from
multiple sources. v K Q
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Machine Translation

@ Achieved superior performance on machine translation.

@ Animation link

English German Translation quality English French Translation Quality
W BLEU W BLEV
GNMT (RNN) Convs2S (CNN)  SliceNet (CNN) Transformer GNMT (RNN) Convs2S (CNN) Transformer
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https://3.bp.blogspot.com/-aZ3zvPiCoXM/WaiKQO7KRnI/AAAAAAAAB_8/7a1CYjp40nUg4lKpW7covGZJQAySxlg8QCLcBGAs/s1600/transform20fps.gif

Autoregressive modeling

Recall the chain rule on joint distribution:

plxi:e) = plxa,....xe) = p(xi)p(xelxi) ... p(xelxe—1) = p(x1 HP Xilx1:i—1

In Naive Bayes, we treat each variable as independent, but this cannot perform sequence
generation.

How do we model a conditional distribution p(x;|x1.;—1) using an RNN or a Transformer?
@ RNN is naturally autoregressive: h; contains all information up to time t.

For Transformers, h; contains information about the future.

Mengye Ren (NYU) CSCI-GA Nov 28, 2023 42 /76



Causal Attention

@ For Transformers, we need to “mask’” the attention so that each token can only attend to
tokens prior to itself.

@ This is called “causal attention”.

Convolution Recurrence

T2 8 aaa Iﬂ.ﬂhﬂ

11111

Mat

sat n t

Causal Attention

14
1

4lmage credit: Wolfram.com
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https://www.wolfram.com/language/12/neural-network-framework/use-transformer-neural-nets.html

Large Language Models

@ Most LLMs today are large-scale decoder-only autoregressive (causal) Transformers (>1B

parameters).
/—G as & Gshara G s Open-Source
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https://medium.com/@thedatabeast/top-free-courses-on-large-language-models-abf2722d15c5

Interim Summary

e Optimization: Learning rate, initialization, activation functions, normalization, shortcut
skip connection, attention, etc.

Overfitting: Dropout, Data augmentation, etc.

Architecture Motifs: MLP, CNN, RNN, Transformers, etc.

Why deep learning works? Data, optimization, compute.

Still many open questions: Interpretability, fairness, uncertainty, data efficiency, energy
efficiency, theory, etc.
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Interpretability in Deep Neural Networks J
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ML Interpretability

Linear regression: Weights represent feature selection strength.

SVMs: Dual weights represent sample selection.

Bayesian methods: Model the generative process as a probabilistic model, fully transparent.
@ Decision trees: If-else decision making process.

@ Neural networks: 7
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Feature Visualization

@ Recall: we can understand what first-layer features are doing by visualizing the weight
matrices.

Fully connected

Convolutional

Zeiler and Fergus, Visualizing and understanding
convolutional networks, ECCV 2014.

@ The better the input matches these weights, the more the feature activates.

@ Higher-level weight matrices are hard to interpret.
o Obvious generalization: visualize higher-level features by seeing what inputs activate
them.
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Feature Visualization

@ One way to formalize: pick the images in the training set which activate a unit most
strongly.

@ Here's the visualization for layer 1:

Zeiler and Fergus, Visualizing and understanding convolutional networks, ECCV 2014.
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Feature Visualization

o Layer 3:

=
| B
T
E B
-

R
|l
f

Zeiler and Fergus, Visualizing and understanding convolutional networks, ECCV 2014.
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Feature Visualization

o Layer 4:
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Feature Visualization

o Layer b:
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Feature Visualization

@ Higher layers seem to pick up more abstract, high-level information.

e Problems?
o Can't tell what the unit is actually responding to in the image.

o We may read too much into the results, e.g. a unit may detect red, and the images
that maximize its activation will all be stop signs.

@ Can use input gradients to diagnose what the unit is responding to.
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Feature Visualization

@ Input gradients can be hard to interpret.

o Take a good object recognition conv net (Alex Net) and compute the gradient of
log p(y = “cat”|x):

Original image Gradient for “cat”
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Feature Visualization

e Guided backprop is a total hack to prevent this cancellation.

@ Do the backward pass as normal, but apply the ReLU nonlinearity to all the activation
error signals.
y ifz>0andy>0

y =ReLU(z) zZ= ]
0 otherwise

o We want to visualize what excites given unit, not what suppresses it.

Backprop

csclGA Nov 28,2023 55,76
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Guided Backprop

guided backpropagation corresponding image crops

guided backpropagation _ correspondmg 1mage crops

g U Euid W8 il 3 7Sl
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Class activation map (CAM)

e Classification networks typically use global avg pooling before the final layer.
@ This pooling layer can already contain semantic information.
@ We can visualize a heat map

Brushing teeth Cutting trees

<zoo

Zhou et al. Learning deep features for discriminative localization. CVPR 2016.

Mengye Ren (NYU) CSCI-GA Nov 28, 2023 57/76



GradCAM

| <—— Gradents < |Tiger Cat
: Ao | = b= Image Classification
T m— " S o
Al FC Layers Y
Guided Backpropagation o (©n)
‘: Rectified Conv ]
” e
Acatlying on || f= Image Captioning
A Any = RNN/LSTM the ground
Task-specific
) Network o)
Guided Grad-CAM
Is there a cat? Visual
“ w RNNZLSTY A auestion Answering
Backprop till conv <€
(or)

Selvaraju et al.

Mengye Ren (NYU)
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GradCAM

(b) Guided Backprop ‘Cat’  (c) Grad-CAM ‘Cat’  (d)Guided Grad-CAM ‘Cat’

(g) Original Image ~ (h) Guided Backprop ‘Dog’ (i) Grad-CAM ‘Dog’  (j)Guided Grad-CAM ‘Dog’
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DeepDream!©

@ Start with an image, and run a conv net on it.

@ Change the image such that units which were already highly activated get activated even
more strongly. “Rich get richer.”

16Google Research Blog
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https://blog.research.google/2015/07/deepdream-code-example-for-visualizing.html?m=1

DeepDream

"Admiral Dog!" "The Pig-Snail" "The Camel-Bird" "The Dog-Fish"
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DeepDream
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Gradient Ascent on Images

@ Doing gradient ascent on an image to maximize the activation of a given neuron.

Starting from random
noise, we optimize an
image to activate a
particular neuron (layer
mixed4a, unit 11).

Step 0 Step 4 Step 48 Step 2048

https://distill.pub/2017/feature-visualization/
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https://distill.pub/2017/feature-visualization/

Gradient Ascent on Images

Dataset Examples show

us what neurons respond E
. . it

to in practice

Optimization isolates
the causes of behavior
from mere correlations. A
neuron may not be
detecting what you
initially thought.

Baseball—or stripes?
mixedda, Unit 6

Mengye Ren (NYU)

Animal faces—or snouts?
mixed4a, Unit 240

CSCI-GA

Clouds—or fluffiness?
mixedda, Unit 453

Buildings—or sky?
mixed4a, Unit 492

httns://distill pnh/2017/featnre-visnalization/
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https://distill.pub/2017/feature-visualization/

Gradient Ascent on Images

@ Higher layers in the network often learn higher-level, more interpretable representations

7y re ; 3 AT o P

.

Textures (layer mixed3a) Patterns (layer mixed4a)

https://distill.pub/2017/feature-visualization/
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https://distill.pub/2017/feature-visualization/

Gradient Ascent on Images

@ Higher layers in the network often learn

le representations

g

Parts (lay

ed4b & mixed4c) Objects (layers mixed4d & mixed4e)

https://distill.pub/2017/feature-visualization/
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Artistic style transfer

@ Activations store content information

@ Activation correlation stores style/texture information: G’ S« Fl _]k

Style Reconstruction: ----.

Gatys et al., Image style transfer using convolutional neural networks, CVPR 2016.

Mengye Ren (NYU) CSCI-GA Nov 28, 2023 67 /76



Artistic style transfer

e Optimizing both content & style from random noise

B =) (GF- A’ Liotat = Leontent + BLstyle
——  GL=Y FiFL
e W @
B 2 =Y (- PY
g U T - J
00—

Gradient
descent

Gatys et al., Image style transfer using convolutional neural networks, CVPR 2016.
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Artistic style transfer

Gatys et al., Image style transfer using convolutional neural networks, CVPR 2016.
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Adversarial Examples

@ One of the most surprising findings about neural nets has been the existence of adversarial
inputs, i.e. inputs optimized to fool an algorithm.

T

“panda77
57.7% confidence

Mengye Ren (NYU)

. €T +
sign(VJ(6,2,y)) esign(VgJ (0, z, 7))
“nematode” “gibbon”
8.2% confidence 99.3 % confidence

Goodfellow et al., Explaining and harnessing adversarial examples, ICLR 2015.
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Adversarial Examples

@ The following adversarial examples are misclassified as ostriches. ( 10x perturbation
visualized in middle.)

Szegedy et al., Intriguing properties of neural networks, ICLR 2014.

csclGA Nov 28,2023 71,76



Adversarial Examples

@ You can print out an adversarial image and take a picture of it, and it still works!
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Kurakin et al., Adversarial examples in the physical world, ICLR workshop 2017.
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Adversarial Examples

@ An adversarial example in the physical world (network thinks it's a gun, from a variety of
viewing angles!)

Athalye et al., Synthesizing robust adversarial examples, ICML 2018.
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Adversarial Examples

@ An adversarial mesh object that can hide cars from LiDAR detector
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Mesh on the Vehicle

Tu et al., Physically realizable adversarial examples for LIDAR object detection, CVPR 2020.
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Adversarial Defense

@ How to defend from adversarial perturbation is still an active research area.

Blackbox vs. whitebox attacks.

@ One common approach is to train with millions of adversarial examples.
@ Needs to train much longer, and also suffers a drop in accuracy.

@ Data augmentation and label smoothing also help.
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Summary

Interpretability - ways to open up the black box of neural networks

Knowing what each neuron does is like studying a “brain” with perfect observation and
measurement.

Still very open research area.

@ Adversarial examples are safety vulnerabilities of deep neural networks.

Need more data and innovations in more robust learning objectives.
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