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Fully connected vs. locally connected

So far we apply a layer where all output neurons are connected to all input neurons.

In matrix form, z=W x.

This is also called a fully connected layer or a dense layer or a linear layer.

For 200×200 image and 1000 hidden units, the matrix of a single layer will have 40M
parameters!
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Fully connected vs. locally connected

An alternative strategy is to use local connection.

For neuron i, only connects to its neighborhood (e.g. [i+k, i-k])

For images, we index neurons with three dimensions i, j, and c.

i = vertical index, j = horizontal index, c = channel index.
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Local connection patterns

The typical image input layer has 3 channels R G B for
color or 1 channel for grayscale.

The hidden layers may have C channels, at each spatial
location (i , j).

Now each hidden neuron zi ,j ,c receives inputs from
xi±k,j±k,·

k is the “kernel” size - do not confuse with the other
kernel we learned.

zi ,j ,c =
∑

i ′∈[i±k],j ′∈[j±k],c ′ xi ′j ′c ′wi ,j ,i ′−i ,j ′−j ,c ′,c

The spatial awareness (receptive field) of the
neighborhood grows bigger as we go deeper.
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Weight sharing

Still a lot of weights: If we have 100 channels in the second layer, then
200×200×3×100= 12M

Local information is the same regardless of the position of an element.

Solution: We can tie the weights at different locations.
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2D convolution

Using the same weight connections for
each activation spatial location works like
the “filtering operation” or “convolution”

The neighborhood window is the filter
window.

The weight connection is called
“convolution filter”

zi ,j ,c =∑
i ′∈[i±k],j ′∈[j±k],c ′ xi ′j ′c ′wi−i ′,j−j ′,c ′,c
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Pooling

Need to summarize global information
more efficiently.

Pooling reduces image / activation
dimensions.

Max-pooling or average-pooling

You can also perform a “strided”
convolution by jumping multiple steps.
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Assembling together: LeNet

Used by USPS to read post code in the 90s.

Mengye Ren (NYU) CSCI-GA Nov 28, 2023 8 / 76



Historical development

LeNet has worked and being put to practice in the 1990s.

Neural networks for images start to dominate in the last 10 years (starting 2012) for
understanding general high resolution natural images.

During the years:
Neural networks were difficult to work

People focused on feature engineering

Then apply SVM or random forest (e.g. AdaBoost face detector)

What has changed?
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Gradient learning conditioning
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Optimization challenges

Larger images require deeper networks (more stages of processing at different resolutions)

Optimizing deeper layers of networks is not trivial.

Loss often stalls or blows up.

Why?
Backpropagation: multiplying the Jacobian ∂y∂x by each layer.

If the maximum singular value of each layer of Jacobian is less than 1: then the
gradient will converge to 0 with more layers.

If the greater than 1: then the gradient will explode with more layers.

The bottom (input) layer may get 0 or infinite gradients.
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Weight initialization

Even with a few layers (>3), optimization is still hard.

If weight initialization is bad (too small or too big), then optimization is hard to kick off.

Consider the distribution of whole dataset in the activation space.
Intuition: upon initialization, the variance of the activations should stay the same
across every layer.
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Kaiming Initialization

Suppose each neuron and weight connection are sampling from a random distribution.

At l-th layer, Var [zl ] = nlVar [wlxl ] (nl = num. input neurons to l-th layer)

If we suppose that ReLU is used as the activation, and wl is symmetric and zero-mean,
xl+1 =

1
2Var [zl ].

Putting altogether, xl+1 =
1
2nlVar [wl ]Var [xl ].

To make the variance constant, we need 1
2nlVar [wl ] = 1, Std [wl ] =

√
2/nl1.

1He et al. Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet. ICCV, 2015.
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Activation functions

ReLU was proposed in 2009-201023, and was successfully used in AlexNet in 20124.

Address the vanishing gradient issue in activations, comparing to sigmoid or tanh.

2Jarrett et al. What is the Best Multi-Stage Architecture for Object Recognition? ICCV, 2009.
3Nair & Hinton/ Rectified Linear Units Improve Restricted Boltzmann Machines. ICML, 2010.
4Krizhevsky et al. ImageNet Classification with Deep Convolutional Neural Networks. NIPS, 2012.
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SGD Learning Rate

In stochastic training, the learning rate also influences the fluctuations due to the
stochasticity of the gradients.

Typical strategy:
Use a large learning rate early in training so you can get close to the optimum.

Gradually decay the learning rate to reduce the fluctuations.
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Learning Rate Decay

We also need to be aware about the impact of learning rate due to the stochasticity.
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RMSprop and Adam

Recall: SGD takes large steps in directions of high curvature and small steps in directions
of low curvature.

RMSprop is a variant of SGD which rescales each coordinate of the gradient to have norm
1 on average. It does this by keeping an exponential moving average sj of the squared
gradients.

The following update is applied to each coordinate j independently:

sj ← (1−γ)sj +γ[ ∂L∂θj ]
2

θj ← θj −
α

√
sj +ε

∂L

∂θj
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Adam optimizer

Adam = RMSprop + momentum = Adaptive
Momentum estimation

Smoother estimate of the average gradient and
gradient norm.

mt : exponential moving average of gradient.

vt : exponential moving average of gradient squared.

m̂t , v̂t : Bias correction.

θt ← θt−1−αm̂t/(
√
v̂t +ε)

The “default” optimizer for modern networks.
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Normalization

Weight initialization is tricky, and there is no guarantee that the distribution of activations
will stay the same over the learning process.

What if the weights keep grow bigger and activation may explode?

We can “normalize” the activations.

The idea is to control the activation within a normal range: zero-mean, uni-variance.
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Batch Normalization (BN)

In CNNs, neurons across different spatial locations
are also samples of the same feature channel.

Batch norm: Normalize across N H W dimensions,
leaving C channels.

x̃ = γ x−µ
σ +β

γ,β: learnable parameters. µ,σ: statistics from the
training batch.

Test time: using the mean and variance from the
entire training set.
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BN Alternatives

Need a considerable batch size to estimate mean and variance correctly.

Training is different from testing.

Alternatives consider the C channel dimension instead of N batch dimension.

5

5Wu and He. Group normalization. ECCV 2018.
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Going Deeper

The progress of normalization allowed us to train even deeper networks.

The networks are no longer too sensitive with initialization.

But the best networks were still around 20 layers and deeper results in worse performance.
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Residual Networks (ResNet)

Recall in gradient boosting, we are iteratively adding a function to the model to expand
the capacity.

Residual connection: Skip connection to prevent gradient vanishing.6

6He et al. Deep Residual Learning for Image Recognition. CVPR 2016.
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ResNet Success

Now able to train over 100 layers.

One of the most important network design choices in the past decade.

Prevalent in almost all network architectures, including Transformers.

Loss landscape view: Skip connections makes loss smoother -> easier to optimize 7.

7Li et al. Visualizing the Loss Landscape of Neural Nets. NIPS 2018.
Mengye Ren (NYU) CSCI-GA Nov 28, 2023 24 / 76



Dropout8

Want to reduce overfitting in neural networks.

Stochastically turning off neurons in propagation.

Training to preserve redundancy.

Test time: multiplying activations with probability. Model ensembling effect.

8Srivastava et al. A Simple Way to Prevent Neural Networks from Overfitting. JMLR, 2014.
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GELU9

Gaussian Error Linear Unit - A smoother
activation function.

Motivated by Dropout.

f (x) = E[x ·m].

m ∼ Bernoulli(Φ(x)).

Φ(x) = P(X 6 x).

X ∼ N(0,1).

9Hendrycks & Gimpel. Gaussian Error Linear Unit (GELU). CoRR abs/1606.08415, 2016.
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Data augmentation

Leverage the invariances of
images

Create more data points for free
Random cropping

Left+right flipping

Random color jittering

Random blurring

Affine warping

Etc.
Image credit10

10Chen et al. A Simple Framework for Contrastive Learning of Visual Representations. ICML 2020.
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Language and sequential signals
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What about natural language

Neural networks are great for dealing with naturalistic and unstructured signals.

Past lectures: Feature functions in structured models, but still primitive.

Design neural networks to accomodate sequential signals such as language.
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Word embeddings

Neural networks are best dealing with real valued vectors.

Need to convert words (discrete) into vectors (continuous).

A large matrix of V ×D. V = vocab size, D = network embedding size.

11

11https://aelang.github.io/word-embeddings.html
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Convolutional vs. recurrent networks

Recall in images we used the convolution operation.

We can also use the idea of convolution for temporal signals.

Another alternative is to use a type of network called recurrent networks.

Two inputs: xt is the current input, and ht is the historical hidden state.

We can unroll the computation graph into a direct acyclic graph (DAG).
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Recurrent neural networks (RNNs)

A simple RNN can be made similar to a standard NN with one hidden layer.

ht = tanh(Wht−1+Uxt).

yt = Softmax(Vht).

12
12Image credit: Chris Olah https://colah.github.io/posts/2015-08-Understanding-LSTMs/
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Gradient vanishing

Every iteration, we multiply the hidden state ht−1 from the previous iteration with the
same W . Recall the definition of Jacobian.

If the largest singular value of W is less than one then back-propagation will be attenuated.

Similarly, we apply tanh activation every iteration – further reducing gradient flow.
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Gating functions in LSTM

Long short-term memory is a network that addresses the gradient vanishing problem by
introducing gating functions.

Gating functions provide “shortcuts”, like ResNet.

Originally proposed by Hochreiter and Schmidhuber in 1997.
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Gating functions in LSTM

Input gate: it = σ(Wi [ht−1,xt ]+bi ).

Forget gate: ft = σ(Wf [ht−1,xt ]+bf ).

zt = tanh(wz [ht−1xt ]+bz).

ct = ft � ct−1+ it � zt .

Output gate: ot = σ(Wo [ht−1,xt ]+bo).

ht = ot � tanh(ct).
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Gated Recurrent Unit

Proposed by Chung et al. in 2015, a
simplified variant compared to LSTM.

Input gate it = σ(Wi [ht−1,xt ]+bi ).

Reset gate rt = σ(Wr [ht−1,xt ]+br ).

h̃t = tanh(Wh[rt �ht ,xt ]+bh).

ht = (1− it)�ht−1+ it � h̃t .
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Attention Mechanisms

Earlier content will decay more.

Hard to refer back to the raw content.

Reverse order better than forward order
[abcde -> a’b’c’d’e’ vs. abcde ->
e’d’c’b’a’].

Attending to arbitrary sequence tokens.

st = f (st−1,yt−1,ct)

ct =
∑
ταt,τhτ, αt,τ =

exp(a(st−1,hk))∑
k exp(a(st−1,hk))

a(st−1,hk) = v>a tanh(Wa[si−1,hk ]) Bahdanau et al., 2014

Mengye Ren (NYU) CSCI-GA Nov 28, 2023 37 / 76



Transformers (“Attention is All You Need”)

The previous architecture is very complicated.
1 RNN for encoding the tokens.

Attention mechanisms for accessing content

1 RNN for combining attended tokens.

RNNs have the ability to incorporate past information, so does attention.

13

13Image credit: Google Research Blog
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Positional encoding

Attention operation is permuation equivariant.

Solution: Encode the position of each token.

PE (pos,2i) = sin(p/k2i/d),PE (pos,2i +1) = cos(p/k2i/d).
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Multi-headed attention

Map tokens into query, key, and value.

Attention(Q,K ,V ) = Softmax(QK>√
dk

)V .

Hi = Attention(QWQ
i ,KWK

i ,VW V
i ).

MultiHead(Q,K ,V ) = [H1, ...,Hn]W
O

More advantageous to have multiple set of
attentions for each token, so it can more
efficiently incorporate information from
multiple sources.
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Machine Translation

Achieved superior performance on machine translation.

Animation link
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Autoregressive modeling

Recall the chain rule on joint distribution:

p(x1:t) = p(x1, . . . ,xt) = p(x1)p(x2|x1) . . .p(xt |xt−1) = p(x1)
∏
i

p(xi |x1:i−1).

In Naive Bayes, we treat each variable as independent, but this cannot perform sequence
generation.

How do we model a conditional distribution p(xi |x1:i−1) using an RNN or a Transformer?

RNN is naturally autoregressive: ht contains all information up to time t.

For Transformers, ht contains information about the future.
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Causal Attention

For Transformers, we need to “mask” the attention so that each token can only attend to
tokens prior to itself.

This is called “causal attention”.

14
14Image credit: Wolfram.com
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Large Language Models

Most LLMs today are large-scale decoder-only autoregressive (causal) Transformers (>1B
parameters).

15

15Image credit: Medium.com
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Interim Summary

Optimization: Learning rate, initialization, activation functions, normalization, shortcut
skip connection, attention, etc.

Overfitting: Dropout, Data augmentation, etc.

Architecture Motifs: MLP, CNN, RNN, Transformers, etc.

Why deep learning works? Data, optimization, compute.

Still many open questions: Interpretability, fairness, uncertainty, data efficiency, energy
efficiency, theory, etc.
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Interpretability in Deep Neural Networks
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ML Interpretability

Linear regression: Weights represent feature selection strength.

SVMs: Dual weights represent sample selection.

Bayesian methods: Model the generative process as a probabilistic model, fully transparent.

Decision trees: If-else decision making process.

Neural networks: ?
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Feature Visualization

Recall: we can understand what first-layer features are doing by visualizing the weight
matrices.

Fully connected

Convolutional

826 M.D. Zeiler and R. Fergus

(a) (b)

(c) (d)

Fig. 5. (a): 1st layer features without feature scale clipping. Note that one feature dom-
inates. (b): 1st layer features from Krizhevsky et al. [18]. (c): Our 1st layer features. The
smaller stride (2 vs 4) and filter size (7x7 vs 11x11) results in more distinctive features
and fewer “dead” features. (d): Visualizations of 2nd layer features from Krizhevsky
et al. [18]. (e): Visualizations of our 2nd layer features. These are cleaner, with no
aliasing artifacts that are visible in (d).

1 & 2). This model, shown in Fig. 3, significantly outperforms the architecture
of Krizhevsky et al. [18], beating their single model result by 1.7% (test top-5).
When we combine multiple models, we obtain a test error of 14.8%, an improve-
ment of 1.6%. This result is close to that produced by the data-augmentation
approaches of Howard [15], which could easily be combined with our architec-
ture. However, our model is some way short of the winner of the 2013 Imagenet
classification competition [28].

Table 1. ImageNet 2012/2013 classification error rates. The ∗ indicates models that
were trained on both ImageNet 2011 and 2012 training sets.

Val Val Test
Error % Top-1 Top-5 Top-5

Gunji et al. [12] - - 26.2

DeCAF [7] - - 19.2

Krizhevsky et al. [18], 1 convnet 40.7 18.2 −−
Krizhevsky et al. [18], 5 convnets 38.1 16.4 16.4
Krizhevsky et al. ∗[18], 1 convnets 39.0 16.6 −−
Krizhevsky et al. ∗[18], 7 convnets 36.7 15.4 15.3

Our replication of
Krizhevsky et al. , 1 convnet 40.5 18.1 −−
1 convnet as per Fig. 3 38.4 16.5 −−
5 convnets as per Fig. 3 – (a) 36.7 15.3 15.3

1 convnet as per Fig. 3 but with
layers 3,4,5: 512,1024,512 maps – (b) 37.5 16.0 16.1

6 convnets, (a) & (b) combined 36.0 14.7 14.8

Howard [15] - - 13.5
Clarifai [28] - - 11.7

Varying ImageNet Model Sizes: In Table 2, we first explore the architecture
of Krizhevsky et al. [18] by adjusting the size of layers, or removing them entirely.
In each case, the model is trained from scratch with the revised architecture.
Removing the fully connected layers (6,7) only gives a slight increase in error (in

Zeiler and Fergus, Visualizing and understanding
convolutional networks, ECCV 2014.

The better the input matches these weights, the more the feature activates.

Higher-level weight matrices are hard to interpret.
Obvious generalization: visualize higher-level features by seeing what inputs activate
them.
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Feature Visualization

One way to formalize: pick the images in the training set which activate a unit most
strongly.

Here’s the visualization for layer 1:

Zeiler and Fergus, Visualizing and understanding convolutional networks, ECCV 2014.
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Feature Visualization

Layer 3:

Zeiler and Fergus, Visualizing and understanding convolutional networks, ECCV 2014.
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Feature Visualization

Layer 4:

Zeiler and Fergus, Visualizing and understanding convolutional networks, ECCV 2014.Mengye Ren (NYU) CSCI-GA Nov 28, 2023 51 / 76



Feature Visualization

Layer 5:

Zeiler and Fergus, Visualizing and understanding convolutional networks, ECCV 2014.Mengye Ren (NYU) CSCI-GA Nov 28, 2023 52 / 76



Feature Visualization

Higher layers seem to pick up more abstract, high-level information.

Problems?
Can’t tell what the unit is actually responding to in the image.

We may read too much into the results, e.g. a unit may detect red, and the images
that maximize its activation will all be stop signs.

Can use input gradients to diagnose what the unit is responding to.
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Feature Visualization

Input gradients can be hard to interpret.

Take a good object recognition conv net (Alex Net) and compute the gradient of
logp(y = “cat”|x):

Original image

Typical Gradient of a Neuron

• Visualize the gradient of a particular neuron with respect to the 
input x

• Do a forward pass:

• Compute the gradient of a particular neuron using backprop:

Gradient for “cat”

Typical Gradient of a Neuron

• Visualize the gradient of a particular neuron with respect to the 
input x

• Do a forward pass:

• Compute the gradient of a particular neuron using backprop:
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Feature Visualization

Guided backprop is a total hack to prevent this cancellation.

Do the backward pass as normal, but apply the ReLU nonlinearity to all the activation
error signals.

y = ReLU(z) z̄ =

{
ȳ if z > 0 and ȳ > 0
0 otherwise

We want to visualize what excites given unit, not what suppresses it.

Guided Backpropagation

Backprop Guided Backprop

Mengye Ren (NYU) CSCI-GA Nov 28, 2023 55 / 76



Guided Backprop
Guided Backpropagation

Springerberg et al, Striving for Simplicity: The All Convolutional Net (ICLR 2015 workshops)

Springerberg et al., Striving for simplicity: The all convolutional net, ICLR workshop 2015.
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Class activation map (CAM)

Classification networks typically use global avg pooling before the final layer.

This pooling layer can already contain semantic information.

We can visualize a heat map

Zhou et al. Learning deep features for discriminative localization. CVPR 2016.
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GradCAM

Selvaraju et al. Grad-CAM: Visual explanations from deep networks via gradient-based localization. ICCV 2017.
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GradCAM

Selvaraju et al. Grad-CAM: Visual explanations from deep networks via gradient-based localization. ICCV 2017.Mengye Ren (NYU) CSCI-GA Nov 28, 2023 59 / 76



DeepDream16

Start with an image, and run a conv net on it.

Change the image such that units which were already highly activated get activated even
more strongly. “Rich get richer.”

16Google Research Blog
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DeepDream
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DeepDream
Deep Dream

CSC321: Intro to Machine Learning and Neural Networks, Winter 2016

Michael Guerzhoy
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Gradient Ascent on Images

Doing gradient ascent on an image to maximize the activation of a given neuron.

https://distill.pub/2017/feature-visualization/
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Gradient Ascent on Images

https://distill.pub/2017/feature-visualization/
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Gradient Ascent on Images

Higher layers in the network often learn higher-level, more interpretable representations

https://distill.pub/2017/feature-visualization/
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Gradient Ascent on Images

Higher layers in the network often learn higher-level, more interpretable representations

https://distill.pub/2017/feature-visualization/
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Artistic style transfer

Activations store content information

Activation correlation stores style/texture information: G l
ij =
∑

k F
l
ikF

l
jk

Gatys et al., Image style transfer using convolutional neural networks, CVPR 2016.
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Artistic style transfer

Optimizing both content & style from random noise

Gatys et al., Image style transfer using convolutional neural networks, CVPR 2016.
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Artistic style transfer

Gatys et al., Image style transfer using convolutional neural networks, CVPR 2016.
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Adversarial Examples

One of the most surprising findings about neural nets has been the existence of adversarial
inputs, i.e. inputs optimized to fool an algorithm.

Goodfellow et al., Explaining and harnessing adversarial examples, ICLR 2015.
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Adversarial Examples

The following adversarial examples are misclassified as ostriches. ( 10× perturbation
visualized in middle.)

Szegedy et al., Intriguing properties of neural networks, ICLR 2014.
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Adversarial Examples

You can print out an adversarial image and take a picture of it, and it still works!

Kurakin et al., Adversarial examples in the physical world, ICLR workshop 2017.

Mengye Ren (NYU) CSCI-GA Nov 28, 2023 72 / 76



Adversarial Examples

An adversarial example in the physical world (network thinks it’s a gun, from a variety of
viewing angles!)

Athalye et al., Synthesizing robust adversarial examples, ICML 2018.
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Adversarial Examples

An adversarial mesh object that can hide cars from LiDAR detector

Tu et al., Physically realizable adversarial examples for LiDAR object detection, CVPR 2020.
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Adversarial Defense

How to defend from adversarial perturbation is still an active research area.

Blackbox vs. whitebox attacks.

One common approach is to train with millions of adversarial examples.

Needs to train much longer, and also suffers a drop in accuracy.

Data augmentation and label smoothing also help.
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Summary

Interpretability - ways to open up the black box of neural networks

Knowing what each neuron does is like studying a “brain” with perfect observation and
measurement.

Still very open research area.

Adversarial examples are safety vulnerabilities of deep neural networks.

Need more data and innovations in more robust learning objectives.

Mengye Ren (NYU) CSCI-GA Nov 28, 2023 76 / 76


	Gradient learning conditioning
	Language and sequential signals
	Interpretability in Deep Neural Networks

