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Today’s lecture

Neural networks: huge empirical success but poor theoretical understanding

Key idea: representation learning

Optimization: backpropagation + SGD
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Feature engineering

Many problems are non-linear

We can express certain non-linear models in a linear form:

f (x) = wT�(x). (1)

Note that this model is not linear in the inputs x — we represent the inputs differently,
and the new representation is amenable to linear modeling

For example, we can use a feature map that defines a kernel, e.g., polynomials in x
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Decomposing the problem

Example: predicting how popular a restaurant is
Raw features #dishes, price, wine option, zip code, #seats, size

Decomposing the problem into subproblems:

h1([#dishes, price, wine option]) = food quality

h2([zip code]) = walkable

h3([#seats, size]) = noisy

Each intermediate models solves one of the subproblems

A final linear predictor uses the intermediate features computed by the hi ’s:

w1 · food quality+w2 ·walkable+w3 ·noisy

CSCI-GA 2565 4 / 57
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Perceptrons as logical gates
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Limitations of a perceptrons as logical gates
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Multilayer perceptron
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Multilayer perceptron
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Decomposing the problem into predefined subproblems

#dishes
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#seats

size

Popularity
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Input
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Output
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h2

h3

food quality

walkable

noise
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Learned intermediate features
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Input
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Neural networks

Key idea: learn the intermediate features.

Feature engineering Manually specify �(x) based on domain knowledge and learn the weights:

f (x) = wT�(x). (2)

Feature learning Learn both the features (K hidden units) and the weights:

h(x) = [h1(x), . . . ,hK (x)] , (3)

f (x) = wTh(x) (4)

CSCI-GA 2565 11 / 57
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Feature learning example

A filter convolves over the image and looks for the highest pattern match.

Traditionally, people use Gabor filters or other image feature extractors, e.g. SIFT, SURF,
etc, and an SVM on top for image classification.

Neural networks take in images and can learn the filters that are the most useful for
solving the tasks. Likely more efficient than hand engineered features.

CSCI-GA 2565 12 / 57
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Inspiration: The brain

Our brain has about 100 billion (1011) neurons, each of which communicates (is
connected) to ⇠ 104 other neurons, with non-linear computations.

Figure: The basic computational unit of the brain: Neuron
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Inspiration: The brain

Neurons receive input signals and accumulate voltage. After some threshold they will fire
spiking responses.

CSCI-GA 2565 14 / 57



Activation function

We can model a simpler computation by using “activation function”.

It applies a non-linearity on the inputs and “fires” after some threshold.

hi (x) = �(vTi x). (5)

Some possible activation functions:

sign function (as in classic perceptron)? Non-differentiable.
Differentiable approximations: sigmoid functions.

E.g., logistic function, hyperbolic tangent function.

Two-layer neural network (one hidden layer and one output layer) with K hidden units:

f (x) =
KX

k=1

wkhk(x) =
KX

k=1

wk�(vk
T x) (6)
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Activation Functions

The hyperbolic tangent is a common activation function:

�(x) = tanh(x) .
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Activation Functions

More recently, the rectified linear (ReLU) function has been very popular:

�(x) =max(0,x).

Faster to calculate this function and its derivatives

Often more effective in practice

CSCI-GA 2565 17 / 57
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Approximation Ability: f (x) = x2

3 hidden units; tanh activation functions

Blue dots are training points; dashed lines are hidden unit outputs; final output in red.

From Bishop’s Pattern Recognition and Machine Learning, Fig 5.3
CSCI-GA 2565 18 / 57



Approximation Ability: f (x) = sin(x)

3 hidden units; logistic activation function

Blue dots are training points; dashed lines are hidden unit outputs; final output in red.

From Bishop’s Pattern Recognition and Machine Learning, Fig 5.3
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Approximation Ability: f (x) = |x |

3 hidden units; logistic activation functions

Blue dots are training points; dashed lines are hidden unit outputs; final output in red.

From Bishop’s Pattern Recognition and Machine Learning, Fig 5.3
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Universal approximation theorem

Theorem (Universal approximation theorem)

A neural network with one possibly huge hidden layer F̂ (x) can approximate any continuous
function F (x) on a closed and bounded subset of Rd under mild assumptions on the activation
function, i.e. 8✏> 0, there exists an integer N s.t.

F̂ (x) =
NX

i=1

wi�(v
T
i x +bi ) (7)

satisfies |F̂ (x)-F (x)|< ✏.
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Universal approximation theorem

For the theorem to work, the number of hidden units needs to be exponential in d

The theorem doesn’t tell us how to find the parameters of this network

It doesn’t explain why practical neural networks work, or tell us how to build them
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Deep neural networks

Wider: more hidden units (as in the approximation theorem).

Deeper: more hidden layers.

x1

x2

...

xd-1

xd

score

Hidden
layers

Input
layer

Output
layer
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Multilayer Perceptron (MLP): formal definition

Input space: X= Rd Output space Y= Rk (for k-class classification).

Let � : R! R be an activation function (e.g. tanh or ReLU).

Let’s consider an MLP of L hidden layers, each having m hidden units.

First hidden layer is given by

h(1)(x) = �
⇣
W (1)x +b(1)

⌘
,

for parameters W (1) 2 Rm⇥d and b 2 Rm, and where �(·) is applied to each entry of its
argument.

CSCI-GA 2565 24 / 57
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Multilayer Perceptron (MLP): formal definition

Each subsequent hidden layer takes the output o 2 Rm of previous layer and produces

h(j)(o(j-1)) = �
⇣
W (j)o(j-1)+b(j)

⌘
, for j = 2, . . . ,L

where W (j) 2 Rm⇥m, b(j) 2 Rm.

Last layer is an affine mapping (no activation function):

a(o(L)) =W (L+1)o(L)+b(L+1),

where W (L+1) 2 Rk⇥m and b(L+1) 2 Rk .

The full neural network function is given by the composition of layers:

f (x) =
⇣
a�h(L) � · · ·�h(1)

⌘
(x) (8)

Typically, the last layer gives us a score. How do we perform classification?

CSCI-GA 2565 25 / 57
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What did we do in multinomial logistic regression?

From each x , we compute a linear score function for each class:

x 7! (hw1,xi , . . . ,hwk ,i) 2 Rk

We need to map this Rk vector into a probability vector ✓.

The softmax function maps scores s = (s1, . . . ,sk) 2 Rk to a categorical distribution:

(s1, . . . ,sk) 7! ✓= Softmax(s1, . . . ,sk) =

 
exp(s1)Pk
i=1 exp(si )

, . . . ,
exp(sk)Pk
i=1 exp(si )

!

CSCI-GA 2565 26 / 57
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Nonlinear Generalization of Multinomial Logistic Regression

From each x , we compute a non-linear score function for each class:

x 7! (f1(x), . . . , fk(x)) 2 Rk

where fi ’s are the outputs of the last hidden layer of a neural network.

Learning: Maximize the log-likelihood of training data

argmax
f1,...,fk

nX

i=1

log
h
Softmax(f1(x), . . . , fk(x))yi

i
.
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Interim discussion

With the right representations, we can turn nonlinear problems into linear ones

The goal of represenation learning is to automatically discover useful features from raw
data

Building blocks:
Input layer no learnable parameters

Hidden layer(s) affine + nonlinear activation function
Output layer affine (+ softmax)

A single, potentially huge hidden layer is sufficient to approximate any function

In practice, it is often helpful to have multiple hidden layers
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Fitting the parameters of an MLP

Input space: X= R

Output space: Y= R

Hypothesis space: MLPs with a single 3-node hidden layer:

f (x) = w0+w1h1(x)+w2h2(x)+w3h3(x),

where
hi (x) = �(vix +bi ) for i = 1,2,3,

for some fixed activation function � : R! R.

What are the parameters we need to fit?

b1,b2,b3,v1,v2,v3,w0,w1,w2,w3 2 R
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Finding the best hypothesis

As usual, we choose our prediction function using empirical risk minimization.

Our hypothesis space is parameterized by

✓= (b1,b2,b3,v1,v2,v3,w0,w1,w2,w3) 2⇥= R10

For a training set (x1,y1), . . . ,(xn,yn), our goal is to find

✓̂= argmin
✓2R10

1
n

nX

i=1

(f (xi ;✓)- yi )
2 .
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How do we learn these parameters?

For a training set (x1,y1), . . . ,(xn,yn), our goal is to find

✓̂= argmin
✓2R10

1
n

nX

i=1

(f (xi ;✓)- yi )
2 .

We can use gradient descent

Is f differentiable w.r.t. ✓? f (x) = w0+
P3

i=1wi tanh(vix +bi ).

Is the loss convex in ✓?
tanh is not convex

Regardless of nonlinearity, the composition of convex functions is not necessarily
convex

We might converge to a local minimum.

CSCI-GA 2565 31 / 57

neural
network

0



How do we learn these parameters?

For a training set (x1,y1), . . . ,(xn,yn), our goal is to find

✓̂= argmin
✓2R10

1
n

nX

i=1

(f (xi ;✓)- yi )
2 .

We can use gradient descent

Is f differentiable w.r.t. ✓? f (x) = w0+
P3

i=1wi tanh(vix +bi ).

Is the loss convex in ✓?

tanh is not convex

Regardless of nonlinearity, the composition of convex functions is not necessarily
convex

We might converge to a local minimum.

CSCI-GA 2565 31 / 57



How do we learn these parameters?

For a training set (x1,y1), . . . ,(xn,yn), our goal is to find

✓̂= argmin
✓2R10

1
n

nX

i=1

(f (xi ;✓)- yi )
2 .

We can use gradient descent

Is f differentiable w.r.t. ✓? f (x) = w0+
P3

i=1wi tanh(vix +bi ).

Is the loss convex in ✓?
tanh is not convex

Regardless of nonlinearity, the composition of convex functions is not necessarily
convex

We might converge to a local minimum.

CSCI-GA 2565 31 / 57



Gradient descent for (large) neural networks

Mathematically, it’s just partial derivatives, which you can compute by hand using the
chain rule

In practice, this could be time-consuming and error-prone

Back-propagation computes gradients for neural networks (and other models) in a
systematic and efficient way

We can visualize the process using computation graphs, which expose the structure of the
computation (modularity and dependency)

CSCI-GA 2565 32 / 57
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CSCI-GA 2565 32 / 57



Gradient descent for (large) neural networks

Mathematically, it’s just partial derivatives, which you can compute by hand using the
chain rule

In practice, this could be time-consuming and error-prone

Back-propagation computes gradients for neural networks (and other models) in a
systematic and efficient way

We can visualize the process using computation graphs, which expose the structure of the
computation (modularity and dependency)

CSCI-GA 2565 32 / 57



Functions as nodes in a graph

We represent each component of the network as a node that takes in a set of inputs and
produces a set of outputs.

Example: g : Rp! Rn.

Typical computation graph:

Broken down by component:
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Partial derivatives of an affine function

Define the affine function g(x) =Mx + c , for M 2 Rn⇥p and c 2 R.

Let b = g(a) =Ma+ c . What is bi?

bi depends on the ith row of M:

bi =
pX

k=1

Mikak + ci .

If aj  aj +�, what is bi?

bi  bi +Mij�.

The partial derivative/gradient measures sensitivity: If we perturb an input a little bit, how
much does the output change?
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Partial derivatives in general

Consider a function g : Rp! Rn.

Partial derivative @bi
@aj

is the rate of change
of bi as we change aj

If we change aj slightly to

aj +�,

Then (for small �), bi changes to
approximately

bi +
@bi
@aj

�.
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Composing multiple functions

We have g : Rp! Rn and f : Rn! Rm

b = g(a), c = f (b).

How does a small change in aj affect ci?

Visualizing the chain rule:

We sum changes induced on all paths
from aj to ci .

The change contributed by each path
is the product of changes on each
edge along the path.

@ci
@aj

=
nX

k=1

@ci
@bk

@bk
@aj

.

. CSCI-GA 2565 36 / 57
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Example: Linear least squares

Hypothesis space
�
f (x) = wT x +b | w 2 Rd ,b 2 R

 
.

Data set (x1,y1) , . . . ,(xn,yn) 2 Rd ⇥R.

Define
`i (w ,b) =

⇥�
wT xi +b

�
- yi

⇤2
.

In SGD, in each round we choose a random training instance i 2 1, . . . ,n and take a
gradient step

wj  wj -⌘
@`i (w ,b)

@wj
, for j = 1, . . . ,d

b  b-⌘
@`i (w ,b)

@b
,

for some step size ⌘> 0.

How do we calculate these partial derivatives on a computation graph?
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Computation graph and intermediate variables

For a training point (x ,y), the loss is

`(w ,b) =
⇥�
wT x +b

�
- y
⇤2
.

Let’s break this down into intermediate computations:

(prediction) ŷ =
dX

j=1

wjxj +b

(residual) r = y - ŷ

(loss) ` = r2

CSCI-GA 2565 38 / 57
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Partial derivatives on computation graph

We’ll work our way from the output ` back to the parameters w and b, reusing previous
computations as much as possible:

@`

@r
= 2r

@`

@ŷ
=

@`

@r

@r

@ŷ
= (2r)(-1) =-2r

@`

@b
=

@`

@ŷ

@ŷ

@b
= (-2r)(1) =-2r

@`

@wj
=

@`

@ŷ

@ŷ

@wj
= (-2r)xj =-2rxj
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Example: Ridge Regression

For training point (x ,y), the `2-regularized objective function is

J(w ,b) =
⇥�
wT x +b

�
- y
⇤2
+�wTw .

Let’s break this down into some intermediate computations:

(prediction) ŷ =
dX

j=1

wjxj +b

(residual) r = y - ŷ

(loss) ` = r2

(regularization) R = �wTw

(objective) J = `+R

CSCI-GA 2565 40 / 57
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Partial Derivatives on Computation Graph

We’ll work our way from graph output ` back to the parameters w and b:

@J

@`
=

@J

@R
= 1

@J

@ŷ
=

@J

@`

@`

@r

@r

@ŷ
= (1)(2r)(-1) =-2r

@J

@b
=

@J

@ŷ

@ŷ

@b
= (-2r)(1) =-2r

@J

@wj
= Exercise
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Backpropagation: Overview

Learning: run gradient descent to find the parameters that minimize our objective J.

Backpropagation: we compute the gradient w.r.t. each (trainable) parameter @J
@✓i

.

Forward pass Compute intermediate function
values, i.e. output of each node

Backward pass Compute the partial derivative of J
w.r.t. all intermediate variables and
the model parameters

How do we minimize computation?

Path sharing: each node caches intermediate
results: we don’t need to compute them over
and over again

An example of dynamic programming

CSCI-GA 2565 42 / 57
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Forward pass

Order nodes by topological sort (every node appears before its children)

For each node, compute the output given the input (output of its parents).

Forward at intermediate node fi and fj :

. . . fi fj . . .

a b = fi (a) c = fj(b)

CSCI-GA 2565 43 / 57



Backward pass

Order nodes in reverse topological order (every node appears after its children)

For each node, compute the partial derivative of its output w.r.t. its input, multiplied by
the partial derivative of its children (chain rule)

Backward pass at intermediate node fi :

. . . fi fj . . .

a b = fi (a) c = fj(b)

gi = gj · @b@a = @J
@a gj =

@J
@b
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Multiple children

First sum partial derivatives from all children, then multiply.

Backprop for node f :

Input: @J
@b(1)

, . . . , @J
@b(N)

(Partials w.r.t. inputs to all children)

Output:

@J

@b
=

NX

k=1

@J

@b(k)

@J

@a
=

@J

@b

@b

@a
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Why backward?

We can write the chain rule in different orders of computation.

y = y(c(b(a))) (9)

@y

@a
=

@y

@c|{z}
D4⇥D3

@c

@b|{z}
D3⇥D2

@b

@a|{z}
D2⇥D1

(10)

Backward:
@y

@a
=

@y

@c

@c

@b| {z }
D4⇥D3·D3⇥D2!D4⇥D2

@b

@a|{z}
D2⇥D1

(11)

Forward:
@y

@a
=

@y

@c|{z}
D4⇥D3

@c

@b

@b

@a| {z }
D3⇥D2·D2⇥D1!D3⇥D1

(12)
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Trade-offs

The reverse order: The last dimention (D4) is preserved throughout propagation.

The forward order: The first dimension (D1) is preserved throughout propagation.

Reverse mode automatic differentiation (backprop) is faster since we have a scalar output
and a vector input, and it works well on most neural networks.

Forward mode automatic differentiation could be faster if we have a scalar input and a
vector output (less memory).

Optimal ordering = matrix chain ordering problem. Dynamic programming solution.

CSCI-GA 2565 47 / 57
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Non-convex optimization

Left: convex loss function. Right: non-convex loss function.
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Non-convex optimization: challenges

What if we converge to a bad local minimum?
Rerun with a different initialization

Hit a saddle point
Doesn’t often happen with SGD

Second partial derivative test

Flat region: low gradient magnitude
Possible solution: use ReLU instead of sigmoid

High curvature: large gradient magnitude
Possible solutions: Gradient clipping, adaptive
step sizes

Reference: Chris De Sa’s slides (CS6787 Lecture 7).
CSCI-GA 2565 49 / 57
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Learning rate

One of the most important hyperparameter.

Start with a higher learning rate then decay towards zero.

Classic theory: convergence guarantee for stochastic gradient descent. Otherwise the
update step has a noise term dominated by the noise of data sample.

Other explanation: Loss surface, avoidance of local minima, avoidance of memorization of
noisy samples

Learning rate decay (staircase 10x, cosine, etc.), speeds up convergence
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Biological Plausibility

Backprop is used to train the overwhelming majority of neural nets today.

Despite its practical success, backprop is believed to be neurally implausible.

No evidence for biological signals analogous to error derivatives.

Two main problems with implementing in an asynchronous analog hardware like our brain.
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Biological Plausibility

1) Weight Symmetry & Network Symmetry
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2) Global Synchronization
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Review

Backpropagation is an algorithm for computing the gradient (partial derivatives + chain
rule) efficiently.

It is used in gradient descent optimization for neural networks.

Key idea: function composition and the chain rule

In practice, we can use existing software packages, e.g. PyTorch (backpropagation, neural
network building blocks, optimization algorithms etc.)
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Applying Neural Networks on Images

Neural networks are widely used on images today.

Images are challenging to deal with because of its large dimensions.

Stored the intensity value pixel by pixel.

A 28⇥28 image of digit 4:

CSCI-GA 2565 54 / 57
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Fully connected vs. locally connected

So far we apply a layer where all output neurons are connected to all input neurons.

In matrix form, z =W x.

This is also called a fully connected layer or a dense layer or a linear layer.

For 200⇥200 image and 1000 hidden units, the matrix of a single layer will have 40M
parameters!
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Fully connected vs. locally connected

An alternative strategy is to use local connection.

For neuron i, only connects to its neighborhood (e.g. [i+k, i-k])

For images, we index neurons with three dimensions i, j, and c.

i = vertical index, j = horizontal index, c = channel index.
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Local connection patterns

The typical image input layer has 3 channels R G B for
color or 1 channel for grayscale.

The hidden layers may have C channels, at each spatial
location (i , j).

Now each hidden neuron zi ,j ,c receives inputs from
xi±k,j±k,·

k is the “kernel” size - do not confuse with the other
kernel we learned.

zi ,j ,c =
P

i 02[i±k],j 02[j±k],c 0 xi 0j 0c 0wi ,j ,i 0-i ,j 0-j ,c 0,c

The spatial awareness (receptive field) of the
neighborhood grows bigger as we go deeper.
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