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Today's lecture

@ Neural networks: huge empirical success but poor theoretical understanding
@ Key idea: representation learning

@ Optimization: backpropagation + SGD
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Feature engineering

@ Many problems are non-linear
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Feature engineering

@ Many problems are non-linear
@ We can express certain non-linear models in a linear form:
T
f(x)=w'd(x). (1)

@ Note that this model is not linear in the inputs x — we represent the inputs differently,
and the new representation is amenable to linear modeling

@ For example, we can use a feature map that defines a kernel, e.g., polynomials in x

X,K?/KB/
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Decomposing the problem

@ Example: predicting how popular a restaurant is l/l\b
Raw features #dishes, price, wine option, zip code, #seats, size (\OMW:B O
Ly intoc,oée == |ooQ ) = (yoﬂ"(@t%
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Decomposing the problem

@ Example: predicting how popular a restaurant is
Raw features #dishes, price, wine option, zip code, #seats, size

@ Decomposing the problem into subproblems:
o h1([#dishes, price, wine option]) = food quality

o ho([zip code]) = walkable
o h3([#seats, size]) = noisy
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Decomposing the problem

@ Example: predicting how popular a restaurant is
Raw features #dishes, price, wine option, zip code, #seats, size

@ Decomposing the problem into subproblems:
o h1([#dishes, price, wine option]) = food quality

—

o ho([zip code]) = walkable

—

o h3([#seats, size]) = noisy

—

@ Each intermediate models solves one of the subproblems
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Decomposing the problem

@ Example: predicting how popular a restaurant is
Raw features #dishes, price, wine option, zip code, #seats, size

@ Decomposing the problem into subproblems:
o h1([#dishes, price, wine option]) = food quality

o ho([zip code]) = walkable

o h3([#seats, size]) = noisy
@ Each intermediate models solves one of the subproblems

@ A final linear predictor uses the intermediate features computed by the h;'s:

v_Kl-food quality + ws - walkable + w3 - noisy = \DQ(JJ\M‘L(/



Perceptrons as logical gates

1w,
e Suppose that our input features .
indicate light at a two points in /Q—? I
space (0 = no light; 1 = light) i) > 0
W2

 How can we build a perceptron
that detects when there is light
in both locations?

wi=Lw=10=2
_~ ——




Limitations of a perceptrons as logical gates

e Can we build a perceptron that o wy
fires when the two pixels have
the same value (i1 = i2)?

. > 07
I2 Wo
Positive: (1, 1) (0, 0)
wi+w, 260, 020 01 ¢ @
w, <6, w, <0 — | j_
—’W‘g’@‘;tm Qutpy <

Negative: (1, 0) (0, 1) O RS
0,0 © \| ®1.0

The positive and negative cases

If 6 is negative, the sum of two numbers that cannot be separated by a plane
are both less than 6 cannot be greater than 6



Multilayer perceptron

Fire when the two pixels have the same value (i1 = i2)

Hldden Iayer Hidden layer
|nput i output '

(for x1 and x2 the correct output is 1;
for 01 and o2 the correct output is 0)
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Multilayer perceptron

 Recode the input: the hidden layer representations
are now linearly separable

EHidden Iayeré Hidden layer
; input ; output ;

4  Oiriginal 4+ Hidden layer
inputs output
01 @ ’ . X®p
> < 0,2 & >
@ 02 01,02 ™. X2

Not linearl :

y Linearly separable
separable



Decomposing the problem into predefined subproblems

Input Intermediate

Output
features features P
O
#dishes —
price — \ :
/‘ food quality
wine option — :
— Popularity

P .
/‘ noise

zip code —

H#Hseats —

size —
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| earned intermediate features

Input Hidden Output
layer layer layer

#dishes —

price — \ hy

wine option —

zip code — ‘

Hseats — /

size —

— CSCI-GA 2565 1057

A — Popularity



Neural networks

Key idea: learn the intermediate features.

Feature engineering Manually specify ¢(x) based on domain knowledge and learn the weights:

i N = \(}ooé wa iy
f(x)= W : ‘ [ (2)
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Neural networks

Key idea: learn the intermediate features.

Feature engineering Manually specify ¢(x) based on domain knowledge and learn the weights:

f(x)=w'd(x). (2)

Feature learning Learn both the features (K hidden units) and the weights:
hx) = [y (x), .o hi(x)], PO (3)
f(x) =w"h(x) W=D (4)
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Feature learning example

@ A filter convolves over the image and looks for the highest pattern match.
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Feature learning example

@ A filter convolves over the image and looks for the highest pattern match.

@ Traditionally, people use Gabor filters or other image feature extractors, e.g. SIFT, SURF,
etc, and an SVM on top for image classification.
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Feature learning example

@ A filter convolves over the image and looks for the highest pattern match.

@ Traditionally, people use Gabor filters or other image feature extractors, e.g. SIFT, SURF,
etc, and an SVM on top for image classification.

@ Neural networks take in images and can learn the filters that are the most useful for
solving the tasks. Likely more efficient than hand engineered features.
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Inspiration: The brain

@ Our brain has about 100 billion (10'!) neurons, each of which communicates (is
connected) to ~ 10 other neurons, with non-linear computations.

mpulses carried
toward cell body

ranches

dendrites of axon

(N2
el 7

[, —> axon

e \ axon ~ " terminals
- ' \ impulses carrie \?\
away from cell body - ¥
cell body

Figure: The basic computational unit of the brain: Neuron



Inspiration: The brain

@ Neurons receive input signals and accumulate voltage. After some threshold they will fire
spiking responses.

Action potential
+40
Na* ions in
sl |2 &
3 ?
S B 9 & £
E 3 % K*ions out
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Activation function

@ We can model a simpler computation by using “activation function”.
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Activation function

@ We can model a simpler computation by using “activation function”.

@ It applies a non-linearity on the inputs and “fires” after some threshold.

hi —GV)Q (5)

o

al ug‘-d‘r(tbv\ Q‘j’(/\‘kg
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Activation function

@ We can model a simpler computation by using “activation function”.

@ It applies a non-linearity on the inputs and “fires” after some threshold.

hi(x) = o(v x). (5)

@ Some possible activation functions:
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Activation function
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Activation function

@ We can model a simpler computation by using “activation function”.

@ It applies a non-linearity on the inputs and “fires” after some threshold.

hi(x) = o(v x). (5)

@ Some possible activation functions:
e sign function (as in classic perceptron)? Non-differentiable.

o Differentiable approximations: sigmoid functions.
e E.g., logistic function, hyperbolic tangent function.

CSCI-GA 2565 15 /57



Activation function

@ We can model a simpler computation by using “activation function”.

@ It applies a non-linearity on the inputs and “fires” after some threshold.

hi(x) = o(v x). (5)

@ Some possible activation functions:
e sign function (as in classic perceptron)? Non-differentiable.

o Differentiable approximations: sigmoid functions.
e E.g., logistic function, hyperbolic tangent function.

@ Two-layer neural network (one hidden layer and one output layer) with K hidden units:

K K
f(x) :Zwkh_k@j:ZWkG(K‘LT_)f) (6)
k=1 k=1



Activation Functions

@ The hyperbolic tangent is a common activation function:

o(x) =tanh(x).

1.0-

0.5- Activation_Function

=== Tanh

0.0-

Output

-0.5-

-1.0-

4 2 0 2 4

Input
Ve %
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Activation Functions

@ More recently, the rectified linear (ReLU) function has been very popular:
o(x) = max(0, x).

@ Faster to calculate this function and its derivatives
@ Often more effective in practice
1.00 -

0.75 -

Output o
o
3

0.25 -

0.00 -

I I I 1 I
-1.0 0.5 0.0 0.5 1.0
Input x
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Approximation Ability: f(x) = x2

@ 3 hidden units:; tanh activation functions

@ Blue dots are training points; dashed lines are hidden unit outputs; final output in red.

From Bishop's Pattern Recognition and Machine Learning, Fig 5.3
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Approximation Ability: f(x) =sin(x)

@ 3 hidden units; logistic activation function

@ Blue dots are training points; dashed lines are hidden unit outputs; final output in red.

From Bishop's Pattern Recognition and Machine Learning, Fig 5.3



Approximation Ability: f(x) = |x|

@ 3 hidden units; logistic activation functions

@ Blue dots are training points; dashed lines are hidden unit outputs; final output in red.

From Bishop's Pattern Recognition and Machine Learning, Fig 5.3



Universal approximation theorem

Theorem (Universal approximation theorem)

A neural network with one possibly huge hidden layer F(x) can approximate any continuous

function F(x) on a closed and bounded subset of R? under mild assumptions on the activation
function, i.e. Ve > 0, there exists an integer N s.t.

N
F(x)=) wio(vx+bj) (7)
i=1

satisfies |F(x)— F(x)| < e.
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Universal approximation theorem

@ For the theorem to work, the number of hidden units needs to be exponential in d
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Universal approximation theorem

@ For the theorem to work, the number of hidden units needs to be exponential in d

@ The theorem doesn't tell us how to find the parameters of this network
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Universal approximation theorem

@ For the theorem to work, the number of hidden units needs to be exponential in d
@ The theorem doesn't tell us how to find the parameters of this network

@ It doesn't explain why practical neural networks work, or tell us how to build them
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Deep neural networks

e Wider: more hidden units (as in the approximation theorem).
@ Deeper: more hidden layers.

Input Hidden Output

|ayerlo ok layers layer

X1 — le-d

X2 — ‘ \(\‘ltllr\Je,u:( )
‘ \ prediction
- ‘/‘ score
o e
X4 — /
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Multilayer Perceptron (MLP): formal definition

o Input space: X =R Output space Y = R@(for k-class classification).
@ Let 0: R — R be an activation function (e.g. tanh or ReLU).

@ Let's consider an MLP of L hidden layers, each having m hidden units.
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Multilayer Perceptron (MLP): formal definition

o Input space: X =R?  Output space Y = R¥ (for k-class classification).
@ Let 0: R — R be an activation function (e.g. tanh or ReLU).
@ Let's consider an MLP of L hidden layers, each having m hidden units.

@ First hidden layer is given by

h@x) — G(V/\@X—I—b@}>> ,

for parameters W(1) € R™Xd and b € R™, and where o (-) is applied to each entry of its
argument.
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Multilayer Perceptron (MLP): formal definition

@ Each subsequent hidden layer takes the output o € R™ of previous layer and produces

hU)):o(W(+bU)), for j=2,...,1

where WU) ¢ Rmxm p() ¢ RM.

CSCI-GA 2565 25 /57



Multilayer Perceptron (MLP): formal definition
@ Each subsequent hidden layer takes the output o € R™ of previous layer and produces
49 (01) o (W01 4 50) for j=2, .1
where WU) € Rmxm  pl) ¢ R™.
o Last layer is an affine mapping (no activation function):
a(o(L)) = WL+1) L) 4 plL+1)

where W(L+1) ¢ Rkxm gnd p(L+1) c Rk,
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Multilayer Perceptron (MLP): formal definition
@ Each subsequent hidden layer takes the output o € R™ of previous layer and produces
hU)(oU_l)) =0 (WU)OU_U +b(j)) ,for j=2,...,L
where WU) € Rmxm  pl) ¢ R™.
@ Last layer is an affine mapping (no activation function):
a(O(L)) _ W(L+1)O(L) 4+ b(L—O—l),
where W(LT1) ¢ Rkxm and p(L+1l) ¢ RK,

@ The full neural network function is given by the composition of layers:

f(x)= (aoh(L)o---Oh(l))(X) (8)
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Multilayer Perceptron (MLP): formal definition
@ Each subsequent hidden layer takes the output o € R™ of previous layer and produces
hU)(oU_l)) = O‘(WU)OU_U +b(j)) ,for j=2,...,L

where WU) ¢ Rmxm pi) ¢ RM, [

-

@ Last layer is an affine mapping (no activation function):

a(o) = WLt (L) 4 plL+1) f% 1

where W(LH1) ¢ Rkxm gnd p(L+1) ¢ RK,
@ The full neural network function is given by the composition of layers:
f(x)= (aoh(L)o---oh(l)) (x) (8)

@ Typically, the last layer gives us a score. How do we perform classification?



What did we do in multinomial logistic regression?

@ From each x, we compute a linear score function for each class:
k
x = ((wy,x), ..., (wg,)) €R

@ We need to map this R¥ vector into a probability vector 8.
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What did we do in multinomial logistic regression?

@ From each x, we compute a linear score function for each class:

x> (), ) €RE [ fg 1

@ We need to map this R¥ vector into a probability vector 8.

@ The softmax function maps scores s = (sy,...,s,) € RX to a categorical distribution:
exp (s exp (s
(s1,...,5() — 0 = Softmax(s1,...,s) = kXp(1) kXp(k)
> i—1exp(si) 2_i—1exp(si)

CSCI-GA 2565
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Nonlinear Generalization of Multinomial Logistic Regression

@ From each x, we compute a non-linear score function for each class:
x = (f(x),... fi(x)) € RK
where f;’s are the outputs of the last hidden layer of a neural network.

@ Learning: Maximize the log-likelihood of training data

=3 argmaxZIog [Softmax(fl(x),...,fk(x))yll .
I
\/—:k/\ —{CK} _ \/\&(}\ef scarss Yoo ¥nw
’ (} ( \(/ <2<, vé > A x{
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Interim discussion

BIES

e With the right representations, we can turn nonlinear problems into linear ones

@ The goal of represenation learning is to automatically discover useful features from raw
data
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Interim discussion

e With the right representations, we can turn nonlinear problems into linear ones

@ The goal of represenation learning is to automatically discover useful features from raw
data

@ Building blocks:

Input layer no learnable parameters >
Hidden layer(s) affine + nonlinear activation function n = o (Wx«E>
Output layer affine (4 softmax) F(0 D> = oot xb
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Interim discussion

e With the right representations, we can turn nonlinear problems into linear ones

@ The goal of represenation learning is to automatically discover useful features from raw
data

@ Building blocks:

Input layer no learnable parameters
Hidden layer(s) affine 4+ nonlinear activation function
Output layer affine (4 softmax)

@ A single, potentially huge hidden layer is sufficient to approximate any function

@ In practice, it is often helpful to have multiple hidden layers



Fitting the parameters of an MLP

@ Input space: X =R
@ Output space: Y =R
e Hypothesis space: MLPs with a single 3-node hidden layer:

f(x) = wo+wihi(x) +waha(x) + wshz(x),

—_—

where
hi(x) =o(vix+b;) for i=1,2,3,

e ——

for some fixed activation function 0: R — R.

@ What are the parameters we need to fit?

o ... Uiz ., D2

!
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Fitting the parameters of an MLP

@ Input space: X =R
@ Output space: Y =R
e Hypothesis space: MLPs with a single 3-node hidden layer:
f(x) = wo+ wih1(x) +waha(x) + wshs(x),

where
hi(x) =o(vix+b;) for i=1,2,3,

for some fixed activation function 0: R — R.

@ What are the parameters we need to fit?

b1, by, b3, v, v2, v3, Wy, wi, wo, w3 € R
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Finding the best hypothesis

@ As usual, we choose our prediction function using empirical risk minimization.
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Finding the best hypothesis

@ As usual, we choose our prediction function using empirical risk minimization.

@ Our hypothesis space is parameterized by

0= (bl,bg,b3, Vi, V2, V3, Wg, W1, Wo, W3) cO = Rlo
T T T
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Finding the best hypothesis

@ As usual, we choose our prediction function using empirical risk minimization.

@ Our hypothesis space is parameterized by

0= (bl,bg,b3, Vi, V2, V3, Wg, W1, Wo, W3) cO = Rlo

.. . . -&ﬂ,f\cr‘k
e For a training set (x1,y1),...,(xn, ¥a), our goal is to find \/\e_urc( ne

n &«

argminlz (f(x,-;@)@2.

OcRr10 N

I=1
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How do we learn these parameters?

@ For a training set (x1,y1),..., (Xn, ¥n), our goal is to find

A 1
© = argmin —Z (f(x;;0) —y,-)2.
0 cR10 n i—1

@ We can use gradient descent

@ Is f differentiable w.r.t. 07 f(x) = W0—|—Z?:l w; tanh(v;x + b;).
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How do we learn these parameters?

@ For a training set (x1,y1),...,(xn, ¥n), our goal is to find

A 1
© = argmin —Z (f(x;;0) —y,-)2.
0 cR10 n i—1

@ We can use gradient descent

@ Is f differentiable w.r.t. 07 f(x) = W0—|—Z?:l w; tanh(v;x + b;).

@ Is the loss convex in 07
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How do we learn these parameters?

@ For a training set (x1,y1),...,(xn, ¥n), our goal is to find
n

A 1
© = argmin —Z (f(x;;0) —y,-)2.
0 cR10 n 1

@ We can use gradient descent
@ Is f differentiable w.r.t. 07 f(x) = W0—|—Z?:l w; tanh(v;x + b;).

@ Is the loss convex in 07
e tanh is not convex
o Regardless of nonlinearity, the composition of convex functions is not necessarily

convex

@ We might converge to a local minimum.



Gradient descent for (large) neural networks

@ Mathematically, it's just partial derivatives, which you can compute by hand using the
chain rule

o In practice, this could be time-consuming and error-prone
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Gradient descent for (large) neural networks

@ Mathematically, it's just partial derivatives, which you can compute by hand using the
chain rule
o In practice, this could be time-consuming and error-prone

@ Back-propagation computes gradients for neural networks (and other models) in a
systematic and efficient way
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Gradient descent for (large) neural networks

@ Mathematically, it's just partial derivatives, which you can compute by hand using the
chain rule
o In practice, this could be time-consuming and error-prone

@ Back-propagation computes gradients for neural networks (and other models) in a
systematic and efficient way

@ We can visualize the process using computation graphs, which expose the structure of the
computation (modularity and dependency)
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Functions as nodes in a graph

@ We represent each component of the network as a node that takes in a set of inputs and
produces a set of outputs.

e Example: g:RP — R".

) Typical computation graph:

/)@n
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Functions as nodes in a graph

@ We represent each component of the network as a node that takes in a set of inputs and

produces a set of outputs.

e Example: g:RP — R".

@ Typical computation graph:

& b
R R

@ Broken down by component:

CSCI-GA 2565

33/57



Partial derivatives of an affine function

@ Define the affine function g(x) = Mx+c, for M € R"*P and c € R.

a, b

a

?7' ic

a b
K Lf_]w
ae L ek
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Partial derivatives of an affine function

@ Define the affine function g(x) = Mx+c, for M € R"*P and c € R.

@ Let b=g(a) = Ma+c. What is b;?

a, b

a

?7' ic

a b
K Lf_]w
ae L ek
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Partial derivatives of an affine function

@ Define the affine function g(x) = Mx+c, for M € R"*P and c € R.

@ Let b=g(a) = Ma+c. What is b;?

Qa
/ bl @ b; depends on the ith row of M:
Q, b
‘ Z P
. lg b; = ZI\/I,-kak—i—c,-.
a k=1
n
AN L
A€ Kf L> é{K
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Partial derivatives of an affine function

@ Define the affine function g(x) = Mx+c, for M € R"*P and c € R.

@ Let b=g(a) = Ma+c. What is b;?

Qa
/ bl @ b; depends on the ith row of M:
Q, b
. Z P
. lg b; = ZI\/I,-kak—i—c,-.
a k=1
s L
L .
e Kf L R o If aj @what |s@
b; < b; + M’J_é_
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Partial derivatives of an affine function

@ Define the affine function g(x) = Mx+c, for M € R"*P and c € R.

@ Let b=g(a) = Ma+c. What is b;?

a
/ bl @ b; depends on the ith row of M:
‘ Z p
. ‘9 b; = Z M ai + c;.
a k=1
P LY
L .
n @ If a; < a;+ 0, what is b;7?
ae L ek S

b; < b; + MU6

The partial derivative/gradient measures sensitivity: If we perturb an input a little bit, how
much does the output change?



Partial derivatives in general

@ Consider a function g:RP — R".

@ Partial derivative gg{ is the rate of change
J

a, bl of b; as we change a;
az L o If we change a; slightly to

. 2

“ lo aj+9,
a
| P | ( n , @ Then (for small 6), b; changes to

w approximatel
ae K’ Lek PP Y

(3
aaj
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Composing multiple functions

@ We have g:R?P - R" and f:R" — R™

@ How does a small change in a; affect ¢;?

dLL’—C\Z+g
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Composing multiple functions

@ We have g:R?P - R" and f:R" — R™

@ b=gl(a), c=f(b).

@ How does a small change in a; affect ¢;?

@ Visualizing the chain rule:

o We sum changes induced on all paths
from a; to ¢;.

o The change contributed by each path
is the product of changes on each
edge along the path.

CSC—‘ ~ e € oy

Sa= T e g\;h RS

<= |
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Composing multiple functions
@ We have g:R?P - R" and f:R" — R™
e b=gl(a), c=f(b).
@ How does a small change in a; affect ¢;?

@ Visualizing the chain rule:

b, o We sum changes induced on all paths
a, A < from a; to ¢;.
Q C
¢ aoe i o The change contributed by each path
" C.. is the product of changes on each
G L L edge along the path.
A€ Hif bel <<k n
aC,' o Z aC,' abk
aaj kzlabk aaj '
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Example: Linear least squares

@ Hypothesis space {f(x) —w!x+b|weRd be R}.

e Data set (x1,¥1),..., (Xn, ¥n) € RY x R.

. (o
@ Define = /

42

li(w,b) = [(WTX,-—|—b) —y,-} .
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Example: Linear least squares
@ Hypothesis space {f(x) —w!x+b|weRd be R}.

o Data set (x1,y1),...,(Xn vn) € R? xR.

@ Define ,
l;(w,b) = [(WTX,-—|—b) —y,-} .
@ In SGD, in each round we choose a random training instance i € 1,...,n and take a
gradient step
W < Wj—ﬂ, forj=1,..., d
ol;(w, b)
b b— ,
PR

for some step size 1 > 0.

@ How do we calculate these partial derivatives on a computation graph?



Computation graph and intermediate variables

@ For a training point (x,y), the loss is

Uw,b) = [(wx+b)—y]”.
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Computation graph and intermediate variables

@ For a training point (x,y), the loss is

Uw,b) = [(wx+b)—y]”.

@ Let's break this down into intermediate computations:

d
(prediction) y = Z wix;+ b
j=1
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Computation graph and intermediate variables

@ For a training point (x,y), the loss is

Uw,b) = [(wx+b)—y]”.

@ Let's break this down into intermediate computations:

N\

d

(prediction) y = ZWJ-XJ-—I—b
j=1

y—y

(residual) r =
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Computation graph and intermediate variables

@ For a training point (x, y), the loss is n

Y
Uw,b) = [(wx+b)—y]”.

2
(y-y> =7~ SEE

@ Let's break this down into intermediate computations:

(prediction) y

(residual) r
(loss) ¢




Computation graph and intermediate variables

@ For a training point (x,y), the loss is

Uw,b) = [(wx+b)—y]”.

@ Let's break this down into intermediate computations:

? mdzu ni hve
J e Tannf)Ob]f v
(prediction) y = Z wix;+ b
YD
(residual) r = y y
(loss) £ = r? ¥

Troming Exavple
——— CSCLGA 2565 0,57



Partial derivatives on computation graph

e We'll work our way from the output € back to the parameters w and b, reusing previous
computations as much as possible:

W

YO 4D

N
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Partial derivatives on computation graph

e We'll work our way from the output € back to the parameters w and b, reusing previous
computations as much as possible:

ot

W or
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Partial derivatives on computation graph

e We'll work our way from the output € back to the parameters w and b, reusing previous
computations as much as possible:
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Partial derivatives on computation graph

e We'll work our way from the output € back to the parameters w and b, reusing previous
computations as much as possible:

fal4
W ﬁ a— = 2r
A r
-
b — )4 D) o _ Ay,
oy or Oy
§'A o) 4 B /6(‘(
N/ ob 7 oL
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Partial derivatives on computation graph

e We'll work our way from the output € back to the parameters w and b, reusing previous
computations as much as possible:

W ﬁ ot _ 2r
A or -
L 0 ol 0
b @ @ e —f = —e—i —(2r)(—1) =—2r
oy or Oy
X (ol ol oy
— = ——==(=2r)(1)=-2
N b opop ) ==2r
o _
ow; N
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Partial derivatives on computation graph

e We'll work our way from the output € back to the parameters w and b, reusing previous
computations as much as possible:

v S J o
A or -
v 0{ 0
b @ e a—f — _(7,_/; —(2r)(—1) =—2r
oy or Oy
¥ o1 L 3y
= Y (o)1) =2
N db oy 0p 2 =2

o atoy

ow; a_yawj N (_2@: 2
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Example: Ridge Regression
@ For training point (x,y), the {>-regularized objective function is
J(w,b) = [(WTXJr b) —y}z +Aaw T w.

@ Let's break this down into some intermediate computations:

M=

(prediction) y = wjX; + b
j=1
(residual) r = y—y
(loss) £ = r?
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Example: Ridge Regression

@ For training point (x,y), the {>-regularized objective function is

J(w,b) = [(WTXer) —y}z

@ Let's break this down into some intermediate computations:

d
(prediction) y = ijxj+b

J
(residual) r = y—y

(loss) £ = r?
(regularization) R = (Aw ' w
(objective) J = {+R
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Example: Ridge Regression

@ For training point (x,y), the {>-regularized objective function is
J(w, b) = [(WTXJr b) —y}z +Aw " w.

@ Let's break this down into some intermediate computations:

}\ —
(meefe S @ R

d
(prediction) y = ijxj+b

W . ;0
N TR R G)

(residual) r = y—y
(loss) £ = r? x Y
(regularization) R = Aw'w Tfﬂ"\if‘a Example
(objective) J = {+R
e CSCI-GA 2565 40 /57




Partial Derivatives on Computation Graph

e We'll work our way from graph output ¢ back to the parameters w and b:

= s5=1

— @;}: (1) (2r) (~1) = —2r
C.oJay

— a_y% = (=2r)(1) =—2r

= Exercise

=(-2 D002 Tk
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Backpropagation: Overview

@ Learning: run gradient descent to find the parameters that minimize our objective J.

e Backpropagation: we compute the gradient w.r.t. each (trainable) parameter aaej_.

Forward pass Compute intermediate function
values, i.e. output of each node

Backward pass Compute the partial derivative of J
w.r.t. all intermediate variables and

the model parameters

(Pav amefevs

How do we minimize computation?
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Backpropagation: Overview

@ Learning: run gradient descent to find the parameters that minimize our objective J.

e Backpropagation: we compute the gradient w.r.t. each (trainable) parameter aag'_

Forward pass Compute intermediate function
values, i.e. output of each node

Backward pass Compute the partial derivative of J
w.r.t. all intermediate variables and

the model parameters

(Pav amefevs

How do we minimize computation?

@ Path sharing: each node caches intermediate
results: we don't need to compute them over
and over again

@ An example of dynamic programming
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Forward pass

@ Order nodes by topological sort (every node appears before its children)
@ For each node, compute the output given the input (output of its parents).

@ Forward at intermediate node f; and f;:

a ' b="fl(a) c=fi(b)
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Backward pass

@ Order nodes in reverse topological order (every node appears after its children)

@ For each node, compute the partial derivative of its output w.r.t. its input, multiplied by
the partial derivative of its children (chain rule)

@ Backward pass at intermediate node f;:

J

_ (6 — @
(a) Q (b fi(a) c=f(b)’
l & = 3b

03
SIS
I
S
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Multiple children

@ First sum partial derivatives from all children, then multiply.
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Multiple children

@ First sum partial derivatives from all children, then multiply.

(Partials Wt all children)

o Output:

T
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Why backward?

@ We can write the chain rule in different orders of computation.

y = ylc(b(a))) (9)

(12)
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Why backward?

@ We can write the chain rule in different orders of computation.

0a oc _0b _0a
—~— —~—
D4><D3D3><D2 D2><D1
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Why backward?

@ We can write the chain rule in different orders of computation.

y =ylc(b(a))) (9)
oy dy 0c 0b
- 1
0a oc 0b _0Oa (10)
N N =~
D4 xX D3 D3 X Dy Dy X Dq
oy dy Oc ob
A frge o 11
Backward 5 5. 35 3 (11)
~—— ~~
D4><D3-D3><D2—>D4><D2 D2><D1
(12)
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Why backward?

@ We can write the chain rule in different orders of computation.

y =ylc(b(a))) (9)
oy dy 0c 0b

- 1
0a doc _O0b Oa (10)
~— M
D4 xX D3 D3 X Dy Dy X Dq
dy db
5 — = — 11
@ GE] 0a (11)
—~—
2—>D4><D2 D2><D1
Forward: a_y: (12)

R/_/ _
Dy % D3 D3><D2-D2><D1—>D3
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Trade-offs

@ The reverse order: The last dimention (D,) is preserved throughout propagation.
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@ The forward order: The first dimension (D) is preserved throughout propagation.
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Trade-offs

@ The reverse order: The last dimention (D,) is preserved throughout propagation.
@ The forward order: The first dimension (D) is preserved throughout propagation.

@ Reverse mode automatic differentiation (backprop) is faster since we have a scalar output
and a vector input, and it works well on most neural networks.
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Trade-offs

@ The reverse order: The last dimention (D,) is preserved throughout propagation.
@ The forward order: The first dimension (D) is preserved throughout propagation.

@ Reverse mode automatic differentiation (backprop) is faster since we have a scalar output
and a vector input, and it works well on most neural networks.

@ Forward mode automatic differentiation could be faster if we have a scalar input and a
vector output (less memory).
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Trade-offs

@ The reverse order: The last dimention (D,) is preserved throughout propagation.
@ The forward order: The first dimension (D) is preserved throughout propagation.

@ Reverse mode automatic differentiation (backprop) is faster since we have a scalar output
and a vector input, and it works well on most neural networks.

@ Forward mode automatic differentiation could be faster if we have a scalar input and a
vector output (less memory).

@ Optimal ordering = matrix chain ordering problem. Dynamic programming solution.
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Non-convex optimization

@ Left: convex loss function. Right: non-convex loss function.
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Non-convex optimization: challenges

@ What if we converge to a bad local minimum?
o Rerun with a different initialization

Reference: Chris De Sa's slides (CS6787 Lecture 7).
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Non-convex optimization: challenges

@ What if we converge to a bad local minimum?
o Rerun with a different initialization

@ Hit a saddle point
o Doesn't often happen with SGD

e Second partial derivative test

e Flat region: low gradient magnitude

o Possible solution: use RelLU instead of sigmoid
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Non-convex optimization: challenges

@ What if we converge to a bad local minimum?
o Rerun with a different initialization

@ Hit a saddle point
o Doesn't often happen with SGD

e Second partial derivative test

e Flat region: low gradient magnitude

o Possible solution: use RelLU instead of sigmoid

@ High curvature: large gradient magnitude

o Possible solutions: Gradient clipping, adaptive
step sizes

Reference: Chris De Sa's slides (CS6787 Lecture 7).



Learning rate

@ One of the most important hyperparameter.

@ Start with a higher learning rate then decay towards zero.
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Learning rate

@ One of the most important hyperparameter.
@ Start with a higher learning rate then decay towards zero.

@ Classic theory: convergence guarantee for stochastic gradient descent. Otherwise the

update step has a noise term dominated by the noise of data sample.

@ Other explanation: Loss surface, avoidance of local minima, avoidance of memorization of
noisy samples
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Learning rate

@ One of the most important hyperparameter.
@ Start with a higher learning rate then decay towards zero.

@ Classic theory: convergence guarantee for stochastic gradient descent. Otherwise the
update step has a noise term dominated by the noise of data sample.

@ Other explanation: Loss surface, avoidance of local minima, avoidance of memorization of
noisy samples

@ Learning rate decay (staircase 10x, cosine, etc.), speeds up convergence
|

] O (

+eot h*ﬁ
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Biological Plausibility

@ Backprop is used to train the overwhelming majority of neural nets today.
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Biological Plausibility

@ Backprop is used to train the overwhelming majority of neural nets today.
@ Despite its practical success, backprop is believed to be neurally implausible.

@ No evidence for biological signals analogous to error derivatives.
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Biological Plausibility

@ Backprop is used to train the overwhelming majority of neural nets today.
@ Despite its practical success, backprop is believed to be neurally implausible.
@ No evidence for biological signals analogous to error derivatives.

@ Two main problems with implementing in an asynchronous analog hardware like our brain.
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Biological Plausibility

1) Weight Symmetry & Network Symmetry

@/m

Layer 3 [ Layer 3b }
w, T aw, "/

[ Layer 2 1 ) [ Layer 2b ]
w, | aw, &

[ Layer 1 1 [ Layer 1b }
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Biological Plausibility

1) Weight Symmetry & Network Symmetry

© =

[ Layer 3

W, AW,
[ Layer 2 1

w, | aw,

/
bd
.é:

Layer 3b

Layer 2b

Layer 1b

2) Global Synchronization

ﬁﬂ

Layer 3

W,

AVVZ

Layer 2

er

CSCI-GA 2565

Loss

f\

] e
-,

-,

-,

AW~

Layer 3b }
W,
{ Layer 2b ]
Wy
[ Layer 1b 1
X3 Xy

52 /57



Review

@ Backpropagation is an algorithm for computing the gradient (partial derivatives 4 chain
rule) efficiently.
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Review

@ Backpropagation is an algorithm for computing the gradient (partial derivatives 4 chain
rule) efficiently.

@ It is used in gradient descent optimization for neural networks.
@ Key idea: function composition and the chain rule

@ In practice, we can use existing software packages, e.g. PyTorch (backpropagation, neural
network building blocks, optimization algorithms etc.)
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Applying Neural Networks on Images

@ Neural networks are widely used on images today.

@ Images are challenging to deal with because of its large dimensions.

el
LY 2t ¥ 3 (o >

-

— | Soh

-
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Applying Neural Networks on Images

@ Neural networks are widely used on images today.
@ Images are challenging to deal with because of its large dimensions.
@ Stored the intensity value pixel by pixel.

@ A 28 x 28 image of digit 4:

R 2 2 . " oa L F ] L Q.9 L F . B 'n
o2 A2 A A 2 e oA A2 %2 A e N A °n
08 2 A R R W2 o8 o2 82 2 a2 »n 2A o
o2 A2 A A 2 L F oA S48 %2 2 a1 °a o.
a2 a2 a2 2 WL L F oA 42 %2 a2 a1 aa .
a2 a2 a2 = L L o ca t2 L L F LF aa oa
°2 a2 a2 A L2 a2 A 04 42 a8 A aa aa
a2 a2 w2 2 W8 L o8 04 %8 " o xm 2a oA
ea a2 a2 A 1L W2 08 04 28 a2 Naem 2A aa
2 a2 a2 A a8 “.. 08 04 28 taaAMARA 2a 2a
a2 a2 2 > " s oa ca ta L o B 3 2a 2a
02 a2 2 A 18 W2 08 048 22 saXaxmia 24 22
a2 a2 2 A a8 s 08 048 28 Namaxia 2a 2a
ea 22 - “s s “a a2 08 O A ' aa 2a
a2 22 s 1A A Na A B8 T8 3A 22 ama S Xia A s . 2a e
A 22 2 08 08 X AL FDBINACRAINDE TGS R Sl s ‘E I F I
eA 40 2 & 40 20 W 'R PR PR A FE FR CER L F s MA s A 2 F I
A 20 T . “s A DA AS 2 DA %8 e R F . LR ‘e a
A 2a . . oan B A 28 28 A MLARIABIE a» - e aa &
-» LE J LE J - “» LR “» » » ".h -» " L B AT - LF " " . ' J »
"h fh 2 . . ] A RA SR SRR M . o " A 2
L LR F I N N ] (TR F R R . a» " " "r »
R a2 . AR Ar Ax . A A S8 VAL M2 " A 2R 2r "
2 a2 w2 A F " " L A S8 S8 NNADBEAR Y2 2 " " A A .
*r "2 = L4 L . " . . on o» oA S e L F “-» “"» "a B B  J
2 a2 a2 2 L L " A A 02 A %2 A2 A2 w2 2 L " A L L
a2 a2 a2 2 I8 L F " A A G4 A4 %42 %2 a2 ' W L A 2a L
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Fully connected vs. locally connected

@ So far we apply a layer where all output neurons are connected to all input neurons.
@ In matrix form, z = Wx.

@ This is also called a fully connected layer or a dense layer or a linear layer.
Vo 00 Waden et
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Fully connected vs. locally connected

@ So far we apply a layer where all output neurons are connected to all input neurons.
@ In matrix form, z = Wx.

@ This is also called a fully connected layer or a dense layer or a linear layer.

o F.nmage and 1000 hidden units, the matrix of a single layer will have 40M

parameters!

1000 hidden units

densely connected

DR O
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Fully connected vs. locally connected

@ An alternative strategy is to use local connection.
@ For neuron i, only connects to its neighborhood (e.g. [i+k, i-k])
@ For images, we index neurons with three dimensions i, j, and c.

@ i = vertical index, j = horizontal index, ¢ = channel index.
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Local connection patterns

@ The typical image input layer has 3 channels R G B for
color or 1 channel for grayscale.

location

@ The hiddep_layers may have C channels, at each spatial
i & Chdnnels,
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Local connection patterns

@ The typical image input layer has for

color or 1 channel for grayscale.

@ The hidden layers may have C channels, at each spatial
location (/,/).

@ Now each hidden neuron z; ; - receives inputs from
Xi+k,jtk,

@ k is the “kernel” size - do not confuse with the other
kernel we learned.

* e Krcin s Vi

Y Wiji'—ij'—j.c'c
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Local connection patterns AN
// !/ k\(kh
@ The typical image input layer has 3 channels R G B for ///\tj{
color or 1 channel for grayscale. — :

@ The hidden layers may have C channels, at each spatial
location (/,/). —

\
~
—

@ Now each hidden neuron z; ; - receives inputs from
Xi+k,jtk,

@ k is the “kernel” size - do not confuse with the other
kernel we learned.

® Zijc =) irelitk]jreljtkl.c’ Xilj'c! Wij il —ij—j.c!c

@ The spatial awareness (receptive field) of the
neighborhood grows bigger as we go deeper.




