Bayesian Methods & Multiclass

Mengye Ren

(Slides credit to David Rosenberg, He He, et al.)

NYU

Oct 29, 2024

Slides

- Project proposal due Oct 31 noon.
- Schedule your project consultation soon (they are on the week after the proposal).
- Use the provided template! (if your final report fails to use template then there will be marks off)
- Homework 3 will be released soon and due Nov 12 11:59AM.

- Bayesian modeling adds a prior on the parameters.
- Models the distribution of parameters

- Bayesian modeling adds a prior on the parameters.
- Models the distribution of parameters
- **•** Bayes Rule:

 $p(y|x) = \frac{p(x|y)p(y)}{p(y)}$ *p*(*x*) $p(x|\theta)$ $\frac{1}{2}$

 \bullet

- Bayesian modeling adds a prior on the parameters.
- Models the distribution of parameters
- Bayes Rule:

$$
p(y \mid x) = \frac{p(x \mid y)p(y)}{p(x)}
$$

 $p(\theta | \mathcal{D})$

 \bullet

- Bayesian modeling adds a prior on the parameters.
- Models the distribution of parameters
- Bayes Rule:

$$
p(y \mid x) = \frac{p(x \mid y)p(y)}{p(x)}
$$

$$
p(\theta | \mathcal{D}) = \frac{p(\mathcal{D} | \theta) p(\theta)}{p(\mathcal{D})}.
$$

 \bullet

 \bullet

- Bayesian modeling adds a prior on the parameters.
- Models the distribution of parameters
- **•** Bayes Rule:

$$
p(y \mid x) = \frac{p(x \mid y)p(y)}{p(x)}
$$

 \bullet

 \bullet

- Bayesian modeling adds a prior on the parameters.
- Models the distribution of parameters
- **•** Bayes Rule:

$$
p(y \mid x) = \frac{p(x \mid y)p(y)}{p(x)}
$$

$$
p(\theta | \mathcal{D}) = \frac{p(\mathcal{D} | \theta) p(\theta)}{p(\mathcal{D})}.
$$

• Conjugate prior: Having the same form of distribution as the posterior.
[CSCI-GA 2565](#page-0-0) bution as the posterior.

- \bullet We have the posterior distribution $\theta \mid \mathcal{D}$.
- What if someone asks us to choose a single $\hat{\theta}$ (i.e. a point estimate of θ)?
- \bullet We have the posterior distribution $\theta \mid \mathcal{D}$.
- What if someone asks us to choose a single $\hat{\theta}$ (i.e. a point estimate of θ)?
- **Common options:**
- \bullet We have the posterior distribution $\theta \mid \mathcal{D}$.
- What if someone asks us to choose a single $\hat{\theta}$ (i.e. a point estimate of θ)?
- **Common options:**
	- posterior mean $\hat{\theta} = \mathbb{E}[\theta | \mathcal{D}]$
- \bullet We have the posterior distribution $\theta \mid \mathcal{D}$.
- What if someone asks us to choose a single $\hat{\theta}$ (i.e. a point estimate of θ)?
Common options:
- **Common options:**
	- posterior mean $\hat{\theta} = \mathbb{E}[\theta | \mathcal{D}]$
	- **maximum a posteriori (MAP) estimate** $\hat{\theta} = \arg \max_{\theta} p(\theta | \mathcal{D})$
		- Note: this is the mode of the posterior distribution

male > me

Look at it: display uncertainty estimates to our client

- Look at it: display uncertainty estimates to our client
- Extract a credible set for θ (a Bayesian confidence interval).
	- e.g. Interval [*a*,*b*] is a 95% credible set if

$$
\mathbb{P}\left(\underset{\boldsymbol{\Theta}}{\boldsymbol{\theta}}\in\left[a,b\right]\mid\mathcal{D}\right)\geqslant0.95
$$

- Look at it: display uncertainty estimates to our client
- Extract a credible set for θ (a Bayesian confidence interval).
	- e.g. Interval [*a*,*b*] is a 95% credible set if

 $\mathbb{P}(\theta \in [a, b] | \mathcal{D}) \geq 0.95$

- Select a point estimate using Bayesian decision theory:
	- Choose a loss function.
	- Find action minimizing expected risk w.r.t. posterior

- **o** Ingredients:
	- Parameter space Θ .
	- Prior: Distribution $p(\theta)$ on Θ .
	- Action space (A) choosing one of from posterior.
	- Loss function: $\ell : \mathcal{A} \times \Theta \rightarrow \mathsf{R}$.

- o Ingredients:
	- Parameter space Θ .
	- Prior: Distribution $p(\theta)$ on Θ .
	- Action space A.
	- Loss function: $\ell : \mathcal{A} \times \Theta \rightarrow \mathsf{R}$.
- The posterior risk of an action $a \in \mathcal{A}$ is

$$
\begin{array}{rcl} r(a) & := & \mathbb{E}\left[\ell(\theta, a) \middle| \mathcal{D}\right] \\ & = & \end{array}
$$

- o Ingredients:
	- Parameter space Θ .
	- Prior: Distribution $p(\theta)$ on Θ .
	- Action space A.
	- Loss function: $\ell : \mathcal{A} \times \Theta \rightarrow \mathsf{R}$.
- The posterior risk of an action $a \in \mathcal{A}$ is

$$
r(a) := \mathbb{E}[\ell(\theta, a) | \mathcal{D}]
$$

=
$$
\int \underbrace{\ell(\theta, a) p(\theta | \mathcal{D}) d\dot{\theta}}_{\text{D}} d\dot{\theta}.
$$

- o Ingredients:
	- Parameter space Θ .
	- Prior: Distribution $p(\theta)$ on Θ .
	- Action space A.
	- Loss function: $\ell : \mathcal{A} \times \Theta \rightarrow \mathsf{R}$.
- The posterior risk of an action $a \in \mathcal{A}$ is

$$
r(a) := \mathbb{E} [\ell(\theta, a) | \mathcal{D}]
$$

=
$$
\int \ell(\theta, a) p(\theta | \mathcal{D}) d\theta.
$$

• It's the expected loss under the posterior.

- Ingredients:
	- Parameter space Θ .
	- **Prior**: Distribution $p(\theta)$ on Θ .
	- Action space A .
	- Loss function: $\ell : \mathcal{A} \times \Theta \rightarrow \mathsf{R}$.
- The **posterior risk** of an action $a \in \mathcal{A}$ is

$$
\underline{r(a)} := \mathbb{E} [\ell(\theta, a) | \mathcal{D}]
$$

=
$$
\int \ell(\theta, a) p(\theta | \mathcal{D}) d\theta.
$$

• It's the expected loss under the posterior.

• A Bayes action (a^*) is an action that minimizes posterior risk:

$$
r(a^*) = \min_{a \in \mathcal{A}} r(a)
$$

General Setup:

• Data D generated by $p(y | \theta)$, for unknown $\theta \in \Theta$.

- General Setup: ρ (x10)
	- Data D generated by $p(y | \theta)$, for unknown $\theta \in \Theta$.
	- \bullet We want to produce a **point estimate** for θ .

- General Setup:
	- Data D generated by $p(y | \theta)$, for unknown $\theta \in \Theta$.
	- \bullet We want to produce a **point estimate** for θ .
- Choose:

- General Setup:
	- Data D generated by $p(y | \theta)$, for unknown $\theta \in \Theta$.
	- \bullet We want to produce a point estimate for θ .
- Choose:
	- Prior $p(\theta)$ on $\Theta = R$.

- General Setup:
	- Data D generated by $p(y | \theta)$, for unknown $\theta \in \Theta$.
	- \bullet We want to produce a **point estimate** for θ .
- Choose:
	- Prior $p(\theta)$ on $\Theta = R$.
	- Loss $\ell(\hat{\theta},\theta)$

- **•** General Setup:
	- Data D generated by $p(y | \theta)$, for unknown $\theta \in \Theta$.
	- We want to produce a **point estimate** for θ .
- Choose:
	- Prior $p(\theta)$ on $\Theta = R$.
	- Loss $\ell(\hat{\theta},\theta)$
- Find action $(\hat{\theta})\in \Theta$ that minimizes the **posterior risk:**

$$
r(\hat{\theta}) = \mathbb{E}\left[\ell(\hat{\theta},\theta) | \mathcal{D}\right]
$$

- General Setup:
	- Data D generated by $p(y | \theta)$, for unknown $\theta \in \Theta$.
	- \bullet We want to produce a **point estimate** for θ .
- **•** Choose:
	- Prior $p(\theta)$ on $\Theta = R$.
	- Loss $\ell(\hat{\theta},\theta)$
- Find action $\hat{\theta} \in \Theta$ that minimizes the posterior risk:

$$
r(\hat{\theta}) = \mathbb{E}\left[\ell(\hat{\theta}, \theta) | \mathcal{D}\right]
$$

$$
= \int \ell(\hat{\theta}, \theta) p(\theta | \mathcal{D}) d\theta
$$

\n- Squared Loss:
$$
\ell(\hat{\theta}, \theta) = (\theta - \hat{\theta})^2
$$
 ⇒ posterior mean
\n- Zero-one Loss: $\ell(\theta, \hat{\theta}) = \mathbb{1}[\theta \neq \hat{\theta}]$ ⇒ posterior mode
\n

• Absolute Loss :
$$
l(\hat{\theta}, \theta) = |\theta - \hat{\theta}|
$$
 \Rightarrow posterior median

Optimal decision depends on the loss function and the posterior distribution.

• Squared Loss :
$$
\ell(\hat{\theta}, \theta) = (\theta - \hat{\theta})^2
$$
 \Rightarrow posterior mean

Zero-one Loss: $\ell(\theta,\hat{\theta}) = \mathbb{1}[\theta \neq \hat{\theta}] \Rightarrow$ posterior mode $\frac{d[\theta \neq \theta]}{|\theta - \hat{\theta}|} \Rightarrow$ posterior mode

• Absolute Loss :
$$
l(\hat{\theta}, \theta) = \theta - \hat{\theta}
$$
 ⇒ posterior median

- Optimal decision depends on the loss function and the posterior distribution.
- Example: I have a card drawing from a deck o<mark>f</mark> 2,3,3,4,4,5,5,5,<mark>)</mark> and you guess the value of my card. P

 \Rightarrow posterior mean

- Zero-one Loss: $\ell(\theta, \hat{\theta}) = \mathbb{1}[\theta \neq \hat{\theta}] \Rightarrow$ posterior mode
- Absolute Loss : $\ell(\hat{\theta},\theta) = \left| \right|$ $\overline{}$ $\overline{}$ $\theta-\hat{\theta}$ $\vert\quad\Rightarrow$ posterior median
- Optimal decision depends on the loss function and the posterior distribution.
- Example: I have a card drawing from a deck of 2,3,3,4,4,5,5,5, and you guess the value of my card.
- mean: 3.875; mode: 5; median: 4

 P Θ \Box

distribution

Bayesian Point Estimation: Square Loss

• Find action $\hat{\theta} \in \Theta$ that minimizes posterior risk

$$
r(\hat{\theta}) = \int (\theta - \hat{\theta})^2 p(\theta | \mathcal{D}) d\theta.
$$

Bayesian Point Estimation: Square Loss

• Find action $\hat{\theta} \in \Theta$ that minimizes posterior risk

$$
r(\hat{\theta}) = \int (\theta - \hat{\theta})^2 p(\theta | \mathcal{D}) d\theta.
$$

Differentiate:

$$
\frac{dr(\hat{\theta})}{d\hat{\theta}} = -\int 2\left(\theta - \hat{\theta}\right)p(\theta | \mathcal{D}) d\theta
$$

Bayesian Point Estimation: Square Loss

• Find action $\hat{\theta} \in \Theta$ that minimizes posterior risk

$$
r(\hat{\theta}) = \int (\theta - \hat{\theta})^2 p(\theta | \mathcal{D}) d\theta.
$$

Differentiate:

$$
\frac{dr(\hat{\theta})}{d\hat{\theta}} = -\int 2(\theta - \hat{\theta}) p(\theta | \mathcal{D}) d\theta
$$

$$
= -2 \int \theta p(\theta | \mathcal{D}) d\theta + 2\hat{\theta} \underbrace{\int p(\theta | \mathcal{D}) d\theta}_{=1}
$$
• Find action $\hat{\theta} \in \Theta$ that minimizes posterior risk

$$
r(\hat{\theta}) = \int (\theta - \hat{\theta})^2 p(\theta | \mathcal{D}) d\theta.
$$

Differentiate:

$$
\frac{dr(\hat{\theta})}{d\hat{\theta}} = -\int 2(\theta - \hat{\theta}) p(\theta | \mathcal{D}) d\theta
$$

$$
= -2 \int \theta p(\theta | \mathcal{D}) d\theta + 2\hat{\theta} \underbrace{\int p(\theta | \mathcal{D}) d\theta}_{=1}
$$

$$
= -2 \int \theta p(\theta | \mathcal{D}) d\theta + 2\hat{\theta}
$$

Derivative of posterior risk is

$$
\frac{dr(\hat{\theta})}{d\hat{\theta}} = -2\int \theta p(\theta | \mathcal{D}) d\theta + 2\hat{\theta}.
$$

Derivative of posterior risk is

$$
\frac{dr(\hat{\theta})}{d\hat{\theta}} = -2\int \theta \rho(\theta | \mathcal{D}) d\theta + 2\hat{\theta}.
$$

First order condition $\frac{dr(\hat{\theta})}{d\hat{\theta}} = 0$ gives

$$
\hat{\theta} = \int \theta p(\theta | \mathcal{D}) d\theta
$$

Derivative of posterior risk is

$$
\frac{dr(\hat{\theta})}{d\hat{\theta}} = -2\int \theta \rho(\theta | \mathcal{D}) d\theta + 2\hat{\theta}.
$$

First order condition $\frac{dr(\hat{\theta})}{d\hat{\theta}} = 0$ gives

$$
\hat{\theta} = \int \theta \rho(\theta | \mathcal{D}) d\theta
$$

$$
= \mathbb{E}[\theta | \mathcal{D}]
$$

• Derivative of posterior risk is

$$
\frac{dr(\hat{\theta})}{d\hat{\theta}} = -2\int \theta p(\theta | \mathcal{D}) d\theta + 2\hat{\theta}.
$$

First order condition $\frac{dr(\hat{\theta})}{d\hat{\theta}} = 0$ gives

$$
\hat{\theta} = \int \theta \rho(\theta | \mathcal{D}) d\theta
$$

$$
= \mathbb{E}[\theta | \mathcal{D}]
$$

The Bayes action for square loss is the posterior mean.

[Interim summary](#page-41-0)

- \bullet The prior represents belief about θ before observing data \mathcal{D} .
- \bullet The posterior represents rationally updated beliefs after seeing \mathcal{D} .
- \bullet The prior represents belief about θ before observing data \mathcal{D} .
- \bullet The posterior represents rationally updated beliefs after seeing \mathcal{D} .
- All inferences and action-taking are based on the posterior distribution.
- \bullet The prior represents belief about θ before observing data \mathcal{D} .
- \bullet The posterior represents rationally updated beliefs after seeing \mathcal{D} .
- All inferences and action-taking are based on the posterior distribution.
- In the Bayesian approach,
	- No issue of justifying an estimator.
- \bullet The prior represents belief about θ before observing data \mathcal{D} .
- The posterior represents rationally updated beliefs after seeing D. \bullet
- All inferences and action-taking are based on the posterior distribution.
- In the Bayesian approach,
	- No issue of justifying an estimator.
	- Only choices are
		- family of distributions, indexed by Θ , and
		- prior distribution on Θ
- \bullet The prior represents belief about θ before observing data \mathcal{D} .
- The posterior represents rationally updated beliefs after seeing D. \bullet
- All inferences and action-taking are based on the posterior distribution.
- In the Bayesian approach,
	- No issue of justifying an estimator.
	- Only choices are
		- family of distributions, indexed by Θ , and
		- **•** prior distribution on Θ
	- For decision making, we need a **loss function**.

[Recap: Conditional Probability Models](#page-47-0)

- Input space X
- Outcome space Y
- Action space $A = \{p(y) | p$ is a probability distribution on $\mathcal{Y}\}.$

- Input space X
- Outcome space Y
- Action space $A = \{p(y) | p$ is a probability distribution on $\mathcal{Y}\}$.
- **Hypothesis space** $\mathcal F$ contains prediction functions $f: \mathcal X \to \mathcal A$.
- **Prediction function** $f \in \mathcal{F}$ takes input $x \in \mathcal{X}$ and produces a distribution on \mathcal{Y}

- Input space X
- **Outcome space y**
- Action space $A = \{p(y) | p$ is a probability distribution on $\mathcal{Y}\}.$
- **Hypothesis space** $\mathcal F$ contains prediction functions $f: \mathcal X \to \mathcal A$.
- Prediction function $f \in \mathcal{F}$ takes input $x \in \mathcal{X}$ and produces a distribution on \mathcal{Y}
- A parametric family of conditional densities is a set

$$
\{\rho(y \mid x, \widehat{\theta}) : \theta \in \Theta\},\
$$

- where $p(y \,|\, x,\theta)$ is a density on $\mathbf{outcome}$ space $\mathcal Y$ for each x in $\mathbf{input}\ \mathbf{space}\ \mathcal X,$ and
- \bullet θ is a parameter in a [finite dimensional] parameter space Θ . e spa
|e spa
|] para

- Input space X
- **Outcome space y**
- Action space $A = \{p(y) | p$ is a probability distribution on $\mathcal{Y}\}.$
- **Hypothesis space** $\mathcal F$ contains prediction functions $f: \mathcal X \to \mathcal A$.
- Prediction function $f \in \mathcal{F}$ takes input $x \in \mathcal{X}$ and produces a distribution on \mathcal{Y}
- A parametric family of conditional densities is a set

 $\{p(y | x, \theta) : \theta \in \Theta\}.$

- where $p(y | x, \theta)$ is a density on **outcome space** *y* for each x in **input space** *X*, and
- \bullet θ is a parameter in a [finite dimensional] parameter space Θ .
- This is the common starting point for either classical or Bayesian regression.

 $p(y, x, \theta)$

Classical treatment: Likelihood Function

- Data: $D = (y_1, \ldots, y_n)$
- \bullet The probability density for our data ${\mathcal D}$ is

$$
p(\mathcal{D} | x_1, \ldots, x_n, \theta) = \prod_{i=1}^n p(y_i | x_i, \theta)
$$

Classical treatment: Likelihood Function

- \odot Data: $\mathcal{D} = (y_1, \ldots, y_n)$
- \bullet The probability density for our data $\mathcal D$ is

$$
p(\mathcal{D} | x_1,\ldots,x_n,\theta) = \prod_{i=1}^n p(y_i | x_i,\theta).
$$

• For fixed D, the function $\theta \mapsto p(\mathcal{D} | x, \theta)$ is the likelihood function:

$$
L_{\mathcal{D}}(\theta) = p(\mathcal{D} \mid x, \theta),
$$

where $x = (x_1, ..., x_n)$.

• The maximum likelihood estimator (MLE) for θ in the family $\{p(y | x, \theta) | \theta \in \Theta\}$ is

$$
\hat{\theta}_{MLE} = \underbrace{\text{arg}\max}_{\theta \in \Theta} L_{\mathcal{D}}(\theta).
$$
\nset the less to be the next

MLE corresponds to ERM, if we set the loss to be the negative log-likelihood.

• The maximum likelihood estimator (MLE) for θ in the family $\{p(y | x, \theta) | \theta \in \Theta\}$ is

$$
\hat{\theta}_{MLE} = \underset{\theta \in \Theta}{\arg \max} L_{\mathcal{D}}(\theta).
$$

- MLE corresponds to ERM, if we set the loss to be the negative log-likelihood.
- The corresponding prediction function is

$$
\underbrace{\hat{f}(\hat{f})}_{I} \times \underbrace{= p(y \mid x, \hat{\theta}_{MLE})}_{I}
$$

[Bayesian Conditional Probability Models](#page-56-0)

• Input space $X = R^d$ Outcome space $Y = R$

- Input space $X = R^d$ Outcome space $Y = R$
- The Bayesian conditional model has two components:
	- A parametric family of conditional densities:

 $\{p(y | x, \theta) : \theta \in \Theta\}$

- Input space $X = R^d$ Outcome space $Y = R$
- The Bayesian conditional model has two components:
	- A parametric family of conditional densities:

 $\{p(y | x, \theta) : \theta \in \Theta\}$

• A prior distribution $p(\theta)$ on $\theta \in \Theta$.

• The prior distribution $p(\theta)$ represents our beliefs about θ before seeing \mathcal{D} .

- The prior distribution $p(\theta)$ represents our beliefs about θ before seeing \mathcal{D} .
- \bullet The posterior distribution for θ is

 $p(\theta | \mathcal{D}, x)$

- **•** The prior distribution $p(\theta)$ represents our beliefs about θ before seeing \mathcal{D} .
- The posterior distribution for θ is

 $p(\theta | \mathcal{D}, x) \propto p(\mathcal{D} | \theta, x)p(\theta)$

- The prior distribution $p(\theta)$ represents our beliefs about θ before seeing \mathcal{D} .
- \bullet The posterior distribution for θ is

$$
p(\theta | \mathcal{D}, x) \propto p(\mathcal{D} | \theta, x) p(\theta)
$$

=
$$
\underbrace{L_{\mathcal{D}}(\theta)}_{\text{likelihood prior}}
$$

- **•** The prior distribution $p(\theta)$ represents our beliefs about θ before seeing \mathcal{D} .
- The posterior distribution for θ is

$$
p(\theta | \mathcal{D}, x) \propto p(\mathcal{D} | \theta, x) p(\theta)
$$

=
$$
\underbrace{L_{\mathcal{D}}(\theta)}_{\text{likelihood prior}}
$$

 \bullet Posterior represents the rationally updated beliefs after seeing \mathcal{D} .

- **•** The prior distribution $p(\theta)$ represents our beliefs about θ before seeing \mathcal{D} .
- \bullet The posterior distribution for θ is

$$
p(\theta | \mathcal{D}, x) \propto p(\mathcal{D} | \theta, x) p(\theta)
$$

=
$$
\underbrace{L_{\mathcal{D}}(\theta)}_{\text{likelihood prior}}
$$

- \bullet Posterior represents the rationally updated beliefs after seeing \mathcal{D} .
- \bullet Each θ corresponds to a prediction function,
	- i.e. the conditional distribution function $p(y | x, \theta)$.

• What if we want point estimates of θ ?

- What if we want point estimates of θ ?
- We can use Bayesian decision theory to derive point estimates.
- What if we want point estimates of θ ?
- We can use Bayesian decision theory to derive point estimates.
- We may want to use
	- $\hat{\theta} = \mathbb{E}[\theta | \mathcal{D}, x]$ (the posterior mean estimate)
	- $\hat{\theta} = \text{median}[\theta | \mathcal{D}, x]$
	- $\hat{\theta}$ = arg max $_{\theta \in \Theta}$ *p*($\theta \mid \mathcal{D}, x$) (the MAP estimate)
- o depending on our loss function.

Back to the basic question - Bayesian Prediction Function

• Find a function takes input $x \in \mathcal{X}$ and produces a distribution on \mathcal{Y}

Back to the basic question - Bayesian Prediction Function

- \bullet Find a function takes input $x \in \mathcal{X}$ and produces a distribution on \mathcal{Y}
- \bullet In the frequentist approach:
	- Choose family of conditional probability densities (hypothesis space).
	- Select one conditional probability from family, e.g. using MLE.

Back to the basic question - Bayesian Prediction Function

- \bullet Find a function takes input $x \in \mathcal{X}$ and produces a distribution on \mathcal{Y}
- In the frequentist approach:
	- Choose family of conditional probability densities (hypothesis space).
	- Select one conditional probability from family, e.g. using MLE.
- In the Bayesian setting:
Back to the basic question - Bayesian Prediction Function

- Find a function takes input $x \in \mathcal{X}$ and produces a distribution on \mathcal{Y}
- In the frequentist approach:
	- Choose family of conditional probability densities (hypothesis space).
	- Select one conditional probability from family, e.g. using MLE.
- In the Bayesian setting:
	- We choose a parametric family of conditional densities

 $\{p(y | x, \theta) : \theta \in \Theta\},\$

• and a prior distribution $p(\theta)$ on this set.

Back to the basic question - Bayesian Prediction Function

- Find a function takes input $x \in \mathcal{X}$ and produces a **distribution** on \mathcal{Y}
- o In the frequentist approach:
	- Choose family of conditional probability densities (hypothesis space).
	- Select one conditional probability from family, e.g. using MLE.
- In the Bayesian setting:
	- We choose a parametric family of conditional densities

 $\{p(y | x, \theta) : \theta \in \Theta\},\$

- and a prior distribution $p(\theta)$ on this set.
- and a prior distribution $p(\theta)$ on this set.
Having set our Bayesian model, how do we predict a distribution on *y* for input *x*?
- We don't need to make a discrete selection from the hypothesis space: we maintain uncertainty.

• Suppose we have not yet observed any data.

- Suppose we have not yet observed any data.
- In the Bayesian setting, we can still produce a prediction function.
- Suppose we have not yet observed any data.
- In the Bayesian setting, we can still produce a prediction function.
- The prior predictive distribution is given by

$$
x\mapsto p(y\mid x)
$$

- Suppose we have not yet observed any data.
- In the Bayesian setting, we can still produce a prediction function.
- The prior predictive distribution is given by

$$
x \mapsto p(y | x) = \int p(y | x; \theta) p(\theta) d\theta.
$$

- Suppose we have not yet observed any data.
- In the Bayesian setting, we can still produce a prediction function.
- The prior predictive distribution is given by

$$
x \mapsto p(y \mid x) = \int p(y \mid x; \theta) p(\theta) d\theta.
$$

This is an average of all conditional densities in our family, weighted by the prior.

• Suppose we've already seen data D.

- \bullet Suppose we've already seen data \mathcal{D} .
- The posterior predictive distribution is given by

 $x \mapsto p(y | x, D)$

The Posterior Predictive Distribution

- \bullet Suppose we've already seen data \mathcal{D} .
- The posterior predictive distribution is given by

$$
x \mapsto p(y \mid x, \mathcal{D}) = \int p(y \mid x; \theta) p(\theta \mid \mathcal{D}) d\theta.
$$

 $e^{\frac{1}{2}$

 \mathcal{N} or

- \bullet Suppose we've already seen data \mathcal{D} .
- The posterior predictive distribution is given by

$$
x \mapsto p(y | x, \mathcal{D}) = \int p(y | x; \theta) p(\theta | \mathcal{D}) d\theta.
$$

This is an average of all conditional densities in our family, weighted by the posterior.

- \bullet In Bayesian statistics we have two distributions on Θ :
	- the prior distribution $p(\theta)$
	- the posterior distribution $p(\theta | \mathcal{D})$.

- \bullet In Bayesian statistics we have two distributions on Θ :
	- the prior distribution $p(\theta)$
	- the posterior distribution $p(\theta | \mathcal{D})$.
- These distributions over parameters correspond to distributions on the hypothesis space:

 $\{p(y | x, \theta) : \theta \in \Theta\}.$

- \bullet In Bayesian statistics we have two distributions on Θ :
	- the prior distribution $p(\theta)$
	- the posterior distribution $p(\theta | \mathcal{D})$.
- These distributions over parameters correspond to distributions on the hypothesis space:

 $\{p(y | x, \theta) : \theta \in \Theta\}.$ In the frequentist approach, we choose $\widehat{\theta} \in \Theta$, and predict distribution of functions \bigcirc

$$
p(y | x, \hat{\theta}(\mathcal{D})) \longrightarrow \text{Sing} \left\{ \text{Rn c} \text{tion} \right\}
$$

- \bullet In Bayesian statistics we have two distributions on Θ :
	- the prior distribution $p(\theta)$
	- the posterior distribution $p(\theta | \mathcal{D})$.
- These distributions over parameters correspond to distributions on the hypothesis space:

 $\{p(y | x, \theta) : \theta \in \Theta\}.$

• In the frequentist approach, we choose $\hat{\theta} \in \Theta$, and predict

 $p(y | x, \hat{\theta}(\mathcal{D})).$

• In the Bayesian approach, we integrate out over Θ w.r.t. $p(\theta | \mathcal{D})$ and predict with

$$
p(y | x, D) = \int p(y | x; \theta) p(\theta | D) d\theta
$$

- \bullet Once we have a predictive distribution $p(y | x, D)$,
	- we can easily generate single point predictions.

- \bullet Once we have a predictive distribution $p(y | x, D)$,
	- we can easily generate single point predictions.
- $\bullet x \mapsto \mathbb{E}[y \mid x, \mathcal{D}]$, to minimize expected square error.

- \bullet Once we have a predictive distribution $p(y | x, D)$,
	- we can easily generate single point predictions.
- $x \mapsto \mathbb{E}[y \mid x, \mathcal{D}]$, to minimize expected square error.
- $\bullet x \mapsto \text{median}[y | x, \mathcal{D}]$, to minimize expected absolute error

- \bullet Once we have a predictive distribution $p(y | x, D)$,
	- we can easily generate single point predictions.
- $\bullet x \mapsto \mathbb{E}[y \mid x, \mathcal{D}]$, to minimize expected square error.
- $\bullet x \mapsto \text{median}[y | x, \mathcal{D}]$, to minimize expected absolute error
- $x \mapsto \argmax_{y \in \mathcal{Y}} p(y | x, \mathcal{D})$, to minimize expected 0/1 loss

- \bullet Once we have a predictive distribution $p(y | x, D)$,
	- we can easily generate single point predictions.
- $\bullet x \mapsto \mathbb{E}[y \mid x, \mathcal{D}]$, to minimize expected square error.
- $\bullet x \mapsto \text{median}[y | x, \mathcal{D}]$, to minimize expected absolute error
- $x \mapsto \argmax_{y \in \mathcal{Y}} p(y | x, \mathcal{D})$, to minimize expected 0/1 loss
- Each of these can be derived from $p(y | x, D)$.

[Gaussian Regression Example](#page-92-0)

- Input space $\mathcal{X} = [-1,1]$ Output space $\mathcal{Y} = R$
- Given *x*, the world generates *y* as

$$
y = \underline{w_0} + \underline{w_1x} + \underline{\varepsilon}
$$

where $\varepsilon \sim \mathcal{N}(0, 0.2^2)$.

- Input space $\mathcal{X} = [-1,1]$ Output space $\mathcal{Y} = \mathsf{R}$
- Given *x*, the world generates *y* as

$$
y = w_0 + w_1 x + \varepsilon,
$$

where $\varepsilon \sim \mathcal{N}(0, 0.2^2)$.

Written another way, the conditional probability model is

$$
y | x, w_0, w_1 \sim \mathcal{N}((w_0 + w_1 x), 0.2^2).
$$

What's the parameter space?

- Input space $\mathcal{X} = [-1,1]$ Output space $\mathcal{Y} = \mathsf{R}$
- Given *x*, the world generates *y* as

$$
y = w_0 + w_1 x + \varepsilon,
$$

where $\varepsilon \sim \mathcal{N}(0, 0.2^2)$.

Written another way, the conditional probability model is

$$
y | x, w_0, w_1 \sim \mathcal{N}(w_0 + w_1 x, 0.2^2)
$$
.

• What's the parameter space? R^2 .

- Input space $X = [-1,1]$ Output space $Y = R$
- Given *x*, the world generates *y* as

$$
y = w_0 + w_1 x + \varepsilon,
$$

where $\varepsilon \sim \mathcal{N}(0, 0.2^2)$.

Written another way, the conditional probability model is

$$
y | x, w_0, w_1 \sim \mathcal{N}(w_0 + w_1 x, 0.2^2)
$$
.

- What's the parameter space? R^2 .
- Prior distribution: $w = (w_0, w_1) \sim \mathcal{N}\left(\rho, \frac{1}{2}l\right)$

Example in 1-Dimension: Prior Situation

Prior distribution: $w = (w_0, w_1) \sim N(0, \frac{1}{2}I)$ (Illustrated on left)

On right, $y(x) = \mathbb{E}[y \mid x, w] = w_0 + w_1x$, for randomly chosen $w \sim p(w) = \mathcal{N}\left(0, \frac{1}{2}l\right)$.

Bishop's PRML Fig 3.7

Example in 1-Dimension: 1 Observation

- On left: posterior distribution; white cross indicates true parameters
- o On right:
	- blue circle indicates the training observation
	- red lines, $y(x) = \mathbb{E}[y | x, w] = w_0 + w_1x$, for randomly chosen $w \sim p(w|\mathcal{D})$ (posterior)

Example in 1-Dimension: 2 and 20 Observations

Bishop's PRML Fig 3.7

[Gaussian Regression: Closed form](#page-100-0)

Model:

$$
w \quad \sim \quad \mathcal{N}(0,\Sigma_0)
$$

Model:

$$
w \sim \mathcal{N}(0, \Sigma_0)
$$

$$
y_i | x, w \quad \text{i.i.d.} \quad \mathcal{N}(w^T x_i, \sigma^2)
$$

Model:

$$
w \sim \mathcal{N}(0, \Sigma_0)
$$
\n9. Design matrix (X) Response column vector y

\n9. Posterior distribution is a Gaussian distribution:

$$
w \mid \mathcal{D} \quad \sim
$$

Model:

$$
w \sim \mathcal{N}(0, \Sigma_0)
$$

 $y_i | x, w$ i.i.d. $\mathcal{N}(w^T x_i, \sigma^2)$

- Design matrix *X* Response column vector *y*
- Posterior distribution is a Gaussian distribution:

$$
w | \mathcal{D} \sim \mathcal{N}(\mu_P, \Sigma_P)
$$
\n
$$
\frac{\mu_P}{\Sigma_P} = \frac{(\chi^T X + \sigma^2 \Sigma_0^{-1})^{-1} \chi^T y}{(\sigma^2 X^T X + \Sigma_0^{-1})^{-1}}
$$
\n
$$
\frac{\Sigma_P}{\Sigma_P} = \frac{(\sigma^2 X^T X + \Sigma_0^{-1})^{-1}}{\sigma^2}
$$

 $\left(\underline{x}^{\dagger}x\right)^{-1}x^{\dagger}y$

Model:

$$
w \sim \mathcal{N}(0, \Sigma_0)
$$

$$
y_i | x, w \quad \text{i.i.d.} \quad \mathcal{N}(w^T x_i, \sigma^2)
$$

- Design matrix *X* Response column vector *y*
- Posterior distribution is a Gaussian distribution:

$$
w | \mathcal{D} \sim \mathcal{N}(\mu_P, \Sigma_P)
$$

\n
$$
\mu_P = (X^T X + \sigma^2 \Sigma_0^{-1})^{-1} X^T y
$$

\n
$$
\Sigma_P = (\sigma^{-2} X^T X + \Sigma_0^{-1})^{-1}
$$

• Posterior Variance Σ_P gives us a natural uncertainty measure.

Posterior distribution is a Gaussian distribution:

Posterior distribution is a Gaussian distribution:

$$
w | \mathcal{D} \sim \mathcal{N}(\mu_P, \Sigma_P)
$$

\n
$$
\mu_P = \left(X^T X + \sigma^2 \Sigma_0^{-1} \right)^{-1} X^T y
$$

\n
$$
\Sigma_P = \left(\sigma^{-2} X^T X + \Sigma_0^{-1} \right)^{-1}
$$

Posterior distribution is a Gaussian distribution:

$$
w | \mathcal{D} \sim \mathcal{N}(\mu_P, \Sigma_P)
$$

\n
$$
\mu_P = \left(X^T X + \sigma^2 \Sigma_0^{-1} \right)^{-1} X^T y
$$

\n
$$
\Sigma_P = \left(\sigma^{-2} X^T X + \Sigma_0^{-1} \right)^{-1}
$$

o If we want point estimates of w, MAP estimator and the posterior mean are given by

Posterior distribution is a Gaussian distribution:

$$
w | \mathcal{D} \sim \mathcal{N}(\mu_P, \Sigma_P)
$$

\n
$$
\mu_P = (X^T X + \sigma^2 \Sigma_0^{-1})^{-1} X^T y
$$

\n
$$
\Sigma_P = (\sigma^{-2} X^T X + \Sigma_0^{-1})^{-1}
$$

o If we want point estimates of w, MAP estimator and the posterior mean are given by

$$
\hat{w} = \mu_P = \left(X^T X + \sigma^2 \Sigma_0^{-1}\right)^{-1} X^T y
$$

Posterior distribution is a Gaussian distribution:

$$
w | \mathcal{D} \sim \mathcal{N}(\mu_P, \Sigma_P)
$$

\n
$$
\mu_P = (X^T X + \sigma^2 \Sigma_0^{-1})^{-1} X^T y
$$

\n
$$
\Sigma_P = (\sigma^{-2} X^T X + \Sigma_0^{-1})^{-1}
$$

• If we want point estimates of w, MAP estimator and the posterior mean are given by

$$
\hat{w} = \mu_P = \left(X^T X + \sigma^2 \Sigma_0^{-1}\right)^{-1} X^T y
$$

For the prior variance $\Sigma_0 = \frac{\sigma^2}{\lambda} I$, we get $\hat{w} = \mu_P = \left(X^T X + \lambda I \right)^{-1} X^T y,$ ridge régression.

Posterior distribution is a Gaussian distribution:

$$
w | \mathcal{D} \sim \mathcal{N}(\mu_P, \Sigma_P)
$$

\n
$$
\mu_P = (X^T X + \sigma^2 \Sigma_0^{-1})^{-1} X^T y
$$

\n
$$
\Sigma_P = (\sigma^{-2} X^T X + \Sigma_0^{-1})^{-1}
$$

• If we want point estimates of w, MAP estimator and the posterior mean are given by

$$
\hat{w} = \mu_P = \left(X^T X + \sigma^2 \Sigma_0^{-1} \right)^{-1} X^T y
$$

For the prior variance $\Sigma_0 = \frac{\sigma^2}{\lambda} I$, we get

$$
\hat{w} = \mu_P = \left(X^T X + \lambda I \right)^{-1} X^T y,
$$

which is of course the ridge regression solution.

The Posterior density on w for $\Sigma_0 = \frac{\sigma^2}{\lambda} I$:

The Posterior density on w for $\Sigma_0 = \frac{\sigma^2}{\lambda} I$:

• To find the MAP, we minimize the negative log posterior:

$$
\hat{w}_{MAP} = \mathop{\arg\min}_{w \in R^d} \left[-\log p(w \mid \mathcal{D}) \right]
$$

The Posterior density on w for $\Sigma_0 = \frac{\sigma^2}{\lambda} I$:

• To find the MAP, we minimize the negative log posterior:

$$
\hat{w}_{MAP} = \underset{w \in \mathbb{R}^d}{\arg \min} \left[-\log p(w | \mathcal{D}) \right]
$$
\n
$$
= \underset{w \in \mathbb{R}^d}{\arg \min} \underbrace{\sum_{i=1}^n (y_i - w^T x_i)^2 + \sqrt{\frac{1}{\log w}} \|w\|^2}_{\text{log-prior}}
$$

The Posterior density on w for $\Sigma_0 = \frac{\sigma^2}{\lambda} I$:

• To find the MAP, we minimize the negative log posterior:

$$
\hat{w}_{MAP} = \underset{w \in \mathbb{R}^d}{\arg \min} \left[-\log p(w | \mathcal{D}) \right]
$$
\n
$$
= \underset{w \in \mathbb{R}^d}{\arg \min} \sum_{i=1}^n (y_i - w^T x_i)^2 + \lambda ||w||^2
$$
\n
$$
\underset{log-likelihood}{\arg \min} \sum_{i=1}^n (y_i - w^T x_i)^2 + \lambda ||w||^2
$$

Which is the ridge regression objective.

Given a new input point x_{new} , how do we predict y_{new} ?

- Given a new input point x_{new} , how do we predict y_{new} ?
- **Predictive distribution**

 $p(y_{new} | x_{new}, \mathcal{D}) =$

- Given a new input point x_{new} , how do we predict y_{new} ?
- **Predictive distribution**

$$
p(y_{\text{new}} \mid x_{\text{new}}, \mathcal{D}) = \int p(y_{\text{new}} \mid x_{\text{new}}, w, \mathcal{D}) p(w \mid \mathcal{D}) dw
$$

- Given a new input point x_{new} , how do we predict y_{new} ?
- **Predictive distribution**

$$
p(y_{\text{new}} | x_{\text{new}}, \mathcal{D}) = \int p(y_{\text{new}} | x_{\text{new}}, w, \mathcal{D}) p(w | \mathcal{D}) dw
$$

$$
= \int p(y_{\text{new}} | x_{\text{new}}, w) p(w | \mathcal{D}) dw
$$

- Given a new input point x_{new} , how do we predict y_{new} ?
- **Predictive distribution**

$$
p(y_{\text{new}} | x_{\text{new}}, \mathcal{D}) = \int p(y_{\text{new}} | x_{\text{new}}, w, \mathcal{D}) p(w | \mathcal{D}) dw
$$

$$
= \int p(y_{\text{new}} | x_{\text{new}}, w) p(w | \mathcal{D}) dw
$$

For Gaussian regression, predictive distribution has closed form.

Model:

$$
w \sim \mathcal{N}(0,\Sigma_0)
$$

Model:

$$
w \sim \mathcal{N}(0, \Sigma_0)
$$

$$
y_i | x, w \quad \text{i.i.d.} \quad \mathcal{N}(w^T x_i, \sigma^2)
$$

Model:

$$
w \sim \mathcal{N}(0, \Sigma_0)
$$

$$
y_i | x, w \quad \text{i.i.d.} \quad \mathcal{N}(w^T x_i, \sigma^2)
$$

• Predictive Distribution

$$
p(y_{\text{new}} \mid x_{\text{new}}, \mathcal{D}) = \int p(y_{\text{new}} \mid x_{\text{new}}, w) p(w \mid \mathcal{D}) dw.
$$

Averages over prediction for each *w*, weighted by posterior distribution.

Model:

$$
w \sim \mathcal{N}(0, \Sigma_0)
$$

$$
y_i | x, w \quad \text{i.i.d.} \quad \mathcal{N}(w^T x_i, \sigma^2)
$$

• Predictive Distribution

$$
p(y_{\text{new}} \mid x_{\text{new}}, \mathcal{D}) = \int p(y_{\text{new}} \mid x_{\text{new}}, w) p(w \mid \mathcal{D}) dw.
$$

Averages over prediction for each *w*, weighted by posterior distribution. • Closed form:

$$
y_{\text{new}} \mid x_{\text{new}}, \mathcal{D} \quad \sim \quad \mathcal{N}\left(\eta_{\text{new}} \text{, } \sigma_{\text{new}}^2\right)
$$

Model:

$$
w \sim \mathcal{N}(0, \Sigma_0)
$$

$$
y_i | x, w \quad \text{i.i.d.} \quad \mathcal{N}(w^T x_i, \sigma^2)
$$

• Predictive Distribution

$$
p(y_{\text{new}} \mid x_{\text{new}}, \mathcal{D}) = \int p(y_{\text{new}} \mid x_{\text{new}}, w) p(w \mid \mathcal{D}) dw.
$$

Averages over prediction for each *w*, weighted by posterior distribution.

• Closed form:

$$
\frac{y_{new} | x_{new}, \mathcal{D}}{\eta_{new}} = \frac{\mathcal{N}(\eta_{new}) \sigma_{new}^2}{\mu_P^T x_{new}}
$$
 pattern

Model:

$$
w \sim \mathcal{N}(0, \Sigma_0)
$$

$$
y_i | x, w \quad \text{i.i.d.} \quad \underbrace{\mathcal{N}(w_i^T x_i, \sigma^2)}_{\sim}
$$

• Predictive Distribution

$$
p(y_{\text{new}} \mid x_{\text{new}}, \mathcal{D}) = \int p(y_{\text{new}} \mid x_{\text{new}}, w) p(w \mid \mathcal{D}) dw.
$$

Averages over prediction for each *w*, weighted by posterior distribution. Closed form:

$$
y_{\text{new}} | x_{\text{new}}, \mathcal{D} \sim \mathcal{N} \left(\eta_{\text{new}}, \sigma_{\text{new}}^2 \right)
$$

\n
$$
\eta_{\text{new}} = \mu_P^T x_{\text{new}}
$$

\n
$$
\sigma_{\text{new}}^2 = \frac{x_{\text{new}}^T \Sigma_P x_{\text{new}}}{\text{from variance in } w} + \sqrt{\sigma^2}
$$

\n
$$
\sigma_{\text{new}}^2 = \frac{x_{\text{new}}^T \Sigma_P x_{\text{new}}}{\text{from variance in } w} + \sqrt{\frac{\sigma^2}{\text{inherent variance in } y}}
$$

\n
$$
\sigma_{\text{new}}^2 = \frac{x_{\text{new}}^T \Sigma_P x_{\text{new}}}{\text{inherent variance in } y} + \sqrt{\frac{\sigma^2}{\sigma^2}}
$$

\n
$$
\sigma_{\text{new}}^2 = \frac{x_{\text{new}}^T \Sigma_P x_{\text{new}}}{\sigma^2}
$$

Bayesian Regression Provides Uncertainty Estimates

With predictive distributions, we can give mean prediction with error bands:

Rasmussen and Williams' *Gaussian Processes for Machine Learning*, Fig.2.1(b)

[Multi-class Overview](#page-129-0)

So far, most algorithms we've learned are designed for binary classification.

- So far, most algorithms we've learned are designed for binary classification.
- Many real-world problems have more than two classes.
- So far, most algorithms we've learned are designed for binary classification.
- Many real-world problems have more than two classes.
- What are some potential issues when we have a large number of classes?
- How to *reduce* multiclass classification to binary classification?
	- We can think of binary classifier or linear regression as a black box. Naive ways:
	- E.g. multiple binary classifiers produce a binary code for each class (000, 001, 010)
	- E.g. a linear regression produces a numerical value for each class (1.0, 2.0, 3.0)
- How to *reduce* multiclass classification to binary classification?
	- We can think of binary classifier or linear regression as a black box. Naive ways:
	- E.g. multiple binary classifiers produce a binary code for each class (000, 001, 010)
	- E.g. a linear regression produces a numerical value for each class $(1.0, (2.0, 8.0))$
- How do we *generalize* binary classification algorithm to the multiclass setting?

We also need to think about the loss function.

How to *reduce* multiclass classification to binary classification?

- We can think of binary classifier or linear regression as a black box. Naive ways:
- E.g. multiple binary classifiers produce a binary code for each class (000, 001, 010)
- E.g. a linear regression produces a numerical value for each class (1.0, 2.0, 3.0)
- How do we *generalize* binary classification algorithm to the multiclass setting?
	- We also need to think about the loss function.
- Example of very large output space: structured prediction.
	- Multi-class: Mutually exclusive class structure.
	- Text: Temporal relational structure.

[Reduction to Binary Classification](#page-136-0)

One-vs-All / One-vs-Rest

- Setting \bullet Input space: $\mathfrak X$
	- Output space: $\mathcal{Y} = \{1, \ldots, k\}$

One-vs-All / One-vs-Rest

- Setting \bullet Input space: $\mathcal X$
	- Output space: $\mathcal{Y} = \{1, \ldots, k\}$

Training \bullet Train *k* binary classifiers, one for each class: $h_1, \ldots, h_k : \mathcal{X} \to \mathsf{R}$. • Classifier h_i distinguishes class $i \nless j+1$) from the rest (-1).

$$
\begin{cases}\n1 & v s 2.3 & \frac{0.9}{0.9} = 0 \\
2 & v s 1.3 & 0.5 \\
3 & v s 1.2 & 0.1\n\end{cases}
$$

- Setting \bullet Input space: $\mathcal X$
	- Output space: $\mathcal{Y} = \{1, \ldots, k\}$

- Training \bullet Train *k* binary classifiers, one for each class: $h_1, \ldots, h_k : \mathcal{X} \to \mathsf{R}$. Classifier *h_i* distinguishes class *i* (+1) from the rest (-1).
-
- Prediction Majority vote:

$$
h(x) = \underset{i \in \{1, \ldots, k\}}{\arg \max} h_i(x)
$$

• Ties can be broken arbitrarily.

OvA: 3-class example (linear classifier)

Consider a dataset with three classes:

OvA: 3-class example (linear classifier)

Consider a dataset with three classes:

Train OvA classifiers:

OvA: 3-class example (linear classifier)

Consider a dataset with three classes:

Assumption: each class is linearly separable from the rest. Ideal case: only target class has positive score.

Train OvA classifiers:

OvA: 4-class non linearly separable example

Consider a dataset with four classes:

Train OvA classifiers:

OvA: 4-class non linearly separable example

Consider a dataset with four classes:

Cannot separate red points from the rest. Which classes might have low accuracy?

All vs All / One vs One / All pairs

Setting \bullet Input space: $\mathfrak X$

 \bullet Output space: $\mathcal{Y} = \{1, \ldots, k\}$

All vs All / One vs One / All pairs

- Setting \bullet Input space: $\mathfrak X$
	- Output space: $\mathcal{Y} = \{1, \ldots, k\}$

- Training Train (2)) binary classifiers, one for each pair: $h_{ij}: \mathcal{X} \to \mathsf{R}$ $\begin{array}{l} \text{Train}\left(\binom{\kappa}{2}\right) \text{binary classifiers, or} \ \text{for } i \in [1,k] \text{ and } j \in [i+1,k]. \end{array}$
	- Classifier *hij* distinguishes class *i* (+1) from class *j* (-1). o

All vs All / One vs One / All pairs

- Setting \bullet Input space: $\mathfrak X$
	- Output space: $\mathcal{Y} = \{1, \ldots, k\}$

- Training Train (2) binary classifiers, one for each pair: $h_{ij}: \mathcal{X} \to \mathsf{R}$ for $i \in [1, k]$ and $j \in [i + 1, k]$.
	- Classifier *hij* distinguishes class *i* (+1) from class *j* (-1).
- Prediction Majority vote (each class gets $k-1$ votes)

$$
h(x) = \underset{i \in \{1, \ldots, k\}}{\arg \max} \sum_{j \neq i} \underbrace{\left(h_{ij}(x) \mathbb{I}\{i < j\} - \underbrace{\left(h_{ji}(x) \mathbb{I}\{j < i\}}_{\text{class } i \text{ is } -1}\right)}_{\text{class } i \text{ is } -1}
$$

• Tournament

• Ties can be broken arbitrarily.

AvA: four-class example

Consider a dataset with four classes:

What's the decision region for the red class?

AvA: four-class example

Consider a dataset with four classes:

Assumption: each pair of classes are linearly separable. More expressive than OvA.

What's the decision region for the red class?

 $\begin{array}{c} \bullet \\ \bullet \\ \bullet \end{array}$

OvA vs AvA

OvA vs AvA

challenges

Lack theoretical justification but simple to implement and works well in practice (when $#$ classes is small).

Reduction-based approaches:

- Reducing multiclass classification to binary classification: OvA, AvA
- o Key is to design "natural" binary classification problems without large computation cost.

Reduction-based approaches:

- Reducing multiclass classification to binary classification: OvA, AvA
- Key is to design "natural" binary classification problems without large computation cost.

But,

- \bullet Unclear how to generalize to extremely large $\#$ of classes.
- ImageNet: $>$ 20k labels; Wikipedia: $>$ 1M categories.

Next, generalize previous algorithms to multiclass settings.

[Multiclass Loss](#page-155-0)

Binary Logistic Regression

Given an input x, we would like to output a classification between $(0,1)$.

$$
f(x) = sigmoid(z) = \frac{1}{1 + \exp(-z)} = \frac{1}{1 + \exp(-w^{\top}x - b)}.
$$

 (1)

Binary Logistic Regression

Given an input x, we would like to output a classification between $(0,1)$.

$$
f(x) = sigmoid(z) = \frac{1}{1 + exp(-z)} = \frac{1}{1 + exp(-wTx - b)}
$$
(1)
Class is represented in $\sqrt{1 - f(x)}$. $\sqrt{G(s, 0)}$

• The other class is represented in $1 - f(x)$:

$$
1 - f(x) = \frac{\exp(-w^{\top}x - b)}{1 + \exp(-w^{\top}x - b)} = \frac{1}{1 + \exp(w^{\top}x + b)} = \frac{\text{sigmoid}(-z)}{\text{sigmoid}(-z)}
$$
(2)

$$
\int i g \mu_{\theta} i d(-z) = -\int \int i g \mu_{\theta} i d(2)
$$

Binary Logistic Regression

Given an input x, we would like to output a classification between $(0,1)$.

$$
f(x) = sigmoid(z) = \frac{1}{1 + exp(-z)} = \frac{1}{1 + exp(-wT x - b)}.
$$
 (1)

• The other class is represented in $1-f(x)$:

$$
1 - f(x) = \frac{\exp(-w^{\top}x - b)}{1 + \exp(-w^{\top}x - b)} = \frac{1}{1 + \exp(w^{\top}x + b)} = sigmoid(-z).
$$
 (2)

• Another way to view: one class has $(+w, +b)$ and the other class has $(-w, -b)$.

Multi-class Logistic Regression • Now what if we have one (w_c) for each class c ? Binary case $class:$ $t\omega_0$ tb $\n *Class* : -\omega, -\frac{1}{2}$ $Multi - Class.$ $class i : W_i$, bi.

Multi-class Logistic Regression

- Now what if we have one *w^c* for each class *c*?
- Also called "softmax" in neural networks.

- Now what if we have one *w^c* for each class *c*?
- Also called "softmax" in neural networks.
- Loss function:
- Now what if we have one *w^c* for each class *c*?
- Also called "softmax" in neural networks.
- Loss function: log softnax cy
- Gradient: $\frac{\partial L}{\partial z} = f y$. Recall: MSE loss. φ

Comparison to OvA

- Base Hypothesis Space: $\mathcal{H} = \{h : \mathcal{X} \to \mathsf{R}\}\$ (score functions).
- Multiclass Hypothesis Space (for *k* classes):

$$
\mathcal{F} = \left\{ x \mapsto \argmax_{i} h_i(x) \mid h_1, \dots, h_k \in \mathcal{H} \right\}
$$

Comparison to OvA

- **Base Hypothesis Space**: $\mathcal{H} = \{h : \mathcal{X} \to \mathsf{R}\}\$ (score functions).
- Multiclass Hypothesis Space (for *k* classes): $W_i^T x + b_i$

$$
\mathcal{F} = \left\{ x \mapsto \underbrace{\arg \max_{i} h_i(x)} \mid h_1, \ldots, h_k \in \mathcal{H} \right\}
$$

Intuitively, *hi*(*x*) scores how likely *x* is to be from class *i*. 0

 \bullet OvA objective: $h_i(x) > 0$ for x with label *i* and $h_i(x) < 0$ for x with all other labels.

Comparison to OvA

- **Base Hypothesis Space**: $\mathcal{H} = \{h : \mathcal{X} \to \mathsf{R}\}\$ (score functions).
- Multiclass Hypothesis Space (for *k* classes):

$$
\mathcal{F} = \left\{ x \mapsto \argmax_{i} h_i(x) \mid h_1, \dots, h_k \in \mathcal{H} \right\}
$$

- Intuitively, $h_i(x)$ scores how likely x is to be from class *i*.
- \bullet OvA objective: $h_i(x) > 0$ for x with label *i* and $h_i(x) < 0$ for x with all other labels.
- At test time, to predict (*x*,*i*) correctly we only need

$$
h_i(x) > h_j(x) \qquad \forall j \neq i. \tag{3}
$$

Multiclass Perceptron

Base linear predictors: $h_i(x) = w_i^T x \ (w \in \mathbb{R}^d).$

Multiclass Perceptron

- Base linear predictors: $h_i(x) = w_i^T x \ (w \in \mathbb{R}^d).$
- Multiclass perceptron:

```
Given a multiclass dataset \mathcal{D} = \{ (x, y) \};Initialize w \leftarrow 0;
for iter = 1, 2, \ldots, T do
    for (x, y) \in \mathcal{D} do
          \hat{y} \neq arg max<sub>y'</sub> \in y W<sub>y</sub><sup>T</sup>, x;
         if \hat{y} \neq y then // We've made a mistake
              w_y \leftarrow w_y + x; // Move the target-class scorer towards x
              w_{\hat{V}} \leftarrow w_{\hat{V}} - x; // Move the wrong-class scorer away from xend
    end
end
```
Rewrite the scoring function

- Remember that we want to scale to very large $#$ of classes and reuse algorithms and analysis for binary classification
	- $\bullet \implies$ a single weight vector is desired
- How to rewrite the equation such that we have one *w* instead of *k*?

Rewrite the scoring function

- Remember that we want to scale to very large $#$ of classes and reuse algorithms and analysis for binary classification
	- $\bullet \implies$ a single weight vector is desired
- How to rewrite the equation such that we have one *w* instead of *k*?

$$
w_i^T x = w^T \psi(x, i)
$$
 feature function. (4)

$$
h_i(x) = h(x, i)
$$
 (5)

 ι

 x .

- Encode labels in the feature space.
- Score for each label \rightarrow score for the "*compatibility*" of a label and an input.

How to construct the feature map ψ ?

How to construct the feature map ψ ?

• What if we stack w_i 's together (e.g., $x \in \mathbb{R}^2$, $\mathcal{Y} = \{1, 2, 3\}$)

$$
w = \left(\underbrace{-\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}}_{w_1}, \underbrace{0, 1}_{w_2}, \underbrace{\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}}_{w_3}\right)
$$

How to construct the feature map ψ ?

• What if we stack w_i 's together (e.g., $x \in \mathbb{R}^2$, $\mathcal{Y} = \{1, 2, 3\}$)

$$
w = \left(\underbrace{-\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}}_{w_1}, \underbrace{0, 1}_{w_2}, \underbrace{\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}}_{w_3}\right)
$$

• And then do the following: $\Psi: \mathbb{R}^2 \times \{1,2,3\} \to \mathbb{R}^6$ defined by

$$
\Psi(x,1) := (x_1, x_2, 0, 0, 0, 0)
$$

\n
$$
\Psi(x,2) := (0, 0, x_1, x_2, 0, 0)
$$

\n
$$
\Psi(x,3) := (0, 0, 0, 0, x_1, x_2)
$$

How to construct the feature map ψ ?

• What if we stack w_i 's together (e.g., $x \in \mathbb{R}^2$, $\mathcal{Y} = \{1, 2, 3\}$)

$$
w = \left(\underbrace{-\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}}_{w_1}, \underbrace{0, 1}_{w_2}, \underbrace{\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}}_{w_3}\right)
$$

• And then do the following: $\Psi: \mathbb{R}^2 \times \{1,2,3\} \to \mathbb{R}^6$ defined by

$$
\Psi(x,1) := (x_1, x_2, 0, 0, 0, 0)
$$

\n
$$
\Psi(x,2) := (0, 0, x_1, x_2, 0, 0)
$$

\n
$$
\Psi(x,3) := (0, 0, 0, 0, x_1, x_2)
$$

• Then $\langle w, \Psi(x, y) \rangle = \langle w_y, x \rangle$, which is what we want.

Rewrite multiclass perceptron

```
Multiclass perceptron using the multivector construction.
Given a multiclass dataset \mathcal{D} = \{ (x, y) \};Initialize w \leftarrow 0:
for iter = 1, 2, \ldots, T do
    for (x, y) \in \mathcal{D} do
          \hat{y} = arg max_{y' \in \mathcal{Y}} w^{\mathcal{T}}\psi(x,y') ; // Equivalent to arg max_{y' \in \mathcal{Y}}w_{y'}^{\mathcal{T}}xif \hat{y} \neq y then <u>// W</u>e've made a mistake
               w w (w) + \psi(x, y) ; // Move the scorer towards \psi(x, y)w \leftarrow w - \psi(x, \hat{y}) \setminus \sqrt{} Move the scorer away from \psi(x, \hat{y})end
     end
end
                    -\frac{w+4y}{w+1}en<br>1111
                         Vector
                                            feature
```
Rewrite multiclass perceptron

```
Multiclass perceptron using the multivector construction.
Given a multiclass dataset \mathcal{D} = \{ (x, y) \};Initialize w \leftarrow 0:
for iter = 1, 2, \ldots, T do
    for (x, y) \in \mathcal{D} do
          \hat{y} = arg max_{y' \in \mathcal{Y}} w^{\mathcal{T}}\psi(x,y') ; // Equivalent to arg max_{y' \in \mathcal{Y}}w_{y'}^{\mathcal{T}}xif \hat{y} \neq y then // We've made a mistake
               w \leftarrow w + \psi(x, y); // Move the scorer towards \psi(x, y)w \leftarrow w - \psi(x, \hat{y}); // Move the scorer away from \psi(x, \hat{y})end
    end
```
end

Exercise: What is the base binary classification problem in multiclass perceptron?

Toy multiclass example: Part-of-speech classification

- $\mathcal{X} = \{ \text{All possible words} \}$
- $\bullet \ \mathcal{Y} = \{NOUN, VERB, ADJECTIVE,...\}.$

Toy multiclass example: Part-of-speech classification

- $\infty \mathcal{X} = \{$ All possible words $\}$
- $\bullet \ y = \{NOUN, VERB, ADJECTIVE, \dots\}.$
- Features of $x \in \mathcal{X}$: [The word itself], ENDS IN ly, ENDS IN ness, ...

How to construct the feature vector?

• Multivector construction: $w \in R^{d \times k}$ —doesn't scale.

Toy multiclass example: Part-of-speech classification

- $\infty \mathcal{X} = \{$ All possible words $\}$
- $\bullet \ \mathcal{Y} = \{NOUN, VERB, ADJECTIVE,...\}.$
- Features of $x \in \mathcal{X}$: [The word itself], ENDS IN ly, ENDS IN ness, ...

How to construct the feature vector?

- Multivector construction: $w \in R^{d \times k}$ —doesn't scale.
- Directly design features for each class.

$$
\Psi(x, y) = (\psi_1(x, y), \psi_2(x, y), \psi_3(x, y), \dots, \psi_d(x, y))
$$
(6)

• Size can be bounded by
$$
d
$$
.

Sample training data:

The boy grabbed the apple and ran away quickly .
Feature:

Sample training data:

The boy grabbed the apple and ran away quickly .

$$
\frac{\psi_1(x, y)}{\psi_2(x, y)} = \frac{\mathbb{1}[x = \text{apple AND } y = \text{NOUN}]}{\mathbb{1}[x = \text{run AND } y = \text{NOUN}]} \n\psi_3(x, y) = \mathbb{1}[x = \text{run AND } y = \text{VERB}] \n\psi_4(x, y) = \mathbb{1}[x \text{ ENDS } \text{IN } \text{Iy AND } y = \text{ADVERB}]
$$

...

Sample training data:

The boy grabbed the apple and ran away quickly .

Feature:

$$
\psi_1(x, y) = 1[x = \text{apple AND } y = \text{NOUN}]
$$

\n
$$
\psi_2(x, y) = 1[x = \text{run AND } y = \text{NOUN}]
$$

\n
$$
\psi_3(x, y) = 1[x = \text{run AND } y = \text{VERB}]
$$

\n
$$
\psi_4(x, y) = 1[x \text{ ENDS IN } y \text{ AND } y = \text{ADVERB}]
$$

• E.g.,
$$
\Psi(x = run, y = NOUN) = (0, 1, 0, 0, ...)
$$

...

Sample training data:

The boy grabbed the apple and $\frac{1}{\sqrt{2\pi}}$ away quickly. Verb

Feature:

$$
\begin{aligned}\n\psi_1(x, y) &= \mathbb{1}[x = \text{apple AND } y = \text{NOUN}] \\
\psi_2(x, y) &= \mathbb{1}[x = \text{run AND } y = \text{NOUN}]\n\cdot \\
\psi_3(x, y) &= \mathbb{1}[x = \text{run AND } y = \text{VERB}]\n\cdot \\
\psi_4(x, y) &= \mathbb{1}[x \text{ ENDS_IN} \mid y \text{ AND } y = \text{ADVERB}]\n\end{aligned}
$$

 \bullet E.g., $\Psi(x = \text{run}, y = \text{NOUN}) = (0, 1, 0, 0, \ldots)$

...

• After training, what's w_1 , w_2 , w_3 , w_4 ?

Sample training data:

The boy grabbed the apple and ran away quickly .

Feature:

$$
\psi_1(x, y) = 1[x = \text{apple AND } y = \text{NOUN}]
$$

\n
$$
\psi_2(x, y) = 1[x = \text{run AND } y = \text{NOUN}]
$$

\n
$$
\psi_3(x, y) = 1[x = \text{run AND } y = \text{VERB}]
$$

\n
$$
\psi_4(x, y) = 1[x \text{ ENDS IN } y \text{ AND } y = \text{ADVERB}]
$$

 \bullet E.g., $\Psi(x = \text{run}, y = \text{NOUN}) = (0, 1, 0, 0, \ldots)$

...

- After training, what's w_1 , w_2 , w_3 , w_4 ?
- No need to include features unseen in training data.
- Flexible, e.g., neighboring words, suffix/prefix.
- "Read off" features from the training data.
- o Often sparse—efficient in practice, e.g., NLP problems.
- **•** Can use a hash function: template \rightarrow {1,2,...,*d*}.

Review

Ingredients in multiclass classification:

- Scoring functions for each class (similar to ranking).
- Represent labels in the input space \implies single weight vector.

Ingredients in multiclass classification:

- Scoring functions for each class (similar to ranking).
- Represent labels in the input space \implies single weight vector.

We've seen

- How to generalize the perceptron algorithm to multiclass setting.
- Very simple idea. Was popular in NLP for structured prediction (e.g., tagging, parsing).

Ingredients in multiclass classification:

- Scoring functions for each class (similar to ranking).
- Represent labels in the input space \implies single weight vector.

We've seen

- How to generalize the perceptron algorithm to multiclass setting.
- Very simple idea. Was popular in NLP for structured prediction (e.g., tagging, parsing). Next,
	- How to generalize SVM to the multiclass setting.
	- Concept check: Why might one prefer SVM / perceptron?

Margin for Multiclass

Binary • Margin for $(x^{(n)}, y^{(n)})$:

• Want margin to be large and positive $(w^T x^{(n)})$ has same sign as $y^{(n)}$)

 $y^{(n)}w^{T}x^{(n)}$ (7)

 1051

 $\begin{matrix} \begin{matrix} \begin{matrix} 1 \end{matrix} & \begin$

t Corvet

Binary • Margin for $(x^{(n)}, y^{(n)})$:

$$
\boxed{y^{(n)}w^T x^{(n)}}
$$
 (7)

• Want margin to be large and positive $(w^T x^{(n)})$ has same sign as $y^{(n)}$)

- Multiclass **o** Class-specific margin for $(x^{(n)}, y^{(n)})$: $h(x^{(n)}, y^{(n)}) - h(x^{(n)}, y)$ (1 = $\alpha_0 \alpha_1$ (8) terget prediction $\begin{array}{ccc} \mathcal{Y} & \mathcal{Y} & \mathcal{Y} = \mathcal{Y} \ \mathcal{Y} & \mathcal{Y} \end{array}$
and each other class h
	- Difference between scores of the correct class and each other class • Want margin to be large and positive for all $y \neq y^{(n)}$.

Multiclass SVM: separable case

Binary Recall binary formulation.

Multiclass SVM: separable case

Multiclass SVM: separable case

Binary Recall binary formulation.

Multiclass As in the binary case, take 1 as our target margin.

Exercise: write the objective for the non-separable case

Recap: hingle loss for binary classification

Hinge loss: a convex upperbound on the 0-1 loss

$$
\ell_{\text{hinge}}(y, \hat{y}) = \max(0, 1 - yh(x))
$$
\n(9)

What's the zero-one loss for multiclass classification?

(10)

What's the zero-one loss for multiclass classification?

$$
\Delta(y, y') = \mathbb{I}\left\{y \neq y'\right\} \tag{10}
$$

What's the zero-one loss for multiclass classification?

$$
\Delta(y, y') = \mathbb{I}\left\{y \neq y'\right\} \tag{10}
$$

• In general, can also have different cost for each class.

What's the zero-one loss for multiclass classification?

$$
\Delta(y, y') = \mathbb{I}\left\{y \neq y'\right\} \tag{10}
$$

- In general, can also have different cost for each class.
- Upper bound on $\Delta(y, y')$.

What's the zero-one loss for multiclass classification?

$$
\Delta(y, y') = \mathbb{I}\left\{y \neq y'\right\} \qquad \qquad \qquad \qquad \text{(10)}
$$

• In general, can also have different cost for each class.

 \int (y.x.us) $-\int$ iii)

Upper bound on $\Delta(y, y')$.

$$
\Delta
$$
(y, y') $\leq \Delta$ (y, y') - \langle target force - pred.score

1arget

 $max (D, 1 - yh)$

1

u

hunge

 ζ_{W} , ζ_{W} , ζ_{W}

Generalized hinge loss:

 $\left($

Multiclass SVM with Hinge Loss

Recall the hinge loss formulation for binary SVM (without the bias term):

Multiclass SVM with Hinge Loss

 $\Delta(\mathsf{y},\mathsf{y}')$ as target margin for each class.

If margin $m_{n,y'}(w)$ meets or exceeds its target $\Delta(y^{(n)}, y')$ $\forall y \in \mathcal{Y}$, then no loss on example *n*.