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Announcement

@ Project proposal due Oct 31 noon.
@ Schedule your project consultation soon (they are on the week after the proposal).

@ Use the provided templateI (if your final report fails to use template then there will be

marks off)
@ Homework 3 will be released soon and due Nov 12 11:59AM.
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Recap

@ Bayesian modeling adds a prior on the parameters.

@ Models the distribution of parameters
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Recap

@ Bayesian modeling adds a prior on the parameters.
@ Models the distribution of parameters ) P(Y , ﬁ)

d X)

e Bayes Rule:

CSCI-GA 2565 4/88



Recap

@ Bayesian modeling adds a prior on the parameters.

@ Models the distribution of parameters

e Bayes Rule:

p(x|y)p(y)
p(x)

ply|x)=

p(6|D)
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Recap

@ Bayesian modeling adds a prior on the parameters.
@ Models the distribution of parameters

e Bayes Rule:

oy | x) = px1y)ply)

p(x)
’ ~ p(D]0)p(6)
p(0|D) = oD)
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@ Models the distribution of parameters

e Bayes Rule:
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Recap

@ Bayesian modeling adds a prior on the parameters.
@ Models the distribution of parameters

e Bayes Rule:

oy | x) = px1y)ply)
p(x)

’ ~ p(D]0)p(6)
p(0|D) = (D)

VO
posterior likelihood

2

@ Conjugate prior: Having the same form of distribution as the posterior.
— N————




Bayesian Point Estimates

@ We have the posterior distribution 0 | D.

o What if someone asks us to choose a single 8 (i.e. a point estimate of 6)?
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Bayesian Point Estimates

@ We have the posterior distribution 0 | D.
o What if someone asks us to choose a single 8 (i.e. a point estimate of 6)?

@ Common options:
o posterior mean 6 =E[0 | D]
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Bayesian Point Estimates

@ We have the posterior distribution 0 | D.
@ What if someone asks us to choose a singl(i.e. a point estimate of 0)7

@ Common options:

e posterior mean é: v

—— U

e maximum a posteriori (MAP) estimate 6 =arg maxg p(0 | D)

<

I
—4 —

V“OJQ
\' Nec~

@ Note: this is the mode of the posterior distribution
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What else can we do with a posterior?

@ Look at it: display uncertainty estimates to our client
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What else can we do with a posterior?

@ Look at it: display uncertainty estimates to our client

@ Extract a credible set for 0 (a Bayesian confidence interval).
o e.g. Interval [a, b] is a 95% credible set if

P (0 € [a,b] | D) > 0.95
Qe —
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What else can we do with a posterior?

@ Look at it: display uncertainty estimates to our client

e Extract a credible set for 8 (a Bayesian confidence interval).
o e.g. Interval [a, b] is a 95% credible set if

P(8 € [a bl |D)>0.95

@ Select a point estimate using Bayesian decision theory:

e Choose a loss function.
e Find action minimizing expected risk w.r.t. posterior

——
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Bayesian Decision Theory J
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Bayesian Decision Theory

@ Ingredients:

e Parameter space ©.

o Prior: Distribution p(8) on O. .

e Action space@ _ CLLOOSer\s Dne. g —Fr‘wq PDS'/"EQ‘W
e Loss function: {: A xO — R. )

o
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Bayesian Decision Theory

@ Ingredients:

e Parameter space ©.

e Prior: Distribution p(0) on ©.
e Action space A.

e Loss function: {: A xO — R.

@ The posterior risk of an action a€ A is
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Bayesian Decision Theory

@ Ingredients:

e Parameter space ©.

e Prior: Distribution p(0) on ©.
e Action space A.

e Loss function: {: A xO — R.

@ The posterior risk of an action a€ A is

r(a) = E[(0,a)]|D]
J 9 | D do.
/OOJfZ/Wur~
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Bayesian Decision Theory

@ Ingredients:

e Parameter space ©.

e Prior: Distribution p(0) on ©.
e Action space A.

e Loss function: {: A x0O — R.

@ The posterior risk of an action a€ A is
r(a) = E[H{(0,a)]|D]
— JE(G,a)p(G | D) do.

e It's the expected loss under the posterior.
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Bayesian Decision Theory

@ Ingredients:

e Parameter space ©.

e Prior: Distribution p(0) on ©.
e Action space A.

e Loss function: {: A x0O — R.

@ The posterior risk of an action a€ A is
r(a). (= E[(0,a)]|D]
— JE(G,a)p(G | D) do.

e It's the expected loss under the posterior.

e A Bayes actis an action that minimizes posterior risk:

r(a*) = grgz r(a)
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Bayesian Point Estimation

@ General Setup:
o Data D generated by p(y | 0), for unknown 6 € ©.
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Bayesian Point Estimation

@ General Setup: p(K’ 9)

o Data D generated by p(y | 0), for unknown 6 € ©.
e We want to produce a point estimate for 0.
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o Data D generated by p(y | 0), for unknown 6 € ©.
e We want to produce a point estimate for 0.

@ Choose:
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Bayesian Point Estimation

@ General Setup:

o Data D generated by p(y | 0), for unknown 6 € ©.
e We want to produce a point estimate for 0.

@ Choose:
e Prior p(0) on ® =R.
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Bayesian Point Estimation

@ General Setup:

o Data D generated by p(y | 0), for unknown 6 € ©.
e We want to produce a point estimate for 0.

@ Choose:
o Prior p(6) on © =R.
e’

e Loss {( 9|
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Bayesian Point Estimation

@ General Setup:
o Data D generated by p(y | 0), for unknown 6 € ©.
e We want to produce a point estimate for 0.
@ Choose:
o Prior p(6) on © =R.
e Loss {(0,0)

e Find action@E © that minimizes the posterior risk:

r6) = E [e(é,e) | @}
——
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Bayesian Point Estimation

@ General Setup:

o Data D generated by p(y | 0), for unknown 6 € ©.
e We want to produce a point estimate for 0.

@ Choose:
o Prior p(6) on © =R.
e Loss ((0,0)

o Find action 6 € © that minimizes the posterior risk:
r(6) = E[ub,0)|7]

_ Je(é,e)p(e | D) do
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Important Cases

. pelD)
/
o Squared Loss : (8,0) = (9 9) ' ’

— posterior mean

@ Zero-one Loss: £(0, ) —1[0 ;é 6] = posterior mode

o Absolute Loss : £(6, |

= posterior median
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Important Cases

o Squared Loss : (8,0) = ( = posterior mean

\/
N

@ Zero-one Loss: E(G ) —1[0 7& 6] = posterior mode

—_— .

@ Absolute Loss : |9 9‘ = posterior median

@ Optimal decision depends on the loss function and the posterior distribution.
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Important Cases

A 5 2
@ Squared Loss : £(0,0) = ( ) = posterior mean

0)
@ Zero-one Loss: {(0, )

@ Absolute Loss : 2(@,9) = |9—9 = posterior median

@ Optimal decision depends on the loss function and the posterior distribution.

1[0 # 0] 9 = posterior mode

@ Example: | have a card drawing from a deck OF 2,3,3,4,4,5,5,5|and you guess the value of
my card.
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Important Cases

T pe | D)
A 2 | S
@ Squared Loss : £(0,0) = = posterior mean> [.I,/\V\(aé Lt

o Zero-one Loss: £(0,0) =1[60 ;é 6] = posterior mode
o Absolute Loss : £(6,0) =

= posterior median

@ Optimal decision depends on the loss function and the posterior distribution.

@ Example: | have a card drawing from a deck of 2,3,3,4,4,5,5,5, and you guess the value of
my card.

@ mean: 3.875: mode: 5: median: 4
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Bayesian Point Estimation: Square Loss

o Find action 6 € © that minimizes posterior risk

r(0) = J(e—é)zp(ey@)de.
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Bayesian Point Estimation: Square Loss

o Find action 6 € © that minimizes posterior risk

r(0) = J(e—é)zp(ey@)de.

@ Differentiate:
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Bayesian Point Estimation: Square Loss

o Find action 6 € © that minimizes posterior risk

r(0) = J(e—é)zp(em)de.

@ Differentiate:

_ _Jz(e—é) p(6]D)do

— —2J9p(9 | D)d9+2éJp(9 | D) db

7

Ve

=1
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Bayesian Point Estimation: Square Loss

o Find action 6 € © that minimizes posterior risk

r() = J(e—é)zp(em)de

@ Differentiate:

dr(0) _ J (e e) p(6]D)do

2
- 2J9p9|@ d6+26J (0]D)do

\ . 7
~N"

=1

— —2|0p(0|D)do+208
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Bayesian Point Estimation: Square Loss

@ Derivative of posterior risk is

dr(6)
db

:_2Jep(9|®)de+2é.

CSCI-GA 2565 12 /88



Bayesian Point Estimation: Square Loss

@ Derivative of posterior risk is

dr(6 A
r9) :—2J9p(9 D) do +26.
do

@ First order condition drd(éé) =0 gives
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Bayesian Point Estimation: Square Loss

@ Derivative of posterior risk is

@ First order condition

dr(9)

~

do

dr(6)
db

=0 gives

D>

—2J9p(9 | D) do +26.

- JGp(G|D)d9
— E[0]|D]
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Bayesian Point Estimation: Square Loss

@ Derivative of posterior risk is

dr(6) B
dé
@ First order condition drd(éé) =0 gives
6

@ The Bayes action for square loss is

—2J9p(9 | D) do +26.

- JGp(G|D)d9
— E[0]|D]

the posterior mean.
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Interim summary J
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Recap and Interpretation

@ The prior represents belief about 0 before observing data D.

@ The posterior represents rationally updated beliefs after seeing D.
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@ All inferences and action-taking are based on the posterior distribution.
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Recap and Interpretation

The prior represents belief about 0 before observing data D.
The posterior represents rationally updated beliefs after seeing D.

All inferences and action-taking are based on the posterior distribution.

In the Bayesian approach,
e No issue of justifying an estimator.
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Recap and Interpretation

The prior represents belief about 0 before observing data D.
The posterior represents rationally updated beliefs after seeing D.

All inferences and action-taking are based on the posterior distribution.

In the Bayesian approach,

e No issue of justifying an estimator.
e Only choices are

e family of distributions, indexed by ©, and
@ prior distribution on ©
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Recap and Interpretation

The prior represents belief about 0 before observing data D.
The posterior represents rationally updated beliefs after seeing D.

All inferences and action-taking are based on the posterior distribution.

In the Bayesian approach,

e No issue of justifying an estimator.
e Only choices are

e family of distributions, indexed by ©, and
@ prior distribution on ©

e For decision making, we need a loss function.
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Recap: Conditional Probability Models J
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Conditional Probability Modeling

@ Input space X
@ Outcome space Y

@ Action space A ={p(y) | p is a probability distribution on Y}.
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Conditional Probability Modeling

@ Input space X

Outcome space Y

°
@ Action space A ={p(y) | p is a probability distribution on Y}.
@ Hypothesis space F contains prediction functions f : X — A.
°

Prediction function f € J takes input x € X and produces a distribution on Y
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Conditional Probability Modeling

Input space X

Outcome space Y

Action space A ={p(y) | p is a probability distribution on Y}.

Hypothesis space J contains prediction functions f : X — A.

Prediction function f € J takes input x € X and produces a distribution on Y

A parametric family of conditional densities is a set

y|x@ee@}

e where p(y | x,0) is a density on outcom space Y for each x in input space X, and
o 0 is a parameter in a [finite dimensional] parameter space O.
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Conditional Probability Modeling

Input space X

Outcome space Y

Action space A ={p(y) | p is a probability distribution on Y}.

Hypothesis space J contains prediction functions f : X — A.

Prediction function f € J takes input x € X and produces a distribution on Y

A parametric family of conditional densities is a set @)

X
{ply|x,0):0 €0}, FQ«/ CL

e where p(y | x,0) is a density on outcome space Y for each x in input space X, and
o 0 is a parameter in a [finite dimensional] parameter space O.

@ This is the common starting point for either classical or Bayesian regression.



Classical treatment: Likelihood Function

e Data: D= (yy,...,, Vn)
@ The probability density for our data D is
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Classical treatment: Likelihood Function

e Data: D= (yy,...,, Vn)
@ The probability density for our data D is

n

p(D|X1 11111 Xnve) — HP(YI|X116)
=1

@ For fixed D, the function 8 — p(D | x,0) is the likelihood function:

Lp(0) =p(D]x,6),

CSCI-GA 2565
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Maximum Likelihood Estimator

@ The maximum likelihood estimator (MLE) for 0 in the family {p(y | x,0) |0 € ®} is

Ouie = @Emayls(0)

U e

@ MLE corresponds to ERM, if we set the loss to be the negative log-likelihood.

e ~——

—
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Maximum Likelihood Estimator

@ The maximum likelihood estimator (MLE) for 0 in the family {p(y | x,0) |0 € ®} is

N\

OMLE = argmaxLp(0).
IS C)

@ MLE corresponds to ERM, if we set the loss to be the negative log-likelihood.

@ The corresponding prediction function is

@X) =ply| x,
T

I
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Bayesian Conditional Probability Models J
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Bayesian Conditional Models

e Input space X =R¢ Outcome space Y =R

CSCI-GA 2565 20 /88



Bayesian Conditional Models

e Input space X =R¢ Outcome space Y =R

@ The Bayesian conditional model has two components:
e A parametric family of conditional densities:

’{p(ylx,e):ee@)}
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Bayesian Conditional Models

e Input space X =R¢ Outcome space Y =R

@ The Bayesian conditional model has two components:
e A parametric family of conditional densities:

{p(y|x,0):0c 0B}

e A prior distribution p(0) on 0 € O.




The Posterior Distribution \

@ The prior distribution p(0) represents our beliefs about 0 before seeing D.
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The Posterior Distribution

@ The prior distribution p(0) represents our beliefs about 0 before seeing D.

@ The posterior distribution for 0 is

p(0|D,x)
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The Posterior Distribution

@ The prior distribution p(0) represents our beliefs about 0 before seeing D.

@ The posterior distribution for 0 is

pO[D,x) o< p(D]6,x)p(0)
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The Posterior Distribution

@ The prior distribution p(0) represents our beliefs about 0 before seeing D.

@ The posterior distribution for 0 is

pO[D,x) o< p(D]6,x)p(0)

likelihood prior
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The Posterior Distribution

@ The prior distribution p(0) represents our beliefs about 0 before seeing D.

@ The posterior distribution for 0 is

pO[D,x) o< p(D]6,x)p(0)

= Lp(6) p(6)
——
likelihood prior

@ Posterior represents the rationally updated beliefs after seeing D.
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The Posterior Distribution

@ The prior distribution p(0) represents our beliefs about 0 before seeing D.

@ The posterior distribution for 0 is

pO[D,x) o< p(D]6,x)p(0)

= Lp(6) p(6)
——
likelihood prior
@ Posterior represents the rationally updated beliefs after seeing D.
@ Each 0 corresponds to a prediction function,
e i.e. the conditional distribution function p(y | x,0).
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Point Estimates of Parameter

@ What if we want point estimates of 07
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Point Estimates of Parameter

@ What if we want point estimates of 07

@ We can use Bayesian decision theory to derive point estimates.

CSCI-GA 2565 22 /88



Point Estimates of Parameter

@ What if we want point estimates of 07

@ We can use Bayesian decision theory to derive point estimates.
@ We may want to use

° E:):]E[G | D, x] (the posterior mean estimate)
° Q = median[0 | D, x]
o O =argmaxgcg p(0|D,x) (the MAP estimate)

@ depending on our loss function.
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Back to the basic question - Bayesian Prediction Function

@ Find a function takes input x € X and produces a distribution on Y
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Back to the basic question - Bayesian Prediction Function

@ Find a function takes input x € X and produces a distribution on Y

@ In the frequentist approach:
o Choose family of conditional probability densities (hypothesis space).

e Select one conditional probability from family, e.g. using MLE.
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Back to the basic question - Bayesian Prediction Function

@ Find a function takes input x € X and produces a distribution on Y

@ In the frequentist approach:
o Choose family of conditional probability densities (hypothesis space).

e Select one conditional probability from family, e.g. using MLE.

@ In the Bayesian setting:
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Back to the basic question - Bayesian Prediction Function

@ Find a function takes input x € X and produces a distribution on Y

@ In the frequentist approach:
o Choose family of conditional probability densities (hypothesis space).

e Select one conditional probability from family, e.g. using MLE.

@ In the Bayesian setting:
e We choose a parametric family of conditional densities

{p(y|x,0):0c0},

e and a prior distribution p(0) on this set.
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Back to the basic question - Bayesian Prediction Function

@ Find a function takes input x € X and produces a distribution on Y

@ In the frequentist approach:
o Choose family of conditional probability densities (hypothesis space). 9 A

®
e Select one conditional probability from family, e.g. using MLE. G

@ In the Bayesian setting:
e We choose a parametric family of conditional densities

(ply|x.0):0 <€), %[%9%/
y .

e and a prior distribution p(0) on this set. l\mﬂ

@ Having set our Bayesian model, how do we predict a distribution on y for input x?

@ We don't need to make a discrete selection from the hypothesis space: we maintain
uncertainty. o




The Prior Predictive Distribution

@ Suppose we have not yet observed any data.
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The Prior Predictive Distribution

@ Suppose we have not yet observed any data.

@ In the Bayesian setting, we can still produce a prediction function.
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The Prior Predictive Distribution

@ Suppose we have not yet observed any data.
@ In the Bayesian setting, we can still produce a prediction function.

@ The prior predictive distribution is given by

x = ply|x)
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The Prior Predictive Distribution

@ Suppose we have not yet observed any data.

@ In the Bayesian setting, we can still produce a prediction function.

@ The prior predictive distribution is given by

x5 ply| x) =jp(y|x;e)p(e)de.

—

—_—
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The Prior Predictive Distribution

@ Suppose we have not yet observed any data.
@ In the Bayesian setting, we can still produce a prediction function.

@ The prior predictive distribution is given by

x5 ply| x) =jp(y|x;e)p(e)de.

@ This is an average of all conditional densities in our family, weighted by the prior.
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The Posterior Predictive Distribution

@ Suppose we've already seen data D.
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The Posterior Predictive Distribution

@ Suppose we've already seen data D.

@ The posterior predictive distribution is given by

x—=p(ylx,D)
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The Posterior Predictive Distribution

@ Suppose we've already seen data D. ]

4
@ The posterior predictive distribution is given by @\

x—=ply | x,D) = Jp(y | x;0)p(0 D) do.

.
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The Posterior Predictive Distribution

@ Suppose we've already seen data D.

@ The posterior predictive distribution is given by

x—=ply | x,D) = Jp(y | x;0)p(0 D) do.

@ This is an average of all conditional densities in our family, weighted by the posterior.
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Comparison to Frequentist Approach

@ In Bayesian statistics we have two distributions on O:

e the prior distribution p(0)
o the posterior distribution p(0| D).
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Comparison to Frequentist Approach

@ In Bayesian statistics we have two distributions on O:

e the prior distribution p(0)
o the posterior distribution p(0| D).

@ These distributions over parameters correspond to distributions on the hypothesis space:

{Lp(ylx,e):e € 0}.

.}
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Comparison to Frequentist Approach

@ In Bayesian statistics we have two distributions on O:

e the prior distribution p(0)
o the posterior distribution p(0| D).

@ These distributions over parameters correspond to distributions on the hypothesis space:

(ply|x.0):0 @, — olistrbutioy of-

Lneteon ¢ .
@ In the frequentist approach, we choose ©, and predict

ply [x8(D)— frngle i eton
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Comparison to Frequentist Approach

@ In Bayesian statistics we have two distributions on O:

e the prior distribution p(0)
o the posterior distribution p(0| D).

@ These distributions over parameters correspond to distributions on the hypothesis space:
{p(y|x,0):0cO}.

o In the frequentist approach, we choose 6 € ©, and predict

ply | x,0(D)).

@ In the Bayesian approach, we integrate out over ® w.r.t. p(0| D) and predict with

MZJP(Y | x;0)p(0[D)dO




What if we don't want a full distribution on y?

@ Once we have a predictive distribution p(y | x, D),
e we can easily generate single point predictions.
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What if we don't want a full distribution on y?

@ Once we have a predictive distribution p(y | x, D),
e we can easily generate single point predictions.

e x— Ely|x,D], to minimize expected square error.
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What if we don't want a full distribution on y?

@ Once we have a predictive distribution p(y | x, D),
e we can easily generate single point predictions.

e x— Ely|x,D], to minimize expected square error.

@ x — medianly | x, D], to minimize expected absolute error
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What if we don't want a full distribution on y?

@ Once we have a predictive distribution p(y | x, D),
e we can easily generate single point predictions.

e x— Ely|x,D], to minimize expected square error.
@ x — medianly | x, D], to minimize expected absolute error

® x > argmax,cy p(y | x,D), to minimize expected 0/1 loss
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What if we don't want a full distribution on y?

@ Once we have a predictive distribution p(y | x, D),
e we can easily generate single point predictions.

e x— Ely|x,D], to minimize expected square error.
@ x — medianly | x, D], to minimize expected absolute error
® x > argmax,cy p(y | x,D), to minimize expected 0/1 loss

@ Each of these can be derived from p(y | x, D).
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Gaussian Regression Example J
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Example in 1-Dimension: Setup

@ Input space X =[—1,1] Output space Y =R

e Given x, the world generates y as

y = wo+wxHe

where ¢ ~N(0,0.22).
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Example in 1-Dimension: Setup

@ Input space X =[—1,1] Output space Y =R

e Given x, the world generates y as

Yy = Wyt+wix—+E,

where ¢ ~N(0,0.22).

@ Written another way, the conditional probability model is

vy x,wo,wp ~ N(W0+W19,&%2).

——

@ What's the parameter space?
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Example in 1-Dimension: Setup

@ Input space X =[—1,1] Output space Y =R

e Given x, the world generates y as
Yy = Wyt+wix—+E,

where ¢ ~N(0,0.22).

@ Written another way, the conditional probability model is
vy x,wo,wp ~ N(Wo+ Wi X, 0.22) .

e What's the parameter space? R2.
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Example in 1-Dimension: Setup

@ Input space X =[—1,1] Output space Y =R

e Given x, the world generates y as
Yy = Wyt+wix—+E,

where ¢ ~N(0,0.22).

@ Written another way, the conditional probability model is
vy x,wo,wp ~ N(Wo+ Wi X, 0.22) .

e What's the parameter space? R2.
e Prior distribution: w = (wp, wy) ~ N(p, %l)




Example in 1-Dimension: Prior Situation

o Prior distribution: w = (wp, wi) ~N(0,2/) (lllustrated on left)

prior/posterior data space

-1
-1 0 o 1

@ On right, y(x) =El[y | x, w] = wg + wy x, for randomly chosen w ~ p(w) = N(O, %I)

Bishop's PRML Fig 3.7



Example in 1-Dimension: 1 Observation

1 1
w1 Y
0 0
=T -1 :
-1 0 Wo 1 -1 0 == 1

@ On left: posterior distribution; white cross indicates true parameters
@ On right:

e blue circle indicates the training observation
o red lines, y(x) =Ely | x, w] = wp + wy x, for randomly chosen w ~ p(w|D) (posterior)

Bishop's PRML Fig 3.7



Example in 1-Dimension: 2 and 20 Observations

1 1
U Y
0 0 O
-1 -1
- -1 0 = 1
1 1
U y
0 0 o QZ
O
0O O
-1 -1
- -1 0 = 1

Bishop's PRML Fig 3.7



Gaussian Regression: Closed form J
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Closed Form for Posterior

e Model:
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Closed Form for Posterior

e Model:

w ~ N(O,Zo)
yilx,w iid. N(w'x;, 0
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Closed Form for Posterior

e Model: 740 phens
A

w ~  N(0,Xp)

yilx,w iid. N(w Tx 2)
3/

[

@ Design matrix X Response column vector y
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Closed Form for Posterior

e Model:
w ~ N(O,Zo)
yilx,w iid. N(w'x;, 0
@ Design matrix@ Response column vector y

@ Posterior distribution is a Gaussian distribution:

w|D ~
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Closed Form for Posterior

e Model:
w ~ N(O,Zo)
yilx,w i.id. N(w ' x;, 02)
@ Design matrix X Response column vector y

@ Posterior distribution is a Gaussian distribution:

w|[D ~ N(up,Zp)
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Closed Form for Posterior

e Model:
w ~ N(O,Zo)
yilx,w iid. N(w'x;, 0

@ Design matrix X Response column vector y

@ Posterior distribution is a Gaussian distribution:
w|D ~ N(up,2p)
1
up = (X'X+0°55h) X'y
Sp = (0 2XTX+1g) "

e Posterior Variance Zp gives us a natural uncertainty measure.

A
S

34 /88



Closed Form for Posterior

@ Posterior distribution is a Gaussian distribution:

w|D ~
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Closed Form for Posterior

@ Posterior distribution is a Gaussian distribution:
w|D ~ N(up,Zp)
1
up = (X'X+0°55h) X'y
Sp = (0 2XTX+1g) "
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Closed Form for Posterior

@ Posterior distribution is a Gaussian distribution:
w|D ~ N(up,Zp)
1
up = (X'X+0°55h) X'y
Sp = (0 2XTX+1g) "

e If we want point estimates of w, MAP estimator and the posterior mean are given by

—
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Closed Form for Posterior

e Posterior distribution is a Gaussian distribution:
w|D ~ N(up,Lp)
11
up = (X'X+0°55h) X'y
Sp = (0 2XTX+1g) "
e If we want point estimates of w, MAP estimator and the posterior mean are given by

W= Wp = (XTX—FOQZEl)_lXTy

-—
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Closed Form for Posterior

e Posterior distribution is a Gaussian distribution:
w|D ~ N(up,Lp)
11
up = (X'X+0°55h) X'y
Sp = (0 2XTX+1g) "
e If we want point estimates of w, MAP estimator and the posterior mean are given by

W= Wp = (XTX—FOQZEl)_lXTy

@ For the prior variance Ly = %21, we get r‘(‘(tSQ Y‘Qﬁf‘&jsp’oy\ .

‘§_—_/~’

S—

w=pp=(XTX+A) ' XTy,

——
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Closed Form for Posterior

e Posterior distribution is a Gaussian distribution:
w|D ~ N(up,Lp)
11
up = (X'X+0°55h) X'y
Sp = (0 2XTX+1g) "
e If we want point estimates of w, MAP estimator and the posterior mean are given by

w=up=(XTX+0551) "Xy

@ For the prior variance Ly = %21, we get
w=up=(XTX+A) " XTy,

which is of course the ridge regression solution.



Connection the MAP to Ridge Regression

2

@ The Posterior density on w for Lo = 5-1:
A 2\ T (yi—w'x)?
p(w|D) o exp <—EHWH ) qexp (— o2
“ =
prior likelihood
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Connection the MAP to Ridge Regression

o2
A

A ) (vi—w'x;)?
plw|D) o exp <——2 jw| )Hexp( 552 >

[\ =
~ _/

(- prior 4 likelihood

@ To find the MAP, we minimize the negative log posterior:

@ The Posterior density on w for Lo = % 1I:

wmap = argmin[—logp(w | D)]
weRd

CSCI-GA 2565 36 /88



Connection the MAP to Ridge Regression

o2
A

5 (vi—w'x;)?
p(w|D) exp( HWH)HeXP( 2% >

S

@ The Posterior density on w for Lo = % 1I:

7
\ . 4

P"°’ likelihood

@ To find the MAP, we minimize the negative log posterior:

wmap = argmin[—logp(w | D)]
weRd

n
argmin > (yi—w ' x)2H{Allw>

weR? 1 :
N ~— _  log-prior

log-likelihood
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Connection the MAP to Ridge Regression

@ The Posterior density on w for o = %21:

Yi—W" X 2
plw|D) o exp( HWHz)HeXP( 552 )>
=1

S

7
\ . 4

P"°’ likelihood

@ To find the MAP, we minimize the negative log posterior:

wmap = argmin[—logp(w | D)]
weRd
= argman —wx)2+A|w|?
weERd SN~——

_  log-prior

Iog—llkellhood

@ Which is the ridge regression objective.



Predictive Posterior Distribution

@ Given a new input point Xpew, how do we predict Vnew ?

CSCI-GA 2565 37 /88



Predictive Posterior Distribution

@ Given a new input point Xpew, how do we predict Vnew ?

@ Predictive distribution

p()/new | Xnew: D) —
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Predictive Posterior Distribution

@ Given a new input point Xpew, how do we predict Vnew ?

@ Predictive distribution

p()/new | Xnew, D) = JP(Ynew | Xnew, W, D)p(w | D) dw

[— |
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Predictive Posterior Distribution

@ Given a new input point Xpew, how do we predict Vnew ?

@ Predictive distribution

p()/new | Xnew, D) = JP(Ynew | Xnew, W, D)p(w | D) dw

Jp()/new | Xnew W)P(W | D) dw

CSCI-GA 2565 37 /88



Predictive Posterior Distribution

@ Given a new input point Xpew, how do we predict Vnew ?

@ Predictive distribution
p()/new | Xnew, D) = JP(Ynew | Xnew, W, D)p(w | D) dw
— Jp()/new |XneW1W)P(W| D) dw

@ For Gaussian regression, predictive distribution has closed form.
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Closed Form for Predictive Distribution

e Model:
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Closed Form for Predictive Distribution

e Model:

w ~ N(O,Zo)
yilx,w iid. Nw'x;,0?)
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Closed Form for Predictive Distribution

e Model:

w ~ N(O,Zo)
yilx,w iid. Nw'x;,0?)

@ Predictive Distribution

p()/new | XneW1D) — JP(Ynew | Xnew W)p(W | D) dw.

e Averages over prediction for each w, weighted by posterior distribution.
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Closed Form for Predictive Distribution

e Model:

w ~ N(O,Zo)
yilx,w iid. Nw'x;,0?)

@ Predictive Distribution

p()/new | XneW1D) — JP(Ynew | Xnew W)p(W | D) dw.

e Averages over prediction for each w, weighted by posterior distribution.
@ Closed form:

new

)/newlxnew,D ~ N(ﬂneW,O‘z )
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Closed Form for Predictive Distribution

e Model:

w ~ N(O,Zo)
yilx,w iid. Nw'x;,0?)

@ Predictive Distribution

p()/new | XneW7D) — JP(Ynew | Xnew W)p(W | D) dw.

e Averages over prediction for each w, weighted by posterior distribution.
@ Closed form:

Ynew | Xnew D~

Mhew =

CSCI-GA 2565

38 /88



Closed Form for Predictive Distribution

e Model:

@ Predictive Distribution

p()/new | Xnew D)

w
yilx,w i.id. N(W_TX,-, 0‘2)J

~  N(0,Xo)

JP(YneW | Xnew W)P(W | D) dw.

e Averages over prediction for each w, weighted by posterior distribution.

@ Closed form:

)/newlxnew;D ~ N(ﬂneWyG

Mnew

0)

new

T
Hp Xnew

T
fnewZPXnevl +

new)

~"

from variance in w

Cmm——
CSCI-GA 2565

*ﬂ

inherent variance in y
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Bayesian Regression Provides Uncertainty Estimates

@ With predictive distributions, we can give mean prediction with error bands:

output, y

input, x

Rasmussen and Williams' Gaussian Processes for Machine Learning, Fig.2.1(b)

CSCI-GA 2565
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Multi-class Overview J
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Motivation

@ So far, most algorithms we've learned are designed for binary classification.
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Motivation

@ So far, most algorithms we've learned are designed for binary classification.

@ Many real-world problems have more than two classes.
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Motivation

@ So far, most algorithms we've learned are designed for binary classification.
@ Many real-world problems have more than two classes.

@ What are some potential issues when we have a large number of classes?
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Today's lecture

@ How to reduce multiclass classification to binary classification?

o We can think of binary classifier or linear regression as a black box. Naive ways:
o E.g. multiple binary classifiers produce a binary code for each class (000, 001, 010)
o E.g. a linear regression produces a numerical value for each class (1.0, 2.0, 3.0)
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Today's lecture

@ How to reduce multiclass classification to binary classification?

o We can think of binary classifier or linear regression as a black box. Naive ways:
o E.g. multiple binary classifiers produce a binary code for each class (000, 001, 010)

e We also need to think about the loss function.
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Today's lecture

» How to reduce multiclass classification to binary classification?

o We can think of binary classifier or linear regression as a black box. Naive ways:
o E.g. multiple binary classifiers produce a binary code for each class (000, 001, 010)
o E.g. a linear regression produces a numerical value for each class (1.0, 2.0, 3.0)

@ How do we generalize binary classification algorithm to the multiclass setting?

o We also need to think about the loss function. T = ' .

@ Example of very large output space: structured prediction. S 7 o
o Multi-class: Mutually exclusive class structure. Cov.
o Text: Temporal relational structure. ﬁmgg
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Reduction to Binary Classification J
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One-vs-All / One-vs-Rest

Setting @ Input space: X
@ Output space: Y={1,...,k}
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One-vs-All / One-vs-Rest

Setting

Training

Input space: X
Output space: Y ={1,..., k}
Train k binary classifiers, one for each class: hy,..., h,: X — R.
Classifier h; distinguishes clas@+1) from the rest (-1).

( vs 27 D'Q —>b

2- VS \ 3 ? O’ 5-

3 VS v 0
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One-vs-All / One-vs-Rest
All/ Unevs Res

Setting @ Input space: X
@ Output space: Y={1,...,k}

Training @ Train k binary classifiers, one for each class: hy,...,hi: X — R.
o Classifier @istinguishes class i (4+1) from the rest (-1).

Prediction e Majority vote:
h(x) = argmax h;(x)

@ Ties can be broken arbitrarily.

——
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OvA: 3-class example (linear classifier)

Consider a dataset with three classes:

[ ..
o ©
@
O OOO
o ©
[
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OvA: 3-class example (linear classifier)

Consider a dataset with three classes:

[ ..
o ©
@
O O%
o ©
[

0%
O
€ log
o | 0g
o O
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OvA: 3-class example (linear classifier)

Consider a dataset with three classes:
o

Assumption: each class is linearly separable from the

o o
o © rest.
Co |deal case: only target class has positive score.
.. OO —_— .
® ®
v
OOO OOO
o © o ©
e o o ® e °
T Te—o0g o | oo
® O
¢ o © @)
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OvVA: 4-class non linearly separable example

Consider a dataset with four classes:

®
o0
o © &
Co
® 0y
o ©
O
Train OVA classifiers:
% 0% 0% 0%
o © o © o © o ©
& o & 00 & Qo 0o
o © T Te—o0g o | e o ©
0 5 0
o O o © o O o
0 ® o) o)
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OvVA: 4-class non linearly separable example

Consider a dataset with four classes:

° .
: ® Cannot separate red points from the rest.
¢ @ 00 Which classes might have low accuracy?
® o0p
o ©
O
Train OvA classifiers:
% 0% 0% 0%
o © o O o O o O
€ o4 € o5 € log 0o
o 0p T Te— Qg o | ey or
o O o © o O 0
e O O O
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All vs All / One vs One / All pairs

Setting @ Input space: X
@ Output space: Y={1,...,k}
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All vs All / One vs One / All pairs

Setting @ Input space: X
@ Output space: Y={1,...,k}

Training o Train@binary classifiers, one for each pair: h;: X =R
for i 'kl and j € [i+1,k].

o Classiﬁerdistinguishes class i (41) from class j (-1).
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All vs All / One vs One / All pairs

Setting @ Input space: X
@ Output space: Y={1,...,k}

Training @ Train (g) binary classifiers, one for each pair: h;j: X — R
for ie[1,k] and j € [i+1,k].
o Classifier hj; distinguishes class i (+1) from class j (-1).

Prediction @ Majority vote (each class gets kK —1 votes)

h(x —argmaxg( ii ]I{/<j} h;i )]I{/<l}

cIass iis +1 cIass iis -1
f". —

@ Tournament

@ Ties can be broken arbitrarily.
—_—




AvA: four-class example

Consider a dataset with four classes:

(3
o ©
@\ o,
@\ 0g
o ©
O
CSCI-GA 2565
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AvA: four-class example

Consider a dataset with four classes:

What's the decision region for the red class?

(3
o ©
® o,
® 0p
o ©
O
CSCI-GA 2565

Assumption: each pair of classes are linearly separable.
More expressive than OVA.

48/ 88



OVA vs AVA

OvA AvA

train O(@ ) O(k? )
test oK) ) O(k2 )

computation
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OVA vs AVA

OvA AvA
> q\jﬂ %
. train O(kBtrain(n)) O(k Btrain n/ )
com putatlon test O(kBtest) O(k2 Btest . .

challenges

CSCI-GA 2565 49 / 88



OVA vs AVA (000 0

OvA AvA [ vs (O
. train O(kBtrain(n)) O(k2B ain(n/k))
ComPUtatlon test O(kBtest) O k2 test)

train class imbalance_ small tramw

calibration / scale
tie breaking

( o00 2:] M
challenges e
test

Lack theoretical justification but simple to implement and works well in practice (when #
classes is small).

—
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Review

Reduction-based approaches:
@ Reducing multiclass classification to binary classification: OvA, AvA

@ Key is to design "natural” binary classification problems without large computation cost.
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Review

Reduction-based approaches:

@ Reducing multiclass classification to binary classification: OvA, AvA

@ Key is to design "natural” binary classification problems without large computation cost.
But,

@ Unclear how to generalize to extremely large # of classes.

@ ImageNet: >20k labels; Wikipedia: >1M categories.

Next, generalize previous algorithms to multiclass settings.
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Multiclass Loss J
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Binary Logistic Regression

@ Given an input x, we would like to output a classification between (0,1).

1

f(x) = sigmoid(z 1+@ T+ oxp—wTx—b)’ (1)
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Binary Logistic Regression

@ Given an input x, we would like to output a classification between (0,1).

S B 1 B 1
];(X) = sigmoid(z) = 1+exp(—z) 1+exp(—wTx—b) (1)
C(Mf '
@ The other class is represented ir{ 1— f(x):) C(Qgg D
B exp(—w ' x—b) B 1 e i
1—flx) = 1+exp(—w ' 'x—b) 1+exp(w'x+b) _@Old( a 2)

—

Cigroid (- 2) =1~ Sigroidy)
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Binary Logistic Regression

@ Given an input x, we would like to output a classification between (0,1).

] . 1 1
f(x) = sigmoid(z) = T+ exp(—2) — T+ oxp—wTx—b)’ (1)

@ The other class is represented in 1 — f(x):

B exp(—w ' x—b) B 1
- 14+exp(—w ' x—b) 14+exp(w'x+b)

1—f(x) — sigmoid(—2z). (2)

® Another way to view: one class has (+w,+b) and the other class has (—w,—b).



Multi-class Logistic Regression Ba'/\a,ry Case

@ Now what if we have one@‘or each class c?

CSCI-GA 2565 53 /88



Multi-class Logistic Regression

@ Now what if we have one w, for each class c?

@ Also called “softmax’ in neural networks. (’,J_S W k
1
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Multi-class Logistic Regression

@ Now what if we have one w, for each class c?

@ Also called “softmax’ in neural networks.

@ Loss function:
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Multi-class Logistic Regression

@ Now what if we have one w, for each class c?

@ Also called “softmax’ in neural networks.

@ Loss function: - (Dj Softmey C 33 .
e Gradient: %:f—y. Recall: MSE loss.

I3
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Comparison to OvA

e Base Hypothesis Space: H ={h:X — R} (score functions).
@ Multiclass Hypothesis Space (for k classes):

1

?:{XHargmaxh;(Xth ..... hkeﬂ{}
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Comparison to OvA

e Base Hypothesis Space: H ={h:X — R} (score functions).

@ Multiclass Hypothesis Space (for k classes): W,TX th;
?:{XHargmaxh;(Xth ..... hkeﬂ{}
— 7 —

o Intuitively,{h,-(x) }cores how likely x is to be from class /.
@ OvA objective: h;j(x) > 0 for x with label i and h;(x) < 0 for x with all other labels.

——

e —
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Comparison to OvA

e Base Hypothesis Space: H{ ={h: X — R} (score functions).
@ Multiclass Hypothesis Space (for k classes):

?:{XHargmaxh;(Xth ..... hkefH}

1

@ Intuitively, h;(x) scores how likely x is to be from class i.
@ OvA objective: h;j(x) > 0 for x with label i and h;(x) < 0 for x with all other labels.

@ At test time, to predict (x, /) correctly we only need

hi(x) > h;(x) Vj i (3)

e— >
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Multiclass Perceptron

o Base linear predictors: h;(x) = w;" x (w € RY).
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Multiclass Perceptron

o Base linear predictors: h;(x) = w;" x (w € RY).
e Multiclass perceptron:
Given a multiclass dataset D ={(x, y)};
Initialize w < 0;
for iter=1,2,..., T do
for (x,y) €D do
argmax, ey WyT,x;

hen // We’ve made a mistake
Wy < w, +x ; // Move the target-class scorer towards X

o

wy <— wy —x ; // Move the wrong-class scorer away from x
y y =

end
end
end
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Rewrite the scoring function

@ Remember that we want to scale to very large # of classes and reuse algorithms and
analysis for binary classification

e — a single weight vector is desired

@ How to rewrite the equation such that we have one w instead of k?
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Rewrite the scoring function

@ Remember that we want to scale to very large # of classes and reuse algorithms and
analysis for binary classification

e — a single weight vector is desired

@ How to rewrite the equation such that we have one w instead of k?

e Encode labels in the feature space.

e Score for each label — score for the “compatibility’ of a label and an input.
"'___\_/\f -

L )

-~
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The Multivector Construction

How to construct the feature map 7
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The Multivector Construction

How to construct the feature map 7
e What if we stack w;'s together (e.g., x € R?,Y ={1,2,3})

wo | Y2 V2 V2 V2
- 22\/22

N——— 2%—/
w1 w3
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The Multivector Construction

How to construct the feature map 7
e What if we stack w;'s together (e.g., x € R?,Y ={1,2,3})

wo | Y2 V2 V2 V2
- 22\/22

N——— 2%—/
w1 w3

e And then do the following: W:R? x{1,2,3} — R® defined by

W(Xl_) = X1,X2,0,0,0,0)

Y(x,2) := (0,0,@0,0)

Y(x,3) = (0,0,0,0,61,x)
CSCI-GA 2565
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The Multivector Construction

How to construct the feature map 7
e What if we stack w;'s together (e.g., x € R?,Y ={1,2,3})

wo | Y2 V2 V2 V2
N 22\/22

~— wy S~
w1 w3

e And then do the following: W:R? x{1,2,3} — R® defined by

1P(X, 1) = (X1,X2,0,0,0,0)
Y(x,2) = (0,0,x1,x2,0,0)
W(X,?}) = (0,0,0,0,Xl,Xg)

e Then (w,¥(x,y)) = (wy,x), which is what we want.
e CSCI-GA 2565 57 / 88



Rewrite multiclass perceptron

Multiclass perceptron using the multivector construction.

Given a multiclass dataset D ={(x, y)};
Initialize w < 0;
for iter=1,2,..., T do
for (x,y) €D do
y =argmax,cy w'\P(x,y’) ; // Equivalent to argmax, sy WyT,x
if v £y then e’ve made a mistake
@%@I— (x,y)); // Move the scorer towards V(x,y)
W< w tb(xy)\\// Move the scorer away from \(x,y)
nd

ende ‘Fecch- re .

end fector
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Rewrite multiclass perceptron

Multiclass perceptron using the multivector construction.

Given a multiclass dataset D ={(x, y)};
Initialize w < 0;
for iter=1,2,..., T do
for (x,y) €D do
y =argmax,cy w'\P(x,y’) ; // Equivalent to argmax, sy WyT,x
if y £y then // We’ve made a mistake
w < w+1P(x,y) ; // Move the scorer towards V(x,y)
w <+ w—1P(x,y) ; // Move the scorer away from \(x,y)

end

end

end
Exercise: What is the base binary classification problem in multiclass perceptron?



Features

Toy multiclass example: Part-of-speech classification
@ X ={All possible words}
e Y={NOUN,VERB,ADJECTIVE,. .. }.
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Features

Toy multiclass example: Part-of-speech classification

@ X = {All possible words}

o Y ={NOUN VERB ADJECTIVE,.. ).

o Featumx € X: [The word itself|, ENDS IN ly, ENDS IN ness, ...
How to construct the feature vector?

e Multivector construction: w € RIXk—doesn’t scale.
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Features

Toy multiclass example: Part-of-speech classification

@ X = {All possible words}

e Y={NOUN,VERB,ADJECTIVE,. .. }.

o Features of x € X: [The word itself], ENDS IN ly, ENDS IN ness, ...
How to construct the feature vector?

o Multivector construction: w € R9*k—doesn't scale.

@ Directly design features for each class.

Y(x,y) = (1(x,y)ba(x, y), b3(x,y), ..., balx,y)) (6)

e Size can be bounded by d.



Features

Sample training data:

The boy grabbed the apple and ran away quickly .
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Features

Sample training data:

The boy grabbed the apple and ran away quickly .

Feature:
_—l(.x,y) — 1[x=apple AND y = NOUN]
U2(x,y) = 1]x=run AND y = NOUN]
P3(x,y) = 1Llx=run AND y = VERB]
Pa(x,y) = 1[x ENDS IN ly AND y =ADVERB]
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Features

Sample training data:

The boy grabbed the apple and ran away quickly .

Feature:

= 1

[x = apple AND y = NOUN]
= lk run AND y = NOUN]
= 1[x=run AND y = VERB]

= 1[x ENDS IN Iy AND y =ADVERB]

o Eg, ¥Y(x= run, y = NOUN) = (0,1,0,0,...)

CSCI-GA 2565

60 / 88



Features

Sample training data:

The boy grabbed the apple and Way quickly .

Feature: Verb
@1} y) = 1[x=apple AND y = NOUN]
Po(x,y) = 1Llx=run AND y =NOUN] -
P3(x,y) = IL[x: un AND y = VERB]
WX y) = 1[x ENDS IN Iy AND y =ADVERB]

@ E.g., W(x=run,y =NOUN) = (0, 1,0,0,.. )

@ After training, what's wy, wo, w3, wy?
| m— —
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Features

Sample training data:

The boy grabbed the apple and ran away quickly .

Feature:

1[x = apple AND y = NOUN]
I1[{x =run AND y = NOUN]
I1[x =run AND y = VERB]

I1[x ENDS IN ly AND y =ADVERB]

@ Eg., Y(x=run,y=NOUN)=(0,1,0,0,...)

@ After training, what's wy, wo, w3, wy?

@ No need to include features unseen in training data.
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Feature templates: implementation

Flexible, e.g., neighboring words, suffix/prefix.

°
@ "Read off"” features from the training data.

@ Often sparse—efficient in practice, e.g., NLP problems.
°

Can use a hash function: template —{1,2, ..., d}.
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Review

Ingredients in multiclass classification:
@ Scoring functions for each class (similar to ranking).

@ Represent labels in the input space = single weight vector.
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Review

Ingredients in multiclass classification:

@ Scoring functions for each class (similar to ranking).

@ Represent labels in the input space = single weight vector.
We've seen

@ How to generalize the perceptron algorithm to multiclass setting.

@ Very simple idea. Was popular in NLP for structured prediction (e.g., tagging, parsing).
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Review

Ingredients in multiclass classification:

@ Scoring functions for each class (similar to ranking).

@ Represent labels in the input space = single weight vector.
We've seen

@ How to generalize the perceptron algorithm to multiclass setting.

@ Very simple idea. Was popular in NLP for structured prediction (e.g., tagging, parsing).
Next,

@ How to generalize SVM to the multiclass setting.

@ Concept check: Why might one prefer SVM / perceptron?

—— ey
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. : (06¢
Margin for Multiclass

Binary @ Margin for (x{"),y(n):

Mmovg .
(M) T () | VT (7)
S —J
e Want margin to be large and positive (w” x!") has same sign as y("))

CSCI-GA 2565 63 /88



Margin for Multiclass + |
\5 (pvet.

Binary @ Margin for (x{"),y(n):

y (M T xn) (7)

e Want margin to be large and positive (w” x!") has same sign as y("))

_W—ES—/ o Class-specific margin for (x("), y(n). 'f'cr“;&k pe(AJLH o,
MJ ,y( Ty Y= o (8)

@ Difference between scores of the correct class and each other cla‘:é "\ ()( y)
o Want margin to be large and positive for all y # y (")
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Multiclass SVM: separable case

Binary Recall binary formulation.
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Multiclass SVM: separable case

Binary Recall binary formulation.

M ‘%\\\")\\L

W tn)  (h)
)
St 3mwam7x\ ¥ XY
\/\(&J
rrorqth .

Multiclass As in the binary case take 1 as our target margin.

My ) (G, gy Y - <WV£K_3]>
&/Y\/ pvu\.S“"Q

kwc]U\'.
yVLt'/\ - l\")\\
v n.
S,-t. m‘\j7 “'wqu* ’“’N\ﬁt

— CSCI-GA 2565 64 /88



Multiclass SVM: separable case

Binary Recall binary formulation.

Multiclass As in the binary case, take 1 as our target margin.

Exercise: write the objective for the non-separable case



Recap: hingle loss for binary classification

@ Hinge loss: a convex upperbound on the 0-1 loss

€hinge(yv)/}) — max(_O, 1 _yh(X))

Loss
= Zero_One
3 -

=== Hinge

0 2
Margin m=yf(x)
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Generalized hinge loss

@ What's the zero-one loss for multiclass classification?

(10)
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Generalized hinge loss

@ What's the zero-one loss for multiclass classification?

Aly.y") =I{y #y'} (10)
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Generalized hinge loss

@ What's the zero-one loss for multiclass classification?

Aly.y") =I{y #y'} (10)

@ In general, can also have different cost for each class.
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Generalized hinge loss

@ What's the zero-one loss for multiclass classification?

Aly.y") =I{y #y'} (10)

@ In general, can also have different cost for each class.

@ Upper bound on A(y,y’).
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Generalized hinge loss Max (D, |- yh)
) J
@ What's the zero-one loss for multiclass classification? ] bilw,/7

Aly,y)=T{y #y'} hw% - (10)

@ In general, can also have different cost for each class.

@ Upper bound on A(y,y’).
Q(ﬁf(ol)s A(Sffj‘)-—<tcrju' § Core — P(ed.Soof'Q).
Y\%M"'VC-

'
@ Generalized hinge loss:

\ —
K(B,X,u) . ma\’x
e CSCI-GA 2565 66 / 88
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Multiclass SVM with Hinge Loss

@ Recall the hinge loss formulation for binary SVM (without the bias term):
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Multiclass SVM with Hinge Loss

@ Recall the hinge loss formulation f%blnary SVM (without the bias term):

mm -uwu b CY max(o, I- T
2 Mo (o, 1=y wx™)

Nn=\ h

@ The multiclass objective: N ( /g ( kf( Clxuh:
in el 4 DLy, g7y - (W, Tixy)- Loy
Mw/\ ;, \\w\\ . Z= | — —) )

o A(y,y’) as target margin for each class.

o If margin m, ,/(w) meets or exceeds its target Aly'"™ y") Yy €Y, then no loss on example n.





