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Announcement

Project proposal due Oct 31 noon.
Schedule your project consultation soon (they are on the week after the proposal).
Use the provided template! (if your final report fails to use template then there will be
marks off)
Homework 3 will be released soon and due Nov 12 11:59AM.
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Recap

Bayesian modeling adds a prior on the parameters.
Models the distribution of parameters

Bayes Rule:

p(y | x) =
p(x | y)p(y)

p(x)

p(✓ | D) =
p(D | ✓)p(✓)

p(D)
.

p(✓ | D)| {z }
posterior

/ p(D | ✓)| {z }
likelihood

p(✓)|{z}
prior

.

Conjugate prior: Having the same form of distribution as the posterior.
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Bayesian Point Estimates

We have the posterior distribution ✓ | D.
What if someone asks us to choose a single ✓̂ (i.e. a point estimate of ✓)?

Common options:
posterior mean ✓̂= E [✓ | D]
maximum a posteriori (MAP) estimate ✓̂= argmax✓ p(✓ | D)

Note: this is the mode of the posterior distribution
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What else can we do with a posterior?

Look at it: display uncertainty estimates to our client

Extract a credible set for ✓ (a Bayesian confidence interval).
e.g. Interval [a,b] is a 95% credible set if

P(✓ 2 [a,b] | D)> 0.95

Select a point estimate using Bayesian decision theory:
Choose a loss function.
Find action minimizing expected risk w.r.t. posterior
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Bayesian Decision Theory
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Bayesian Decision Theory

Ingredients:
Parameter space ⇥.
Prior: Distribution p(✓) on ⇥.
Action space A.
Loss function: ` :A⇥⇥! R.

The posterior risk of an action a 2A is

r(a) := E [`(✓,a) | D]

=

Z
`(✓,a)p(✓ | D)d✓.

It’s the expected loss under the posterior.
A Bayes action a

⇤ is an action that minimizes posterior risk:

r(a⇤) = min
a2A

r(a)

CSCI-GA 2565 8 / 88
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Bayesian Point Estimation

General Setup:
Data D generated by p(y | ✓), for unknown ✓ 2⇥.

We want to produce a point estimate for ✓.

Choose:
Prior p(✓) on ⇥= R.
Loss `(✓̂,✓)

Find action ✓̂ 2⇥ that minimizes the posterior risk:

r(✓̂) = E
h
`(✓̂,✓) | D

i

=

Z
`(✓̂,✓)p(✓ | D)d✓
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Important Cases

Squared Loss : `(✓̂,✓) =
⇣
✓- ✓̂

⌘2
) posterior mean

Zero-one Loss: `(✓, ✓̂) = [✓ 6= ✓̂] ) posterior mode

Absolute Loss : `(✓̂,✓) =
���✓- ✓̂

��� ) posterior median

Optimal decision depends on the loss function and the posterior distribution.
Example: I have a card drawing from a deck of 2,3,3,4,4,5,5,5, and you guess the value of
my card.
mean: 3.875; mode: 5; median: 4

CSCI-GA 2565 10 / 88
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Bayesian Point Estimation: Square Loss

Find action ✓̂ 2⇥ that minimizes posterior risk

r(✓̂) =

Z ⇣
✓- ✓̂

⌘2
p(✓ | D)d✓.

Differentiate:

dr(✓̂)

d ✓̂
= -

Z
2
⇣
✓- ✓̂

⌘
p(✓ | D)d✓

= -2
Z
✓p(✓ | D)d✓+2✓̂

Z
p(✓ | D)d✓

| {z }
=1

= -2
Z
✓p(✓ | D)d✓+2✓̂
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Bayesian Point Estimation: Square Loss

Derivative of posterior risk is

dr(✓̂)

d ✓̂
=-2

Z
✓p(✓ | D)d✓+2✓̂.

First order condition dr(✓̂)

d✓̂
= 0 gives

✓̂ =

Z
✓p(✓ | D)d✓

= E [✓ | D]

The Bayes action for square loss is the posterior mean.
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Interim summary
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Recap and Interpretation

The prior represents belief about ✓ before observing data D.
The posterior represents rationally updated beliefs after seeing D.

All inferences and action-taking are based on the posterior distribution.
In the Bayesian approach,

No issue of justifying an estimator.
Only choices are

family of distributions, indexed by ⇥, and
prior distribution on ⇥

For decision making, we need a loss function.
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Recap: Conditional Probability Models
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Conditional Probability Modeling

Input space X

Outcome space Y

Action space A= {p(y) | p is a probability distribution on Y}.

Hypothesis space F contains prediction functions f : X!A.
Prediction function f 2 F takes input x 2 X and produces a distribution on Y

A parametric family of conditional densities is a set

{p(y | x ,✓) : ✓ 2⇥} ,

where p(y | x ,✓) is a density on outcome space Y for each x in input space X, and
✓ is a parameter in a [finite dimensional] parameter space ⇥.

This is the common starting point for either classical or Bayesian regression.
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Classical treatment: Likelihood Function

Data: D= (y1, . . . , ,yn)

The probability density for our data D is

p(D | x1, . . . ,xn,✓) =
nY

i=1

p(yi | xi ,✓).

For fixed D, the function ✓ 7! p(D | x ,✓) is the likelihood function:

LD(✓) = p(D | x ,✓),

where x = (x1, . . . ,xn).
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Maximum Likelihood Estimator

The maximum likelihood estimator (MLE) for ✓ in the family {p(y | x ,✓) | ✓ 2⇥} is

✓̂MLE = argmax
✓2⇥

LD(✓).

MLE corresponds to ERM, if we set the loss to be the negative log-likelihood.

The corresponding prediction function is

f̂ (x) = p(y | x , ✓̂MLE).

CSCI-GA 2565 18 / 88
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Bayesian Conditional Probability Models

CSCI-GA 2565 19 / 88



Bayesian Conditional Models

Input space X= Rd Outcome space Y= R

The Bayesian conditional model has two components:
A parametric family of conditional densities:

{p(y | x ,✓) : ✓ 2⇥}

A prior distribution p(✓) on ✓ 2⇥.
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The Posterior Distribution

The prior distribution p(✓) represents our beliefs about ✓ before seeing D.

The posterior distribution for ✓ is

p(✓ | D,x) / p(D | ✓,x)p(✓)

= LD(✓)| {z }
likelihood

p(✓)|{z}
prior

Posterior represents the rationally updated beliefs after seeing D.
Each ✓ corresponds to a prediction function,

i.e. the conditional distribution function p(y | x ,✓).
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Point Estimates of Parameter

What if we want point estimates of ✓?

We can use Bayesian decision theory to derive point estimates.
We may want to use

✓̂= E [✓ | D,x ] (the posterior mean estimate)
✓̂= median[✓ | D,x ]
✓̂= argmax✓2⇥ p(✓ | D,x) (the MAP estimate)

depending on our loss function.
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Back to the basic question - Bayesian Prediction Function

Find a function takes input x 2 X and produces a distribution on Y

In the frequentist approach:
Choose family of conditional probability densities (hypothesis space).
Select one conditional probability from family, e.g. using MLE.

In the Bayesian setting:
We choose a parametric family of conditional densities

{p(y | x ,✓) : ✓ 2⇥} ,

and a prior distribution p(✓) on this set.

Having set our Bayesian model, how do we predict a distribution on y for input x?
We don’t need to make a discrete selection from the hypothesis space: we maintain
uncertainty.
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The Prior Predictive Distribution

Suppose we have not yet observed any data.

In the Bayesian setting, we can still produce a prediction function.

The prior predictive distribution is given by

x 7! p(y | x) =

Z
p(y | x ;✓)p(✓)d✓.

This is an average of all conditional densities in our family, weighted by the prior.
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The Posterior Predictive Distribution

Suppose we’ve already seen data D.

The posterior predictive distribution is given by

x 7! p(y | x ,D) =

Z
p(y | x ;✓)p(✓ | D)d✓.

This is an average of all conditional densities in our family, weighted by the posterior.
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Comparison to Frequentist Approach

In Bayesian statistics we have two distributions on ⇥:
the prior distribution p(✓)
the posterior distribution p(✓ | D).

These distributions over parameters correspond to distributions on the hypothesis space:

{p(y | x ,✓) : ✓ 2⇥} .

In the frequentist approach, we choose ✓̂ 2⇥, and predict

p(y | x , ✓̂(D)).

In the Bayesian approach, we integrate out over ⇥ w.r.t. p(✓ | D) and predict with

p(y | x ,D) =

Z
p(y | x ;✓)p(✓ | D)d✓
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What if we don’t want a full distribution on y?

Once we have a predictive distribution p(y | x ,D),
we can easily generate single point predictions.

x 7! E [y | x ,D], to minimize expected square error.

x 7!median[y | x ,D], to minimize expected absolute error

x 7! argmaxy2Y p(y | x ,D), to minimize expected 0/1 loss

Each of these can be derived from p(y | x ,D).
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Gaussian Regression Example
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Example in 1-Dimension: Setup

Input space X= [-1,1] Output space Y= R
Given x , the world generates y as

y = w0+w1x +",

where " ⇠N(0,0.22).

Written another way, the conditional probability model is

y | x ,w0,w1 ⇠ N
�
w0+w1x , 0.22� .

What’s the parameter space? R2.
Prior distribution: w = (w0,w1) ⇠N

�
0, 1

2 I
�
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Example in 1-Dimension: Prior Situation

Prior distribution: w = (w0,w1) ⇠N
�
0, 1

2 I
�

(Illustrated on left)

On right, y(x) = E [y | x ,w ] = w0+w1x , for randomly chosen w ⇠ p(w) =N
�
0, 1

2 I
�
.

Bishop’s PRML Fig 3.7
CSCI-GA 2565 30 / 88

i



Example in 1-Dimension: 1 Observation

On left: posterior distribution; white cross indicates true parameters
On right:

blue circle indicates the training observation
red lines, y(x) = E [y | x ,w ] = w0+w1x , for randomly chosen w ⇠ p(w |D) (posterior)

Bishop’s PRML Fig 3.7
CSCI-GA 2565 31 / 88



Example in 1-Dimension: 2 and 20 Observations

Bishop’s PRML Fig 3.7
CSCI-GA 2565 32 / 88



Gaussian Regression: Closed form
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Closed Form for Posterior

Model:

w ⇠ N (0,⌃0)

yi | x ,w i.i.d. N(wT
xi ,�

2)

Design matrix X Response column vector y
Posterior distribution is a Gaussian distribution:

w | D ⇠ N(µP ,⌃P)

µP =
�
X

T
X +�2⌃-1

0
�-1

X
T
y

⌃P =
�
�-2

X
T
X +⌃-1

0
�-1

Posterior Variance ⌃P gives us a natural uncertainty measure.
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Closed Form for Posterior

Posterior distribution is a Gaussian distribution:

w | D ⇠

N(µP ,⌃P)

µP =
�
X

T
X +�2⌃-1

0
�-1

X
T
y

⌃P =
�
�-2

X
T
X +⌃-1

0
�-1

If we want point estimates of w , MAP estimator and the posterior mean are given by

ŵ = µP =
�
X

T
X +�2⌃-1

0
�-1

X
T
y

For the prior variance ⌃0 =
�2

� I , we get

ŵ = µP =
�
X

T
X +�I

�-1
X

T
y ,

which is of course the ridge regression solution.
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X
T
X +⌃-1

0
�-1

If we want point estimates of w , MAP estimator and the posterior mean are given by

ŵ = µP =
�
X

T
X +�2⌃-1

0
�-1

X
T
y

For the prior variance ⌃0 =
�2

� I , we get

ŵ = µP =
�
X

T
X +�I

�-1
X

T
y ,

which is of course the ridge regression solution.
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Connection the MAP to Ridge Regression

The Posterior density on w for ⌃0 =
�2

� I :

p(w | D) / exp

✓
-
�

2�2 kwk
2
◆

| {z }
prior

nY

i=1

exp

✓
-
(yi -w

T
xi )2

2�2

◆

| {z }
likelihood

To find the MAP, we minimize the negative log posterior:

ŵMAP = argmin
w2Rd

[- logp(w | D)]

= argmin
w2Rd

nX

i=1

(yi -w
T
xi )

2

| {z }
log-likelihood

+�kwk2| {z }
log-prior

Which is the ridge regression objective.
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Predictive Posterior Distribution

Given a new input point xnew, how do we predict ynew ?

Predictive distribution

p(ynew | xnew,D) =

Z
p(ynew | xnew,w ,D)p(w | D)dw

=

Z
p(ynew | xnew,w)p(w | D)dw

For Gaussian regression, predictive distribution has closed form.
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Closed Form for Predictive Distribution

Model:

w ⇠ N (0,⌃0)

yi | x ,w i.i.d. N(wT
xi ,�

2)

Predictive Distribution

p(ynew | xnew,D) =

Z
p(ynew | xnew,w)p(w | D)dw .

Averages over prediction for each w , weighted by posterior distribution.
Closed form:

ynew | xnew,D ⇠ N
�
⌘new , �

2
new

�

⌘new = µT
P xnew

�2
new = x

T
new⌃Pxnew| {z }

from variance in w

+ �2
|{z}

inherent variance in y
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Bayesian Regression Provides Uncertainty Estimates

With predictive distributions, we can give mean prediction with error bands:

Rasmussen and Williams’ Gaussian Processes for Machine Learning, Fig.2.1(b)
CSCI-GA 2565 39 / 88



Multi-class Overview
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Motivation

So far, most algorithms we’ve learned are designed for binary classification.

Many real-world problems have more than two classes.

What are some potential issues when we have a large number of classes?
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Today’s lecture

How to reduce multiclass classification to binary classification?
We can think of binary classifier or linear regression as a black box. Naive ways:
E.g. multiple binary classifiers produce a binary code for each class (000, 001, 010)
E.g. a linear regression produces a numerical value for each class (1.0, 2.0, 3.0)

How do we generalize binary classification algorithm to the multiclass setting?
We also need to think about the loss function.

Example of very large output space: structured prediction.
Multi-class: Mutually exclusive class structure.
Text: Temporal relational structure.
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Reduction to Binary Classification
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One-vs-All / One-vs-Rest

Setting Input space: X

Output space: Y= {1, . . . ,k}

Training Train k binary classifiers, one for each class: h1, . . . ,hk : X! R.
Classifier hi distinguishes class i (+1) from the rest (-1).

Prediction Majority vote:
h(x) = argmax

i2{1,...,k}
hi (x)

Ties can be broken arbitrarily.
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OvA: 3-class example (linear classifier)

Consider a dataset with three classes:

Assumption: each class is linearly separable from the
rest.
Ideal case: only target class has positive score.

Train OvA classifiers:
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OvA: 4-class non linearly separable example

Consider a dataset with four classes:

Cannot separate red points from the rest.
Which classes might have low accuracy?

Train OvA classifiers:
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All vs All / One vs One / All pairs

Setting Input space: X

Output space: Y= {1, . . . ,k}

Training Train
�k
2
�

binary classifiers, one for each pair: hij : X! R
for i 2 [1,k ] and j 2 [i +1,k ].
Classifier hij distinguishes class i (+1) from class j (-1).

Prediction Majority vote (each class gets k-1 votes)

h(x) = argmax
i2{1,...,k}

X

j 6=i

hij(x)I {i < j}| {z }
class i is +1

-hji (x)I {j < i }| {z }
class i is -1

Tournament
Ties can be broken arbitrarily.
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AvA: four-class example

Consider a dataset with four classes:

Assumption: each pair of classes are linearly separable.
More expressive than OvA.

What’s the decision region for the red class?

CSCI-GA 2565 48 / 88
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OvA vs AvA

OvA AvA

computation train O(k

Btrain(n)

) O(k2

Btrain(n/k)

)
test O(k

Btest

) O(k2

Btest

)

challenges
train class imbalance small training set

test calibration / scale
tie breaking

Lack theoretical justification but simple to implement and works well in practice (when #
classes is small).
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Review

Reduction-based approaches:
Reducing multiclass classification to binary classification: OvA, AvA
Key is to design “natural” binary classification problems without large computation cost.

But,
Unclear how to generalize to extremely large # of classes.
ImageNet: >20k labels; Wikipedia: >1M categories.

Next, generalize previous algorithms to multiclass settings.
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Multiclass Loss
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Binary Logistic Regression

Given an input x, we would like to output a classification between (0,1).

f (x) = sigmoid(z) =
1

1+ exp(-z)
=

1
1+ exp(-w>x -b)

. (1)

The other class is represented in 1- f (x):

1- f (x) =
exp(-w

>
x -b)

1+ exp(-w>x -b)
=

1
1+ exp(w>x +b)

= sigmoid(-z). (2)

Another way to view: one class has (+w ,+b) and the other class has (-w ,-b).

CSCI-GA 2565 52 / 88



Binary Logistic Regression

Given an input x, we would like to output a classification between (0,1).

f (x) = sigmoid(z) =
1

1+ exp(-z)
=

1
1+ exp(-w>x -b)

. (1)

The other class is represented in 1- f (x):

1- f (x) =
exp(-w

>
x -b)

1+ exp(-w>x -b)
=

1
1+ exp(w>x +b)

= sigmoid(-z). (2)

Another way to view: one class has (+w ,+b) and the other class has (-w ,-b).

CSCI-GA 2565 52 / 88

cllass I
class 0

sigmoid 2 1 Sigmoidiz



Binary Logistic Regression

Given an input x, we would like to output a classification between (0,1).

f (x) = sigmoid(z) =
1

1+ exp(-z)
=

1
1+ exp(-w>x -b)

. (1)

The other class is represented in 1- f (x):

1- f (x) =
exp(-w

>
x -b)

1+ exp(-w>x -b)
=

1
1+ exp(w>x +b)

= sigmoid(-z). (2)

Another way to view: one class has (+w ,+b) and the other class has (-w ,-b).

CSCI-GA 2565 52 / 88



Multi-class Logistic Regression

Now what if we have one wc for each class c?

Also called “softmax” in neural networks.
Loss function:
Gradient: @L

@z = f - y . Recall: MSE loss.

CSCI-GA 2565 53 / 88
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Comparison to OvA

Base Hypothesis Space: H = {h : X! R} (score functions).
Multiclass Hypothesis Space (for k classes):

F =

�
x 7! argmax

i
hi (x) | h1, . . . ,hk 2H

�

Intuitively, hi (x) scores how likely x is to be from class i .
OvA objective: hi (x)> 0 for x with label i and hi (x)< 0 for x with all other labels.
At test time, to predict (x , i) correctly we only need

hi (x)> hj(x) 8j 6= i . (3)
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Multiclass Perceptron

Base linear predictors: hi (x) = w
T
i x (w 2 Rd).

Multiclass perceptron:
Given a multiclass dataset D= {(x ,y)};
Initialize w  0;
for iter = 1,2, . . . ,T do

for (x ,y) 2D do
ŷ = argmaxy 02Yw

T
y 0x ;

if ŷ 6= y then // We’ve made a mistake
wy  wy + x ; // Move the target-class scorer towards x

wŷ  wŷ - x ; // Move the wrong-class scorer away from x

end
end

end
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ŷ = argmaxy 02Yw

T
y 0x ;
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Rewrite the scoring function

Remember that we want to scale to very large # of classes and reuse algorithms and
analysis for binary classification

=) a single weight vector is desired

How to rewrite the equation such that we have one w instead of k?

w
T
i x = w

T (x , i) (4)
hi (x) = h(x , i) (5)

Encode labels in the feature space.
Score for each label ! score for the “compatibility” of a label and an input.

CSCI-GA 2565 56 / 88



Rewrite the scoring function

Remember that we want to scale to very large # of classes and reuse algorithms and
analysis for binary classification

=) a single weight vector is desired

How to rewrite the equation such that we have one w instead of k?

w
T
i x = w

T (x , i) (4)
hi (x) = h(x , i) (5)

Encode labels in the feature space.
Score for each label ! score for the “compatibility” of a label and an input.

CSCI-GA 2565 56 / 88

7 featurefunction

i



The Multivector Construction

How to construct the feature map  ?

What if we stack wi ’s together (e.g., x 2 R2,Y= {1,2,3})

w =

0

BB@-

p
2

2
,

p
2

2| {z }
w1

, 0,1|{z}
w2

,

p
2

2
,

p
2

2| {z }
w3

1

CCA

And then do the following:  : R2⇥ {1,2,3}! R6 defined by

 (x ,1) := (x1,x2,0,0,0,0)
 (x ,2) := (0,0,x1,x2,0,0)
 (x ,3) := (0,0,0,0,x1,x2)

Then hw , (x ,y)i= hwy ,xi, which is what we want.
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Rewrite multiclass perceptron

Multiclass perceptron using the multivector construction.
Given a multiclass dataset D= {(x ,y)};
Initialize w  0;
for iter = 1,2, . . . ,T do

for (x ,y) 2D do
ŷ = argmaxy 02Yw

T (x ,y 0) ; // Equivalent to argmaxy 02Yw
T
y 0x

if ŷ 6= y then // We’ve made a mistake
w  w + (x ,y) ; // Move the scorer towards  (x ,y)
w  w - (x , ŷ) ; // Move the scorer away from  (x , ŷ)

end
end

end

Exercise: What is the base binary classification problem in multiclass perceptron?
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Features

Toy multiclass example: Part-of-speech classification
X= {All possible words}
Y= {NOUN,VERB,ADJECTIVE,. . . }.

Features of x 2 X: [The word itself], ENDS_IN_ly, ENDS_IN_ness, ...
How to construct the feature vector?

Multivector construction: w 2 Rd⇥k—doesn’t scale.
Directly design features for each class.

 (x ,y) = ( 1(x ,y), 2(x ,y), 3(x ,y), . . . , d(x ,y)) (6)

Size can be bounded by d .
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Features

Sample training data:

The boy grabbed the apple and ran away quickly .

Feature:

 1(x ,y) = [x = apple AND y = NOUN]
 2(x ,y) = [x = run AND y = NOUN]
 3(x ,y) = [x = run AND y = VERB]
 4(x ,y) = [x ENDS_IN_ly AND y =ADVERB]

. . .

E.g.,  (x = run,y = NOUN) = (0,1,0,0, . . .)
After training, what’s w1,w2,w3,w4?
No need to include features unseen in training data.
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Feature templates: implementation

Flexible, e.g., neighboring words, suffix/prefix.
“Read off” features from the training data.
Often sparse—efficient in practice, e.g., NLP problems.
Can use a hash function: template ! {1,2, . . . ,d}.
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Review

Ingredients in multiclass classification:
Scoring functions for each class (similar to ranking).
Represent labels in the input space =) single weight vector.

We’ve seen
How to generalize the perceptron algorithm to multiclass setting.
Very simple idea. Was popular in NLP for structured prediction (e.g., tagging, parsing).

Next,
How to generalize SVM to the multiclass setting.
Concept check: Why might one prefer SVM / perceptron?
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Margin for Multiclass

Binary Margin for (x(n),y (n)):

y
(n)

w
T
x
(n) (7)

Want margin to be large and positive (wT
x
(n) has same sign as y

(n))

Multiclass Class-specific margin for (x(n),y (n)):

h(x(n),y (n))-h(x(n),y). (8)

Difference between scores of the correct class and each other class
Want margin to be large and positive for all y 6= y

(n).
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Multiclass SVM: separable case

Binary Recall binary formulation.

Multiclass As in the binary case, take 1 as our target margin.

Exercise: write the objective for the non-separable case
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Multiclass SVM: separable case

Binary Recall binary formulation.

Multiclass As in the binary case, take 1 as our target margin.

Exercise: write the objective for the non-separable case
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Recap: hingle loss for binary classification

Hinge loss: a convex upperbound on the 0-1 loss

`hinge(y , ŷ) =max(0,1- yh(x)) (9)
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Generalized hinge loss

What’s the zero-one loss for multiclass classification?

�(y ,y 0) = I
�
y 6= y

0 

(10)

In general, can also have different cost for each class.
Upper bound on �(y ,y 0).

Generalized hinge loss:

CSCI-GA 2565 66 / 88



Generalized hinge loss

What’s the zero-one loss for multiclass classification?

�(y ,y 0) = I
�
y 6= y

0 (10)

In general, can also have different cost for each class.
Upper bound on �(y ,y 0).

Generalized hinge loss:

CSCI-GA 2565 66 / 88



Generalized hinge loss

What’s the zero-one loss for multiclass classification?

�(y ,y 0) = I
�
y 6= y

0 (10)

In general, can also have different cost for each class.

Upper bound on �(y ,y 0).

Generalized hinge loss:

CSCI-GA 2565 66 / 88



Generalized hinge loss

What’s the zero-one loss for multiclass classification?

�(y ,y 0) = I
�
y 6= y

0 (10)

In general, can also have different cost for each class.
Upper bound on �(y ,y 0).

Generalized hinge loss:

CSCI-GA 2565 66 / 88



Generalized hinge loss

What’s the zero-one loss for multiclass classification?

�(y ,y 0) = I
�
y 6= y

0 (10)

In general, can also have different cost for each class.
Upper bound on �(y ,y 0).

Generalized hinge loss:

CSCI-GA 2565 66 / 88

Max 0 1 yh
u

1

king

Δ y y Δ y 9 target sore

T.x.us may
1
9 1

Tw C4cg 4cg



Multiclass SVM with Hinge Loss

Recall the hinge loss formulation for binary SVM (without the bias term):

The multiclass objective:

�(y ,y 0) as target margin for each class.
If margin mn,y 0(w) meets or exceeds its target �(y (n),y 0) 8y 2 Y, then no loss on example n.
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