Bayesian Methods & Multiclass

Mengye Ren

(Slides credit to David Rosenberg, He He, et al.)

NYU

Oct 29, 2024

Slides

- Project proposal due Oct 31 noon.
- Schedule your project consultation soon (they are on the week after the proposal).
- Use the provided template! (if your final report fails to use template then there will be marks off)
- Homework 3 will be released soon and due Nov 12 11:59AM.

Recap

 \bullet

 \bullet

- Bayesian modeling adds a prior on the parameters.
- Models the distribution of parameters
- **•** Bayes Rule:

$$
p(y \mid x) = \frac{p(x \mid y)p(y)}{p(x)}
$$

$$
p(\theta | \mathcal{D}) = \frac{p(\mathcal{D} | \theta) p(\theta)}{p(\mathcal{D})}.
$$

Conjugate prior: Having the same form of distribution as the posterior.

[CSCI-GA 2565](#page-0-0) 4 / 88

- We have the posterior distribution $\theta \mid \mathcal{D}$.
- What if someone asks us to choose a single $\hat{\theta}$ (i.e. a point estimate of θ)?
- **·** Common options:
	- posterior mean $\hat{\theta} = \mathbb{E}[\theta | \mathcal{D}]$
	- **maximum a posteriori (MAP) estimate** $\hat{\theta} = \arg \max_{\theta} p(\theta | \mathcal{D})$
		- Note: this is the mode of the posterior distribution
- Look at it: display uncertainty estimates to our client
- Extract a credible set for θ (a Bayesian confidence interval).
	- e.g. Interval [a, b] is a 95% credible set if

 $\mathbb{P}(\theta \in [a, b] | \mathcal{D}) \geqslant 0.95$

- Select a point estimate using Bayesian decision theory:
	- Choose a loss function.
	- Find action minimizing expected risk w.r.t. posterior

[Bayesian Decision Theory](#page-6-0)

Bayesian Decision Theory

- Ingredients:
	- Parameter space Θ.
	- Prior: Distribution $p(\theta)$ on Θ .
	- Action space A .
	- **A** Loss function: $\ell : A \times \Theta \rightarrow \mathbb{R}$.
- The posterior risk of an action $a \in \mathcal{A}$ is

$$
r(a) := \mathbb{E} [\ell(\theta, a) | \mathcal{D}]
$$

=
$$
\int \ell(\theta, a) p(\theta | \mathcal{D}) d\theta.
$$

- It's the expected loss under the posterior.
- A Bayes action a^* is an action that minimizes posterior risk:

$$
r(a^*) = \min_{a \in \mathcal{A}} r(a)
$$

Bayesian Point Estimation

- **o** General Setup:
	- Data D generated by $p(y | \theta)$, for unknown $\theta \in \Theta$.
	- We want to produce a point estimate for θ.
- Choose:
	- Prior $p(\theta)$ on $\Theta = R$.
	- Loss $\ell(\hat{\theta}, \theta)$
- Find action $\hat{\theta} \in \Theta$ that minimizes the posterior risk:

$$
r(\hat{\theta}) = \mathbb{E}\left[\ell(\hat{\theta}, \theta) | \mathcal{D}\right]
$$

$$
= \int \ell(\hat{\theta}, \theta) \rho(\theta | \mathcal{D}) d\theta
$$

Important Cases

- Squared Loss : $\ell(\hat{\theta},\theta)=\left(\theta\!-\!\hat{\theta}\right)^2\quad\Rightarrow$ posterior mean
- Zero-one Loss: $\ell(\theta, \hat{\theta}) = \mathbb{I}[\theta \neq \hat{\theta}] \Rightarrow$ posterior mode
- Absolute Loss : $\ell(\hat{\theta}, \theta) = \Big|$ $\left. \begin{array}{r} \theta - \hat{\theta} \Big| & \Rightarrow \text{posterior median} \end{array} \right.$
- Optimal decision depends on the loss function and the posterior distribution.
- Example: I have a card drawing from a deck of 2,3,3,4,4,5,5,5, and you guess the value of my card.
- mean: 3.875; mode: 5; median: 4

Bayesian Point Estimation: Square Loss

• Find action $\hat{\theta} \in \Theta$ that minimizes posterior risk

$$
r(\hat{\theta}) = \int (\theta - \hat{\theta})^2 p(\theta | \mathcal{D}) d\theta.
$$

· Differentiate:

$$
\frac{dr(\hat{\theta})}{d\hat{\theta}} = -\int 2(\theta - \hat{\theta}) p(\theta | \mathcal{D}) d\theta
$$

$$
= -2 \int \theta p(\theta | \mathcal{D}) d\theta + 2\hat{\theta} \underbrace{\int p(\theta | \mathcal{D}) d\theta}_{=1}
$$

$$
= -2 \int \theta p(\theta | \mathcal{D}) d\theta + 2\hat{\theta}
$$

Bayesian Point Estimation: Square Loss

• Derivative of posterior risk is

$$
\frac{dr(\hat{\theta})}{d\hat{\theta}} = -2\int \theta \rho(\theta | \mathcal{D}) d\theta + 2\hat{\theta}.
$$

First order condition $\frac{dr(\hat{\theta})}{d\hat{\theta}} = 0$ gives

$$
\hat{\theta} = \int \theta \rho(\theta | \mathcal{D}) d\theta
$$

$$
= \mathbb{E}[\theta | \mathcal{D}]
$$

• The Bayes action for square loss is the posterior mean.

[Interim summary](#page-12-0)

- \bullet The prior represents belief about θ before observing data \mathcal{D} .
- \bullet The posterior represents rationally updated beliefs after seeing \mathcal{D} .
- All inferences and action-taking are based on the posterior distribution.
- In the Bayesian approach,
	- No issue of justifying an estimator.
	- Only choices are
		- **family of distributions**, indexed by Θ , and
		- **•** prior distribution on Θ
	- For decision making, we need a loss function.

[Recap: Conditional Probability Models](#page-14-0)

Conditional Probability Modeling

- Input space X
- Outcome space $\frac{1}{2}$
- Action space $A = \{p(y) | p$ is a probability distribution on $\mathcal{Y}\}.$
- Hypothesis space $\mathcal F$ contains prediction functions $f: \mathcal X \to \mathcal A$.
- Prediction function $f \in \mathcal{F}$ takes input $x \in \mathcal{X}$ and produces a distribution on \mathcal{Y}
- A parametric family of conditional densities is a set

 $\{p(\mathsf{y} \mid \mathsf{x}, \theta) : \theta \in \Theta\},\$

- where $p(y | x, \theta)$ is a density on **outcome space** *y* for each x in **input space** *X*, and
- θ is a parameter in a [finite dimensional] parameter space Θ .
- This is the common starting point for either classical or Bayesian regression.

Classical treatment: Likelihood Function

- \bullet Data: $\mathcal{D} = (y_1, \ldots, y_n)$
- \bullet The probability density for our data $\mathcal D$ is

$$
p(\mathcal{D} \mid x_1,\ldots,x_n,\theta) = \prod_{i=1}^n p(y_i \mid x_i,\theta).
$$

• For fixed D, the function $\theta \mapsto p(\mathcal{D} | x, \theta)$ is the likelihood function:

$$
L_{\mathcal{D}}(\theta) = p(\mathcal{D} \mid x, \theta),
$$

where $x = (x_1, \ldots, x_n)$.

• The maximum likelihood estimator (MLE) for θ in the family $\{p(y | x, \theta) | \theta \in \Theta\}$ is

$$
\hat{\theta}_{MLE} = \underset{\theta \in \Theta}{\arg \max} L_{\mathcal{D}}(\theta).
$$

- MLE corresponds to ERM, if we set the loss to be the negative log-likelihood.
- The corresponding prediction function is

$$
\hat{f}(x) = p(y \mid x, \hat{\theta}_{MLE}).
$$

[Bayesian Conditional Probability Models](#page-18-0)

- Input space $\mathfrak{X}=\mathsf{R}^d$ Outcome space $\mathcal{Y}=\mathsf{R}$
- The Bayesian conditional model has two components:
	- A parametric family of conditional densities:

 $\{p(y | x, \theta) : \theta \in \Theta\}$

• A prior distribution $p(\theta)$ on $\theta \in \Theta$.

The Posterior Distribution

- **•** The prior distribution $p(\theta)$ represents our beliefs about θ before seeing \mathcal{D} .
- The posterior distribution for θ is

$$
p(\theta | \mathcal{D}, x) \propto p(\mathcal{D} | \theta, x) p(\theta)
$$

=
$$
\underbrace{L_{\mathcal{D}}(\theta)}_{\text{likelihood prior}}
$$

- \bullet Posterior represents the rationally updated beliefs after seeing \mathcal{D} .
- \bullet Each θ corresponds to a prediction function,
	- i.e. the conditional distribution function $p(y | x, \theta)$.
- What if we want point estimates of θ ?
- We can use Bayesian decision theory to derive point estimates.
- We may want to use
	- $\hat{\theta} = \mathbb{E}[\theta | \mathcal{D}, x]$ (the posterior mean estimate)
	- $\hat{\theta}$ = median[θ | \mathcal{D}, \mathbf{x}]
	- $\hat{\theta}$ = arg max $_{\theta \in \Theta}$ p($\theta \mid \mathcal{D}, x$) (the MAP estimate)
- depending on our loss function.

Back to the basic question - Bayesian Prediction Function

- Find a function takes input $x \in \mathcal{X}$ and produces a distribution on \mathcal{Y}
- In the frequentist approach:
	- Choose family of conditional probability densities (hypothesis space).
	- Select one conditional probability from family, e.g. using MLE.
- In the Bayesian setting:
	- We choose a parametric family of conditional densities

 $\{p(y | x, \theta) : \theta \in \Theta\}.$

- and a prior distribution $p(\theta)$ on this set.
- \bullet Having set our Bayesian model, how do we predict a distribution on y for input χ ?
- We don't need to make a discrete selection from the hypothesis space: we maintain uncertainty.
- Suppose we have not yet observed any data.
- In the Bayesian setting, we can still produce a prediction function.
- The prior predictive distribution is given by

$$
x \mapsto p(y \mid x) = \int p(y \mid x; \theta) p(\theta) d\theta.
$$

This is an average of all conditional densities in our family, weighted by the prior.

- Suppose we've already seen data D.
- The posterior predictive distribution is given by

$$
x \mapsto p(y \mid x, \mathcal{D}) = \int p(y \mid x; \theta) p(\theta \mid \mathcal{D}) d\theta.
$$

This is an average of all conditional densities in our family, weighted by the posterior.

Comparison to Frequentist Approach

- \bullet In Bayesian statistics we have two distributions on Θ :
	- the prior distribution $p(\theta)$
	- the posterior distribution $p(\theta | \mathcal{D})$.
- These distributions over parameters correspond to distributions on the hypothesis space:

 $\{p(y | x, \theta) : \theta \in \Theta\}.$

• In the frequentist approach, we choose $\hat{\theta} \in \Theta$, and predict

 $p(v | x, \hat{\theta}(\mathcal{D})).$

• In the Bayesian approach, we integrate out over Θ w.r.t. $p(\theta | \mathcal{D})$ and predict with

$$
p(y | x, \mathcal{D}) = \int p(y | x; \theta) p(\theta | \mathcal{D}) d\theta
$$

What if we don't want a full distribution on y ?

- \bullet Once we have a predictive distribution $p(y | x, D)$.
	- we can easily generate single point predictions.
- $\bullet x \mapsto \mathbb{E}[y | x, \mathcal{D}]$, to minimize expected square error.
- $\bullet x \mapsto \text{median}[y | x, \mathcal{D}]$, to minimize expected absolute error
- $x \mapsto \argmax_{y \in \mathcal{Y}} p(y | x, \mathcal{D})$, to minimize expected 0/1 loss
- Each of these can be derived from $p(y | x, D)$.

[Gaussian Regression Example](#page-27-0)

Example in 1-Dimension: Setup

- Input space $\mathfrak{X} = [-1,1]$ Output space $\mathfrak{Y} = \mathsf{R}$
- \bullet Given x, the world generates v as

$$
y = w_0 + w_1 x + \varepsilon,
$$

where $\varepsilon \sim \mathcal{N}(0, 0.2^2)$.

Written another way, the conditional probability model is

$$
y | x, w_0, w_1 \sim \mathcal{N}(w_0 + w_1 x, 0.2^2)
$$
.

- What's the parameter space? R^2 .
- Prior distribution: $w = (w_0, w_1) \sim \mathcal{N}(0, \frac{1}{2})$ $\frac{1}{2}l$

Example in 1-Dimension: Prior Situation

Prior distribution: $w = (w_0, w_1) \sim \mathcal{N}\left(0, \frac{1}{2}\right)$ $\frac{1}{2}I$) (Illustrated on left)

On right, $y(x) = \mathbb{E}[y | x, w] = w_0 + w_1x$, for randomly chosen $w \sim p(w) = \mathcal{N}(0, \frac{1}{2})$ $\frac{1}{2}l$).

Bishop's PRML Fig 3.7

Example in 1-Dimension: 1 Observation

- On left: posterior distribution; white cross indicates true parameters
- On right:
	- blue circle indicates the training observation
	- red lines, $y(x) = \mathbb{E}[y | x, w] = w_0 + w_1x$, for randomly chosen $w \sim p(w|\mathcal{D})$ (posterior)

Bishop's PRML Fig 3.7

Example in 1-Dimension: 2 and 20 Observations

Bishop's PRML Fig 3.7

[Gaussian Regression: Closed form](#page-32-0)

Closed Form for Posterior

Model:

$$
w \sim \mathcal{N}(0, \Sigma_0)
$$

$$
y_i | x, w \quad \text{i.i.d.} \quad \mathcal{N}(w^T x_i, \sigma^2)
$$

- \bullet Design matrix X Response column vector y
- Posterior distribution is a Gaussian distribution:

$$
w | \mathcal{D} \sim \mathcal{N}(\mu_P, \Sigma_P)
$$

\n
$$
\mu_P = (X^T X + \sigma^2 \Sigma_0^{-1})^{-1} X^T y
$$

\n
$$
\Sigma_P = (\sigma^{-2} X^T X + \Sigma_0^{-1})^{-1}
$$

• Posterior Variance Σ_P gives us a natural uncertainty measure.

Closed Form for Posterior

Posterior distribution is a Gaussian distribution:

$$
w | \mathcal{D} \sim \mathcal{N}(\mu_P, \Sigma_P)
$$

\n
$$
\mu_P = (X^T X + \sigma^2 \Sigma_0^{-1})^{-1} X^T y
$$

\n
$$
\Sigma_P = (\sigma^{-2} X^T X + \Sigma_0^{-1})^{-1}
$$

If we want point estimates of w, MAP estimator and the posterior mean are given by

$$
\hat{w} = \mu_P = \left(X^T X + \sigma^2 \Sigma_0^{-1} \right)^{-1} X^T y
$$

For the prior variance $\Sigma_0 = \frac{\sigma^2}{\lambda}$ $\frac{\sigma^2}{\lambda}$ *l*, we get

$$
\hat{w} = \mu_P = \left(X^T X + \lambda I \right)^{-1} X^T y,
$$

which is of course the ridge regression solution.

Connection the MAP to Ridge Regression

The Posterior density on w for $\Sigma_0 = \frac{\sigma^2}{\lambda}$ $\frac{\partial^2}{\partial \lambda}I$:

• To find the MAP, we minimize the negative log posterior:

$$
\hat{w}_{MAP} = \underset{w \in \mathbb{R}^d}{\arg \min} [-\log p(w | \mathcal{D})]
$$
\n
$$
= \underset{w \in \mathbb{R}^d}{\arg \min} \underbrace{\sum_{i=1}^n (y_i - w^T x_i)^2}_{\text{log-likelihood}} + \underbrace{\lambda \|w\|^2}_{\text{log-prior}}
$$

• Which is the ridge regression objective.
- Given a new input point x_{new} , how do we predict y_{new} ?
- **Predictive distribution**

$$
p(y_{\text{new}} | x_{\text{new}}, \mathcal{D}) = \int p(y_{\text{new}} | x_{\text{new}}, w, \mathcal{D}) p(w | \mathcal{D}) dw
$$

=
$$
\int p(y_{\text{new}} | x_{\text{new}}, w) p(w | \mathcal{D}) dw
$$

For Gaussian regression, predictive distribution has closed form.

Closed Form for Predictive Distribution

Model:

$$
w \sim \mathcal{N}(0, \Sigma_0)
$$

$$
y_i | x, w \quad \text{i.i.d.} \quad \mathcal{N}(w^T x_i, \sigma^2)
$$

• Predictive Distribution

$$
p(y_{\text{new}} \mid x_{\text{new}}, \mathcal{D}) = \int p(y_{\text{new}} \mid x_{\text{new}}, w) p(w \mid \mathcal{D}) dw.
$$

Averages over prediction for each w, weighted by posterior distribution. **Closed form:**

$$
y_{\text{new}} | x_{\text{new}}, \mathcal{D} \sim \mathcal{N} \left(\eta_{\text{new}}, \sigma_{\text{new}}^2 \right)
$$

\n
$$
\eta_{\text{new}} = \mu_P^T x_{\text{new}}
$$

\n
$$
\sigma_{\text{new}}^2 = \frac{x_{\text{new}}^T \sum_{P} x_{\text{new}}}{\text{from variance in } w} + \frac{\sigma^2}{\text{inherent variance in } y}
$$

Bayesian Regression Provides Uncertainty Estimates

With predictive distributions, we can give mean prediction with error bands:

Rasmussen and Williams' Gaussian Processes for Machine Learning, Fig.2.1(b)

[CSCI-GA 2565](#page-0-0) 39 / 88

[Multi-class Overview](#page-39-0)

Motivation

• So far, most algorithms we've learned are designed for binary classification.

- Sentiment analysis (positive vs. negative)
- Spam filter (spam vs. non-spam)
- Many real-world problems have more than two classes.
	- Document classification (over 10 classes)
	- Object recognition (over 20k classes)
	- Face recognition (millions of classes)
- What are some potential issues when we have a large number of classes?
	- Computation cost
	- Class imbalance
	- Different cost of errors
- How to *reduce* multiclass classification to binary classification?
	- We can think of binary classifier or linear regression as a black box. Naive ways:
	- E.g. multiple binary classifiers produce a binary code for each class (000, 001, 010)
	- E.g. a linear regression produces a numerical value for each class (1.0, 2.0, 3.0)
- How do we *generalize* binary classification algorithm to the multiclass setting?
	- . We also need to think about the loss function.
- Example of very large output space: structured prediction.
	- Multi-class: Mutually exclusive class structure.
	- Text: Temporal relational structure.

[Reduction to Binary Classification](#page-42-0)

One-vs-All / One-vs-Rest

- Setting \bullet Input space: $\mathfrak X$
	- Output space: $\mathcal{Y} = \{1, \ldots, k\}$

- Training \bullet Train k binary classifiers, one for each class: $h_1, \ldots, h_k : \mathcal{X} \to \mathbb{R}$. • Classifier h_i distinguishes class i (+1) from the rest (-1).
-
- Prediction Majority vote:

$$
h(x) = \underset{i \in \{1, \ldots, k\}}{\arg \max} h_i(x)
$$

• Ties can be broken arbitrarily.

OvA: 3-class example (linear classifier)

Consider a dataset with three classes:

Assumption: each class is linearly separable from the rest. Ideal case: only target class has positive score.

Train OvA classifiers:

OvA: 4-class non linearly separable example

Consider a dataset with four classes:

Cannot separate red points from the rest. Which classes might have low accuracy?

All vs All / One vs One / All pairs

- Setting \bullet Input space: $\mathfrak X$
	- \bullet Output space: $\mathcal{Y} = \{1, \ldots, k\}$
-
- Training **•** Train $\binom{k}{2}$ $\binom{k}{2}$ binary classifiers, one for each pair: $h_{ij}: \mathfrak{X} \rightarrow \mathsf{R}$ for $i \in [1, k]$ and $j \in [i+1, k]$.
	- Classifier h_{ii} distinguishes class i (+1) from class j (-1).
- Prediction \bullet Majority vote (each class gets $k 1$ votes)

$$
h(x) = \underset{i \in \{1,\ldots,k\}}{\arg \max } \sum_{j \neq i} \underbrace{h_{ij}(x) \mathbb{I}\{i < j\}}_{\text{class } i \text{ is } +1} - \underbrace{h_{ji}(x) \mathbb{I}\{j < i\}}_{\text{class } i \text{ is } -1}
$$

o Tournament

• Ties can be broken arbitrarily.

AvA: four-class example

Consider a dataset with four classes:

Assumption: each pair of classes are linearly separable. More expressive than OvA.

What's the decision region for the red class?

 \bullet

OvA vs AvA

Lack theoretical justification but simple to implement and works well in practice (when $#$ classes is small).

Reduction-based approaches:

- Reducing multiclass classification to binary classification: OvA, AvA
- Key is to design "natural" binary classification problems without large computation cost.

But,

- Unclear how to generalize to extremely large $#$ of classes.
- \bullet ImageNet: $>$ 20k labels; Wikipedia: $>$ 1M categories.

Next, generalize previous algorithms to multiclass settings.

[Multiclass Loss](#page-50-0)

Binary Logistic Regression

 \bullet Given an input x, we would like to output a classification between $(0,1)$.

$$
f(x) = sigmoid(z) = \frac{1}{1 + exp(-z)} = \frac{1}{1 + exp(-w\top x - b)}.
$$
 (1)

• The other class is represented in $1 - f(x)$:

$$
1 - f(x) = \frac{\exp(-w^{\top}x - b)}{1 + \exp(-w^{\top}x - b)} = \frac{1}{1 + \exp(w^{\top}x + b)} = \text{sigmoid}(-z).
$$
 (2)

Another way to view: one class has $(+w, +b)$ and the other class has $(-w, -b)$.

• Now what if we have one w_c for each class c ?

$$
f_c(x) = \frac{\exp(w_c^{\top} x) + b_c}{\sum_c \exp(w_c^{\top} x + b_c)}
$$

- Also called "softmax" in neural networks.
- Loss function: $L = \sum_{i} -y_c^{(i)} \log f_c(x^{(i)})$
- Gradient: $\frac{\partial L}{\partial z} = f y$. Recall: MSE loss.

(3)

Comparison to OvA

- Base Hypothesis Space: $\mathcal{H} = \{h : \mathcal{X} \to \mathsf{R}\}\$ (score functions).
- Multiclass Hypothesis Space (for k classes):

$$
\mathcal{F} = \left\{ x \mapsto \argmax_{i} h_i(x) \mid h_1, \dots, h_k \in \mathcal{H} \right\}
$$

- Intuitively, $h_i(x)$ scores how likely x is to be from class i.
- OvA objective: $h_i(x) > 0$ for x with label i and $h_i(x) < 0$ for x with all other labels.
- \bullet At test time, to predict (x, i) correctly we only need

$$
h_i(x) > h_j(x) \qquad \forall j \neq i. \tag{4}
$$

Multiclass Perceptron

- Base linear predictors: $h_i(x) = w_i^T x \ (w \in \mathbb{R}^d).$
- Multiclass perceptron:

```
Given a multiclass dataset \mathcal{D} = \{ (x, y) \};
Initialize w \leftarrow 0:
for iter = 1, 2, \ldots, T do
     for (x, y) \in \mathcal{D} do
          \hat{y} = \argmax_{y' \in \mathcal{Y}} w_{y'}^T x;if \hat{y} \neq y then // We've made a mistake
               w_{\rm y} \leftarrow w_{\rm y} + x ; // Move the target-class scorer towards xw_{\hat{y}} \leftarrow w_{\hat{y}} - x ; // Move the wrong-class scorer away from xend
     end
end
```
Rewrite the scoring function

- Remember that we want to scale to very large $#$ of classes and reuse algorithms and analysis for binary classification
	- $\bullet \implies$ a single weight vector is desired
- \bullet How to rewrite the equation such that we have one w instead of k ?

$$
w_i^T x = w^T \psi(x, i)
$$

\n
$$
h_i(x) = h(x, i)
$$
\n(5)

- Encode labels in the feature space.
- Score for each label \rightarrow score for the "compatibility" of a label and an input.

The Multivector Construction

How to construct the feature map ψ ?

What if we stack w_i 's together (e.g., $x \in \mathsf{R}^2$, $\mathcal{Y} = \{1, 2, 3\}$)

$$
w = \left(\underbrace{-\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}}_{w_1}, \underbrace{0, 1}_{w_2}, \underbrace{\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}}_{w_3}\right)
$$

And then do the following: Ψ : $\mathsf{R}^2 \times \{1,2,3\} \mathbin{\rightarrow} \mathsf{R}^6$ defined by

$$
\Psi(x,1) := (x_1, x_2, 0, 0, 0, 0)
$$

\n
$$
\Psi(x,2) := (0, 0, x_1, x_2, 0, 0)
$$

\n
$$
\Psi(x,3) := (0, 0, 0, 0, x_1, x_2)
$$

• Then $\langle w, \Psi(x, y) \rangle = \langle w_y, x \rangle$, which is what we want.

Rewrite multiclass perceptron

Multiclass perceptron using the multivector construction. Given a multiclass dataset $\mathcal{D} = \{ (x, y) \}$; Initialize $w \leftarrow 0$: for $iter = 1, 2, \ldots, T$ do for $(x, y) \in \mathcal{D}$ do $\hat{y} =$ arg max $_{y' \in \mathcal{Y}}$ $w^{\mathcal{T}} \psi(x,y')$; // Equivalent to arg max $_{y' \in \mathcal{Y}} w_{y'}^{\mathcal{T}} x$ **if** $\hat{y} \neq y$ **then** // We've made a mistake $w \leftarrow w + \psi(x, y)$; // Move the scorer towards $\psi(x, y)$ $w \leftarrow w - \psi(x, \hat{y})$; // Move the scorer away from $\psi(x, \hat{y})$ end end

end

Exercise: What is the base binary classification problem in multiclass perceptron?

Features

Toy multiclass example: Part-of-speech classification

- $X = \{All possible words\}$
- \bullet $\mathcal{Y} = \{NOUN, VERB, ADJECTIVE,...\}.$
- Features of $x \in \mathcal{X}$: [The word itself], ENDS_IN_ly, ENDS_IN_ness, ...

How to construct the feature vector?

- Multivector construction: $w \in R^{d \times k}$ —doesn't scale.
- **•** Directly design features for each class.

$$
\Psi(x, y) = (\psi_1(x, y), \psi_2(x, y), \psi_3(x, y), \dots, \psi_d(x, y))
$$
(7)

\bullet Size can be bounded by d.

Features

Sample training data:

The boy grabbed the apple and ran away quickly .

Feature:

$$
\psi_1(x, y) = 1[x = \text{apple AND } y = \text{NOUN}]
$$

\n
$$
\psi_2(x, y) = 1[x = \text{run AND } y = \text{NOUN}]
$$

\n
$$
\psi_3(x, y) = 1[x = \text{run AND } y = \text{VERB}]
$$

\n
$$
\psi_4(x, y) = 1[x \text{ ENDS_IN} \text{ by AND } y = \text{ADVERB}]
$$

• E.g., $\Psi(x = \text{run}, y = \text{NOUN}) = (0, 1, 0, 0, \dots)$

...

- After training, what's w_1, w_2, w_3, w_4 ?
- No need to include features unseen in training data.

Feature templates: implementation

- Flexible, e.g., neighboring words, suffix/prefix.
- "Read off" features from the training data.
- Often sparse—efficient in practice, e.g., NLP problems.
- Can use a hash function: template \rightarrow {1, 2, ..., d}.

Review

Ingredients in multiclass classification:

- Scoring functions for each class (similar to ranking).
- Represent labels in the input space \implies single weight vector.

We've seen

- How to generalize the perceptron algorithm to multiclass setting.
- Very simple idea. Was popular in NLP for structured prediction (e.g., tagging, parsing). Next,
	- How to generalize SVM to the multiclass setting.
	- Concept check: Why might one prefer SVM / perceptron?

Margin for Multiclass

Binary • Margin for $(x^{(n)}, y^{(n)})$:

$$
y^{(n)}w^T x^{(n)} \tag{8}
$$

Want margin to be large and positive $({w^{\mathcal{T}}x^{(n)}}$ has same sign as $y^{(n)})$ Multiclass • Class-specific margin for $(x^{(n)}, y^{(n)})$:

$$
h(x^{(n)}, y^{(n)}) - h(x^{(n)}, y).
$$
 (9)

Difference between scores of the correct class and each other class Want margin to be large and positive for all $y \neq y^{(n)}.$

Multiclass SVM: separable case

Binary Recall binary formulation.

$$
\min_{w} \quad \frac{1}{2} ||w||^2 \tag{10}
$$
\n
$$
\text{s.t.} \quad \underbrace{y^{(n)} w^T x^{(n)}}_{\text{margin}} \ge 1 \quad \forall (x^{(n)}, y^{(n)}) \in \mathcal{D} \tag{11}
$$

Multiclass As in the binary case, take 1 as our target margin.

$$
m_{n,y}(w) \stackrel{\text{def}}{=} \underbrace{\langle w, \Psi(x^{(n)}, y^{(n)}) \rangle}_{\text{score of correct class}} - \underbrace{\langle w, \Psi(x^{(n)}, y) \rangle}_{\text{score of other class}}
$$
(12)
\n
$$
\min_{w} \frac{1}{2} ||w||^2
$$
(13)
\n
$$
\text{s.t. } m_{n,y}(w) \ge 1 \quad \forall (x^{(n)}, y^{(n)}) \in \mathcal{D}, y \ne y^{(n)}
$$
(14)

Recap: hingle loss for binary classification

• Hinge loss: a convex upperbound on the 0-1 loss

$$
\ell_{\text{hinge}}(y, \hat{y}) = \max(0, 1 - yh(x))\tag{15}
$$

Generalized hinge loss

• What's the zero-one loss for multiclass classification?

$$
\Delta(y, y') = \mathbb{I}\left\{y \neq y'\right\} \tag{16}
$$

- In general, can also have different cost for each class.
- Upper bound on $\Delta(y, y')$.

$$
\hat{y} \stackrel{\text{def}}{=} \arg \max_{y' \in \mathcal{Y}} \langle w, \Psi(x, y') \rangle
$$
\n
$$
\implies \langle w, \Psi(x, y) \rangle \le \langle w, \Psi(x, \hat{y}) \rangle
$$
\n
$$
\implies \Delta(y, \hat{y}) \le \Delta(y, \hat{y}) - \langle w, (\Psi(x, y) - \Psi(x, \hat{y})) \rangle
$$
\nWhen are they equal? (19)

• Generalized hinge loss:

$$
\ell_{\text{hinge}}(y, x, w) \stackrel{\text{def}}{=} \max_{y' \in \mathcal{Y}} \left(\Delta(y, y') - \langle w, (\Psi(x, y) - \Psi(x, y')) \rangle \right) \tag{20}
$$

Multiclass SVM with Hinge Loss

Recall the hinge loss formulation for binary SVM (without the bias term):

$$
\min_{w \in \mathbb{R}^d} \frac{1}{2} ||w||^2 + C \sum_{n=1}^N \max \left(0, 1 - \underbrace{y^{(n)} w^T x^{(n)}}_{\text{margin}} \right).
$$

• The multiclass objective:

$$
\min_{w \in \mathbb{R}^d} \frac{1}{2} ||w||^2 + C \sum_{n=1}^N \max_{y' \in \mathcal{Y}} \left(\Delta(y, y') - \underbrace{\langle w, (\Psi(x, y) - \Psi(x, y')) \rangle}_{margin} \right)
$$

- $\Delta(y, y')$ as target margin for each class.
- If margin $m_{n,\mathsf{y'}}(w)$ meets or exceeds its target $\Delta(\mathsf{y}^{(n)},\mathsf{y}')$ $\forall \mathsf{y}\in \mathcal{Y}$, then no loss on example n .

[Introduction to Structured Prediction](#page-67-0)

Example: Part-of-speech (POS) Tagging

Given a sentence, give a part of speech tag for each word:

- $\mathcal{V} = \{$ all English words}∪{[START],"."}
- $\mathfrak{X} = \mathcal{V}^n$, $n = 1, 2, 3, \ldots$ [Word sequences of any length]
- \bullet $\mathcal{P} = \{ \text{START}, \text{Pronoun}, \text{Verb}, \text{Noun}, \text{Adjective} \}$
- $\mathcal{Y} = \mathcal{P}^n$, $n = 1, 2, 3, ...$ [Part of speech sequence of any length]

Example: Action grounding from long-form videos

- Given a long video, segment the video into short windows where each window corresponds to an action from a list of actions.
- E.g. slicing, chopping, frying, washing, etc.
- $\mathcal{V} \hspace*{-0.05cm}=\hspace*{-0.05cm} \mathbb{R}^{D}$ image features
- $\mathfrak{X} = \mathcal{V}^n$, $n = 1, 2, 3, \ldots$ [video frame length]
- \odot $\mathcal{P} = \{Slicing, Chopping, Frying,...\}$
- $\mathcal{Y} = \mathcal{P}^n$, $n = 1, 2, 3, ...$ [Part of speech sequence of any length]
- Can also be represented with start and end timestamps.

Multiclass Hypothesis Space

- \bullet Discrete output space: $\mathcal{Y}(x)$
	- Very large but has structure, e.g., linear chain (sequence labeling), tree (parsing)
	- \bullet Size depends on input x
- Base Hypothesis Space: $\mathcal{H} = \{h : \mathcal{X} \times \mathcal{Y} \rightarrow \mathbb{R}\}\$
	- $h(x, y)$ gives compatibility score between input x and output y
- Multiclass hypothesis space

$$
\mathcal{F} = \left\{ x \mapsto \underset{y \in \mathcal{Y}}{\arg \max} h(x, y) \mid h \in \mathcal{H} \right\}
$$

- Final prediction function is an $f \in \mathcal{F}$.
- For each $f \in \mathcal{F}$ there is an underlying compatibility score function $h \in \mathcal{H}$.

Structured Prediction

• Part-of-speech tagging

 x : he eats apples y : pronoun verb noun

• Multiclass hypothesis space:

$$
h(x, y) = w^{T} \Psi(x, y)
$$
\n
$$
\mathcal{F} = \left\{ x \mapsto \underset{y \in \mathcal{Y}}{\arg \max} h(x, y) \mid h \in \mathcal{H} \right\}
$$
\n(21)

(22)

- A special case of multiclass classification
- \bullet How to design the feature map Ψ? What are the considerations?
- A unary feature only depends on
	- the label at a single position, y_i , and \bar{x}

Example:

$$
\begin{array}{rcl}\n\Phi_1(x, y_i) & = & \mathbb{1}[x_i = \text{runs}] \mathbb{1}[y_i = \text{Verb}] \\
\Phi_2(x, y_i) & = & \mathbb{1}[x_i = \text{runs}] \mathbb{1}[y_i = \text{Noun}] \\
\Phi_3(x, y_i) & = & \mathbb{1}[x_{i-1} = \text{He}] \mathbb{1}[x_i = \text{runs}] \mathbb{1}[y_i = \text{Verb}]\n\end{array}
$$

Markov features

- A markov feature only depends on
	- two adjacent labels, y_{i-1} and y_i , and x

• Example:

$$
\theta_1(x, y_{i-1}, y_i) = \mathbb{1}[y_{i-1} = \text{Pronom}] \mathbb{1}[y_i = \text{Verb}]
$$

$$
\theta_2(x, y_{i-1}, y_i) = \mathbb{1}[y_{i-1} = \text{Pronom}] \mathbb{1}[y_i = \text{Noun}]
$$

- Reminiscent of Markov models in the output space
- Possible to have higher-order features

Local Feature Vector and Compatibility Score

 \bullet At each position *i* in sequence, define the **local feature vector** (unary and markov):

$$
\Psi_i(x, y_{i-1}, y_i) = (\phi_1(x, y_i), \phi_2(x, y_i), \dots, \n\theta_1(x, y_{i-1}, y_i), \theta_2(x, y_{i-1}, y_i), \dots)
$$

- And local compatibility score at position *i*: $\langle w, \Psi_i(x, y_{i-1}, y_i) \rangle$.
- The compatibility score for (x, y) is the sum of local compatibility scores:

$$
\sum_{i} \langle w, \Psi_{i}(x, y_{i-1}, y_{i}) \rangle = \left\langle w, \sum_{i} \Psi_{i}(x, y_{i-1}, y_{i}) \right\rangle = \langle w, \Psi(x, y) \rangle, \tag{23}
$$

where we define the sequence feature vector by

$$
\Psi(x, y) = \sum_{i} \Psi_i(x, y_{i-1}, y_i).
$$
 decomposable

Structured perceptron

```
Given a dataset \mathcal{D} = \{ (x, y) \};
Initialize w \leftarrow 0;
for iter = 1, 2, \ldots, T do
    for (x, y) \in \mathcal{D} do
          \hat{y} = \argmax_{y' \in \mathcal{Y}(x)} w^{\mathcal{T}} \psi(x, y');
          if \hat{y} \neq y then // We've made a mistake
               w \leftarrow w + \Psi(x, y); // Move the scorer towards \psi(x, y)w \leftarrow w - \Psi(x, \hat{y}); // Move the scorer away from \psi(x, \hat{y})end
     end
```
end

Identical to the multiclass perceptron algorithm except the argmax is now over the structured output space $\mathcal{Y}(x)$.

Structured hinge loss

• Recall the generalized hinge loss

$$
\ell_{\text{hinge}}(y, \hat{y}) \stackrel{\text{def}}{=} \max_{y' \in \mathcal{Y}(x)} \left(\Delta(y, y') + \langle w, (\Psi(x, y') - \Psi(x, y)) \rangle \right) \tag{24}
$$

- What is $\Delta(y, y')$ for two sequences?
- Hamming loss is common:

$$
\Delta(y, y') = \frac{1}{L} \sum_{i=1}^{L} \mathbb{1}[y_i \neq y'_i]
$$

where *L* is the sequence length.

Exercise:

- Write down the objective of structured SVM using the structured hinge loss.
- Stochastic sub-gradient descent for structured SVM (similar to HW3 P3)
- Compare with the structured perceptron algorithm

The argmax problem for sequences

Problem To compute predictions, we need to find argmax $_{y\in\mathcal{Y}(x)}\langle w,\Psi(x,y)\rangle$, and $|\mathcal{Y}(x)|$ is exponentially large.

Observation $\Psi(x, y)$ decomposes to $\sum_i \Psi_i(x, y)$.

Solution Dynamic programming (similar to the Viterbi algorithm)

What's the running time?

Figure by Daumé III. A course in machine learning. Figure 17.1.

• Recall that we can write logistic regression in a general form:

$$
p(y|x) = \frac{1}{Z(x)} \exp(w^\top \psi(x, y)).
$$

- Z is normalization constant: $Z(x) = \sum_{y \in Y} \exp(w^\top \psi(x, y)).$
- Example: linear chain $\{v_t\}$
- We can incorporate unary and Markov features: $\rho(y|x)=\frac{1}{Z(x)}\exp(\sum_{t}w^\top\psi(x,y_t,y_{t-1}))$

- Compared to Structured SVM, CRF has a probabilistic interpretation.
- We can draw samples in the output space.
- How do we learn w ? Maximum log likelihood, and regularization term: $\lambda \|w\|^2$
- **a** Loss function:

$$
I(w) = -\frac{1}{N} \sum_{i=1}^{N} \log p(y^{(i)} | x^{(i)}) + \frac{1}{2} \lambda \|w\|^2
$$

= $-\frac{1}{N} \sum_{i} \sum_{t} \sum_{k} w_k \psi_k(y_t^{(i)}, y_{t-1}^{(i)}) + \frac{1}{N} \sum_{i} \log Z(x^{(i)}) + \frac{1}{2} \sum_{k} \lambda w_k^2$

• Loss function:

$$
I(w) = -\frac{1}{N} \sum_{i} \sum_{t} \sum_{k} w_{k} \psi_{k}(x^{(i)}, y_{t}^{(i)}, y_{t-1}^{(i)}) + \frac{1}{N} \sum_{i} \log Z(x^{(i)}) + \frac{1}{2} \sum_{k} \lambda w_{k}^{2}
$$

Gradient:

$$
\frac{\partial l(w)}{\partial w_k} = -\frac{1}{N} \sum_{i} \sum_{t} \sum_{k} \psi_k(x^{(i)}, y_t^{(i)}, y_{t-1}^{(i)})
$$
\n
$$
+ \frac{1}{N} \sum_{i} \frac{\partial}{\partial w_k} \log \sum_{y' \in Y} \exp(\sum_{t} \sum_{k'} w_{k'} \psi_{k'}(x^{(i)}, y_t', y_{t-1}')) + \sum_{k} \lambda w_k
$$
\n(26)

- What is $\frac{1}{N} \sum_i \sum_t \sum_k \psi_k(x^{(i)}, y^{(i)}_t)$ $y_t^{(i)}, y_{t-}^{(i)}$ $t_{t-1}^{(t)}$)?
- It is the expectation $\psi_k({x^{(i)}},y_t,y_{t-1})$ under the empirical distribution $\tilde{p}(x, y) = \frac{1}{N} \sum_{i} \mathbb{I}[x = x^{(i)}] \mathbb{I}[y = y^{(i)}].$

$$
\bullet \text{ What is } \frac{1}{N} \sum_{i} \frac{\partial}{\partial w_{k}} \log \sum_{y' \in Y} \exp(\sum_{t} \sum_{k'} w_{k'} \psi_{k'}(x^{(i)}, y'_{t}, y'_{t-1})) ?
$$
\n
$$
\frac{1}{N} \sum_{i} \frac{\partial}{\partial w_{k}} \log \sum_{y' \in Y} \exp(\sum_{t} \sum_{k'} w_{k'} \psi_{k'}(x^{(i)}, y'_{t}, y'_{t-1}))
$$
\n
$$
= \frac{1}{N} \sum_{i} \left[\sum_{y' \in Y} \exp(\sum_{t} \sum_{k'} w_{k'} \psi_{k'}(x^{(i)}, y'_{t}, y'_{t-1})) \right]^{-1}
$$
\n
$$
\left[\sum_{y' \in Y} \exp(\sum_{t} \sum_{k'} w_{k'} \psi_{k'}(x^{(i)}, y^{(i)}_{t}, y'_{t-1})) \sum_{t} \psi_{k}(x^{(i)}, y'_{t}, y'_{t-1}) \right]
$$
\n
$$
= \frac{1}{N} \sum_{i} \sum_{t} \sum_{y' \in Y} p(y'_{t}, y'_{t-1} | x) \psi_{k}(x^{(i)}, y'_{t}, y'_{t-1})
$$
\n(30)

It is the expectation of $\psi_k(x^{(i)}, y_t', y_{t-1}')$ under the model distribution $p(y_t', y_{t-1}' | x)$.

- \bullet To compute the gradient, we need to infer expectation under the model distribution $p(y|x)$.
- Compare the learning algorithms: in structured SVM we need to compute the argmax, whereas in CRF we need to compute the model expectation.
- Both problems are NP-hard for general graphs.

CRF Inference

- In the linear chain structure, we can use the forward-backward algorithm for inference, similar to Viterbi.
- Initiate $\alpha_j(1) = \exp(w^\top \psi(y_1 = j, x_1))$
- Recursion: $\alpha_j(t) = \sum_i \alpha_i(t-1) \exp(w^\top \psi(y_t = j, y_{t-1} = i, x_t))$
- Result: $Z(x) = \sum_j \alpha_j(T)$
- Similar for the backward direction.
- Test time, again use Viterbi algorithm to infer argmax.
- The inference algorithm can be generalized to belief propagation (BP) in a tree structure (exact inference).
- In general graphs, we rely on approximate inference (e.g. loopy belief propagation).
- POS tag Relationship between constituents, e.g. NP is likely to be followed by a VP.
- **•** Semantic segmentation
	- Relationship between pixels, e.g. a grass pixel is likely to be next to another grass pixel, and a sky pixel is likely to be above a grass pixel.
- Multi-label learning

An image may contain multiple class labels, e.g. a bus is likely to co-occur with a car.

Multiclass algorithms

- Reduce to binary classification, e.g., OvA, AvA
	- Good enough for simple multiclass problems
	- They don't scale and have simplified assumptions
- Generalize binary classification algorithms using multiclass loss
	- Multi-class perceptron, multi-class logistics regression, multi-class SVM
- Structured prediction: Structured SVM, CRF. Data containing structure. Extremely large output space. Text and image applications.