Probabilistic models - Bayesian Methods

Mengye Ren

(Slides credit to David Rosenberg, He He, et al.)

NYU

Oct 8, 2024

Overview

- A unified framework that covers many models, e.g., linear regression, logistic regression
- Learning as statistical inference
- Principled ways to incorporate your belief on the data generating distribution (inductive biases)

$$X \longrightarrow Y$$

 $X \longrightarrow distribution of Y$

 $X \longrightarrow distribution of Y$

 $Gaussian N(\mu, \sigma^2)$

• Two ways to model how the data is generated:

Two ways of generating data

- Two ways to model how the data is generated:
 - Conditional: p(y | x)
 - Generative: p(x, y)

- Two ways to model how the data is generated:
 - Conditional: p(y | x)
 - Generative: p(x,y) = p(x) p(y|x) = P(y) p(x|y)
- How to estimate the parameters of our model? Maximum likelihood estimation.

- Two ways to model how the data is generated:
 - Conditional: p(y | x)
 - Generative: p(x, y)
- How to estimate the parameters of our model? Maximum likelihood estimation.
- Compare and contrast conditional and generative models.

Conditional models

Linear regression is one of the most important methods in machine learning and statistics. **Goal**: Predict a real-valued **target** y (also called response) from a vector of **features** x (also called covariates). Linear regression is one of the most important methods in machine learning and statistics. **Goal**: Predict a real-valued **target** y (also called response) from a vector of **features** x (also called covariates).

Examples:

- Predicting house price given location, condition, build year etc.
- Predicting medical cost of a person given age, sex, region, BMI etc.
- Predicting age of a person based on their photos.

Problem setup

Data Training examples $\mathcal{D} = \{(x^{(n)}, y^{(n)})\}_{n=1}^{N}$, where $x \in \mathbb{R}^{d}$ and $y \in \mathbb{R}$.

Problem setup

Data Training examples $\mathcal{D} = \{(x^{(n)}, y^{(n)})\}_{n=1}^N$, where $x \in \mathbb{R}^d$ and $y \in \mathbb{R}$. Model A *linear* function h (parametrized by θ) to predict y from x:

$$h(x) = \sum_{i=0}^{d} \underline{\theta_i} x_i = \underline{\theta^T} x_i \qquad (1)$$

where $\theta \in \mathbb{R}^d$ are the **parameters** (also called weights).

Problem setup

Data Training examples $\mathcal{D} = \{(x^{(n)}, y^{(n)})\}_{n=1}^{N}$, where $x \in \mathbb{R}^{d}$ and $y \in \mathbb{R}$. Model A *linear* function *h* (parametrized by θ) to predict *y* from *x*:

$$h(x) = \sum_{i=0}^{d} \theta_{i} x_{i} = \underbrace{\theta^{T} x_{i}}_{i=0} \begin{bmatrix} x_{i} \\ y_{i} \\ y_{i} \end{bmatrix} \begin{bmatrix} \theta_{i} \\ \theta_{i} \\ \theta_{i} \end{bmatrix} \begin{bmatrix} \theta_{i} \\ \theta_{i} \end{bmatrix} \end{bmatrix} \begin{bmatrix} \theta_{i} \\ \theta_{i} \end{bmatrix} \begin{bmatrix} \theta_{i} \\ \theta_{i} \end{bmatrix} \begin{bmatrix} \theta_{i} \\ \theta_{i} \end{bmatrix} \end{bmatrix} \begin{bmatrix} \theta_{i} \\ \theta_{i} \end{bmatrix} \end{bmatrix} \begin{bmatrix} \theta_{i} \\ \theta_{i} \end{bmatrix} \begin{bmatrix} \theta_{i} \\ \theta_{i} \end{bmatrix}$$

where $\theta \in \mathbb{R}^d$ are the **parameters** (also called weights).

Note that

- We incorporate the **bias term** (also called the intercept term) into x (i.e. $x_0 = 1$).
- We use superscript to denote the example id and subscript to denote the dimension id.

Loss function We estimate θ by minimizing the squared loss (the least square method):

$$J(\theta) = \frac{1}{N} \sum_{n=1}^{N} \left(y^{(n)} - \frac{\theta^T x^{(n)}}{9} \right)^2. \text{ (empirical risk)}$$
(2)

Loss function We estimate θ by minimizing the squared loss (the least square method):

$$J(\theta) = \frac{1}{N} \sum_{n=1}^{N} \left(y^{(n)} - \theta^T x^{(n)} \right)^2.$$
 (empirical risk) (2)

Matrix form

Let X ∈ ℝ^N×^d be the design matrix whose rows are input features.
 Let y ∈ ℝ^N be the vector of all targets.

Loss function We estimate θ by minimizing the squared loss (the least square method):

$$J(\theta) = \frac{1}{N} \sum_{n=1}^{N} \left(y^{(n)} - \theta^T x^{(n)} \right)^2.$$
 (empirical risk) (2)

Matrix form

- Let $X \in \mathbb{R}^{N \times d}$ be the **design matrix** whose rows are input features.
- Let $y \in \mathbb{R}^N$ be the vector of all targets.
- We want to solve

$$\hat{\theta} = \arg\min(X\theta - y)^{T}(X\theta - y).$$

$$= \theta^{T}x^{T}x\theta - 2x^{T}y\theta + y^{T}y$$

$$\frac{\partial}{\partial \theta} = 2x^{T}x\theta - 2x^{T}y = 0$$

$$\chi^{T}x\theta - 2x^{T}y = 0$$

$$\chi^{T}x\theta - 2x^{T}y = 0$$

$$\chi^{T}x\theta - 2x^{T}y = 0$$

Loss function We estimate θ by minimizing the squared loss (the least square method):

$$J(\theta) = \frac{1}{N} \sum_{n=1}^{N} \left(y^{(n)} - \theta^T x^{(n)} \right)^2.$$
 (empirical risk) (2)

Matrix form

- Let $X \in \mathbb{R}^{N \times d}$ be the **design matrix** whose rows are input features.
- Let $y \in \mathbb{R}^N$ be the vector of all targets.
- We want to solve

$$\hat{\boldsymbol{\theta}} = \arg\min_{\boldsymbol{\theta}} (\boldsymbol{X}\boldsymbol{\theta} - \boldsymbol{y})^{T} (\boldsymbol{X}\boldsymbol{\theta} - \boldsymbol{y}).$$
(3)

Solution Closed-form solution: $\hat{\theta} = (X^T X)^{-1} X^T y$.

Loss function We estimate θ by minimizing the squared loss (the least square method):

$$J(\theta) = \frac{1}{N} \sum_{n=1}^{N} \left(y^{(n)} - \theta^T x^{(n)} \right)^2.$$
 (empirical risk) (2)

Matrix form

- Let $X \in \mathbb{R}^{N \times d}$ be the **design matrix** whose rows are input features. • Let $y \in \mathbb{R}^N$ be the vector of all targets.
- We want to solve

$$\hat{\theta} = \arg\min_{\theta} (X\theta - y)^{T} (X\theta - y).$$
(3)

- Ridge Regression (X^TX + <u>MI</u>)^T - psedo-inverse of XX Solution Closed-form solution: $\hat{\theta} = (X^T X)^{-1} X^T y$. **Review questions**

- Derive the solution for linear regression.
- What if $X^T X$ is not invertible?

We've seen

- Linear regression: response is a linear function of the inputs
- Estimate parameters by minimize the squared loss

We've seen

- Linear regression: response is a linear function of the inputs
- Estimate parameters by minimize the squared loss

But...

- Why squared loss is a reasonable choice for regression problems?
- What assumptions are we making on the data? (inductive bias)

We've seen

- Linear regression: response is a linear function of the inputs
- Estimate parameters by minimize the squared loss

But...

- Why squared loss is a reasonable choice for regression problems?
- What assumptions are we making on the data? (inductive bias)

Next,

• Derive linear regression from a probabilistic modeling perspective.

• x and y are related through a linear function:

$$y = \theta^T x + \epsilon, \tag{4}$$

where ϵ is the **residual error** capturing all unmodeled effects (e.g., noise).

• x and y are related through a linear function:

$$y = \theta^T x + \epsilon$$

$$\mathbf{y} = \mathbf{\Theta}^{\mathsf{T}} \mathbf{x}$$
$$\mathbf{y} \sim \mathcal{N} \left(\mathbf{\Theta}^{\mathsf{T}} \mathbf{x}, \mathbf{\delta}^{\mathsf{Z}} \right)$$

where ϵ is the **residual error** capturing all unmodeled effects (e.g., noise).

• The errors are distributed *iid* (independently and identically distributed):

$$\varepsilon \sim \mathcal{N}(0, \sigma^2).$$
 (5)

(4)

• x and y are related through a linear function:

$$y = \theta^T x + \epsilon, \qquad (4$$

where ε is the residual error capturing all unmodeled effects (e.g., noise).
The errors are distributed *iid* (independently and identically distributed):

$$\epsilon \sim \mathcal{N}(0, \sigma^2).$$
 (5)

What's the distribution of $Y \mid X = x$?

• x and y are related through a linear function:

$$y = \theta^T x + \epsilon, \qquad (4$$

where ε is the residual error capturing all unmodeled effects (e.g., noise).
The errors are distributed *iid* (independently and identically distributed):

$$\epsilon \sim \mathcal{N}(0, \sigma^2).$$
 (5)

What's the distribution of $Y \mid X = x$?

$$p(y \mid x; \theta) = \mathcal{N}(\theta^T x, \sigma^2).$$
(6)

Imagine putting a Gaussian bump around the output of the linear predictor.

• x and y are related through a linear function:

$$y = \theta^T x + \epsilon, \qquad (4$$

where ε is the residual error capturing all unmodeled effects (e.g., noise).
The errors are distributed *iid* (independently and identically distributed):

$$\epsilon \sim \mathcal{N}(0, \sigma^2).$$
 (5

What's the distribution of $Y \mid X = x$?

$$p(y \mid x; \theta) = \mathcal{N}(\theta^T x, \sigma^2).$$
(6)

Imagine putting a Gaussian bump around the output of the linear predictor.

Given a probabilistic model and a dataset \mathcal{D} , how to estimate the model parameters θ ?

Given a probabilistic model and a dataset \mathcal{D} , how to estimate the model parameters θ ? The **maximum likelihood principle** says that we should maximize the (conditional) likelihood of the data:

$$L(\theta) \stackrel{\text{def}}{=} p(\mathcal{D}; \theta) \tag{7}$$

Given a probabilistic model and a dataset \mathcal{D} , how to estimate the model parameters θ ? The **maximum likelihood principle** says that we should maximize the (conditional) likelihood of the data:

$$L(\theta) \stackrel{\text{def}}{=} p(\mathcal{D}; \theta)$$
(7)
= $\prod_{n=1}^{N} p(y^{(n)} | x^{(n)}; \theta).$ (examples are distributed *iid*) (8)

Given a probabilistic model and a dataset \mathcal{D} , how to estimate the model parameters θ ? The **maximum likelihood principle** says that we should maximize the (conditional) likelihood of the data:

$$L(\theta) \stackrel{\text{def}}{=} p(\mathcal{D}; \theta)$$

$$= \prod_{n=1}^{N} p(y^{(n)} | x^{(n)}; \theta).$$
(examples are distributed *iid*) (8)

In practice, we maximize the log likelihood $\ell(\theta)$, or equivalently, minimize the negative log likelihood (NLL).

Let's find the MLE solution for our model. Recall that $Y | X = x \sim \mathcal{N}(\theta^T x, \sigma^2)$.

(13)

Let's find the MLE solution for our model. Recall that $Y | X = x \sim \mathcal{N}(\theta^T x, \sigma^2)$.

$$\ell(\theta) \stackrel{\text{def}}{=} \log L(\theta) \tag{9}$$

$$= \log \prod_{n=1}^{N} p(y^{(n)} \mid x^{(n)}; \theta) \tag{10}$$

$$= \sum_{n=1}^{N} \log p(y^{(n)} \mid x^{(n)}; \theta) \tag{11}$$

Let's find the MLE solution for our model. Recall that $Y | X = x \sim \mathcal{N}(\theta^T x, \sigma^2)$.

$$\ell(\theta) \stackrel{\text{def}}{=} \log L(\theta)$$

$$= \log \prod_{n=1}^{N} p(y^{(n)} | x^{(n)}; \theta)$$

$$= \sum_{n=1}^{N} \log p(y^{(n)} | x^{(n)}; \theta)$$

$$= \sum_{n=1}^{N} \log \frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{\left(y^{(n)} - \theta^T x^{(n)}\right)^2}{2\sigma^2}\right)$$
(12)

(13)

Let's find the MLE solution for our model. Recall that $Y | X = x \sim \mathcal{N}(\theta^T x, \sigma^2)$.

$$\mathcal{L}(\theta) \stackrel{\text{def}}{=} \log L(\theta)$$
(9)
= $\log \prod_{n=1}^{N} p(y^{(n)} | x^{(n)}; \theta)$ (10)
= $\sum_{n=1}^{N} \log p(y^{(n)} | x^{(n)}; \theta)$ (11)
= $\sum_{n=1}^{N} \log \frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{(y^{(n)} - \theta^T x^{(n)})^2}{2\sigma^2}\right)$ (12)
= $N \log \frac{1}{\sqrt{2\pi\sigma}} - \frac{1}{2\sigma^2} \sum_{n=1}^{N} (y^{(n)} - \theta^T x^{(n)})^2$ (13)

Let's find the MLE solution for our model. Recall that $Y | X = x \sim \mathcal{N}(\theta^T x, \sigma^2)$.

$$\mathcal{U}(\theta) \stackrel{\text{def}}{=} \log L(\theta)$$
(9)
= $\log \prod_{n=1}^{N} p(y^{(n)} | x^{(n)}; \theta)$ (10)
= $\sum_{n=1}^{N} \log p(y^{(n)} | x^{(n)}; \theta)$ (11)
= $\sum_{n=1}^{N} \log \frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{(y^{(n)} - \theta^T x^{(n)})^2}{2\sigma^2}\right)$ (12)
= $N \log \frac{1}{\sqrt{2\pi\sigma}} - \frac{1}{2\sigma^2} \sum_{n=1}^{N} (y^{(n)} - \theta^T x^{(n)})^2$ (13)

MLE for linear regression

Let's find the MLE solution for our model. Recall that $Y | X = x \sim \mathcal{N}(\theta^T x, \sigma^2)$.

$$\mathcal{U}(\theta) \stackrel{\text{def}}{=} \log L(\theta)$$
(9)
= $\log \prod_{n=1}^{N} p(y^{(n)} | x^{(n)}; \theta)$ (10)
= $\sum_{n=1}^{N} \log p(y^{(n)} | x^{(n)}; \theta)$ (11)
= $\sum_{n=1}^{N} \log \frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{(y^{(n)} - \theta^T x^{(n)})^2}{2\sigma^2}\right)$ (12)
= $N \log \frac{1}{\sqrt{2\pi\sigma}} - \frac{1}{2\sigma^2} \sum_{n=1}^{N} (y^{(n)} - \theta^T x^{(n)})^2$ (13)

Recall that we obtained the normal equation by setting the derivative of the squared loss to zero. Now let's compute the derivative of the likelihood w.r.t. the parameters.

$$\ell(\theta) = N \log \frac{1}{\sqrt{2\pi\sigma}} - \frac{1}{2\sigma^2} \sum_{n=1}^{N} \left(y^{(n)} - \theta^T x^{(n)} \right)^2$$
(14)

(15)

Recall that we obtained the normal equation by setting the derivative of the squared loss to zero. Now let's compute the derivative of the likelihood w.r.t. the parameters.

$$\ell(\theta) = N \log \frac{1}{\sqrt{2\pi\sigma}} - \frac{1}{2\sigma^2} \sum_{n=1}^{N} \left(y^{(n)} - \theta^T x^{(n)} \right)^2$$

$$\frac{\partial \ell}{\partial \theta_i} = -\frac{1}{\sigma^2} \sum_{n=1}^{N} \left(y^{(n)} - \theta^T x^{(n)} \right) x_i^{(n)}.$$
(14)
(15)

Recall that we obtained the normal equation by setting the derivative of the squared loss to zero. Now let's compute the derivative of the likelihood w.r.t. the parameters.

$$\ell(\theta) = N \log \frac{1}{\sqrt{2\pi\sigma}} - \frac{1}{2\sigma^2} \sum_{n=1}^{N} \left(y^{(n)} - \theta^T x^{(n)} \right)^2$$

$$\frac{\partial \ell}{\partial \theta_i} = -\frac{1}{\sigma^2} \sum_{n=1}^{N} \left(y^{(n)} - \theta^T x^{(n)} \right) x_i^{(n)}.$$
(14)
(15)

We've seen

- Linear regression assumes that $Y \mid X = x$ follows a Gaussian distribution
- MLE of linear regression is equivalent to the least square method

We've seen

- Linear regression assumes that Y | X = x follows a Gaussian distribution
- MLE of linear regression is equivalent to the least square method

However,

- Sometimes Gaussian distribution is not a reasonable assumption, e.g., classification
- Can we use the same modeling approach for other prediction tasks?

We've seen

- Linear regression assumes that Y | X = x follows a Gaussian distribution
- MLE of linear regression is equivalent to the least square method

However,

- Sometimes Gaussian distribution is not a reasonable assumption, e.g., classification
- Can we use the same modeling approach for other prediction tasks?

Next,

• Derive logistic regression for classification.

Consider binary classification where $Y \in \{0, 1\}$. What should be the distribution $Y \mid X = x$?

Consider binary classification where $Y \in \{0, 1\}$. What should be the distribution $Y \mid X = x$? We model $p(y \mid x)$ as a Bernoulli distribution:

$$p(y | x) = h(x)^{y} (1 - h(x))^{1 - y}.$$
(16)

Consider binary classification where $Y \in \{0, 1\}$. What should be the distribution Y | X = x? We model p(y | x) as a Bernoulli distribution:

$$p(y | x) = h(x)^{y} (1 - h(x))^{1 - y}.$$
(16)

How should we parameterize h(x)?

Consider binary classification where $Y \in \{0, 1\}$. What should be the distribution $Y \mid X = x$? We model $p(y \mid x)$ as a Bernoulli distribution:

$$p(y \mid x) = h(x)^{y} (1 - h(x))^{1 - y}.$$
(16)

How should we parameterize h(x)?

• What is p(y=1 | x) and p(y=0 | x)?

Consider binary classification where $Y \in \{0, 1\}$. What should be the distribution $Y \mid X = x$? We model $p(y \mid x)$ as a Bernoulli distribution:

$$p(y | x) = \frac{h(x)^{y}(1 - h(x))^{1 - y}}{(1 - h(x))^{1 - y}} \qquad (16)$$

How should we parameterize h(x)?

• What is p(y = 1 | x) and p(y = 0 | x)? $h(x) \in (0, 1)$.

Consider binary classification where $Y \in \{0, 1\}$. What should be the distribution Y | X = x? We model p(y | x) as a Bernoulli distribution:

$$p(y \mid x) = h(x)^{y} (1 - h(x))^{1 - y}.$$
(16)

How should we parameterize h(x)?

- What is p(y = 1 | x) and p(y = 0 | x)? $h(x) \in (0, 1)$.
- What is the mean of $Y \mid X = x$?

Consider binary classification where $Y \in \{0, 1\}$. What should be the distribution $Y \mid X = x$? We model $p(y \mid x)$ as a Bernoulli distribution:

$$p(y \mid x) = h(x)^{y} (1 - h(x))^{1 - y}.$$
(16)

How should we parameterize h(x)?

- What is p(y = 1 | x) and p(y = 0 | x)? $h(x) \in (0, 1)$.
- What is the mean of Y | X = x? h(x). (Think how we parameterize the mean in linear regression) $X \longrightarrow \Theta^T x \longrightarrow [O, 1]$

$$X \rightarrow Y \in \{0, 1\}$$
 $X \rightarrow$

Consider binary classification where $Y \in \{0, 1\}$. What should be the distribution $Y \mid X = x$? We model $p(y \mid x)$ as a Bernoulli distribution:

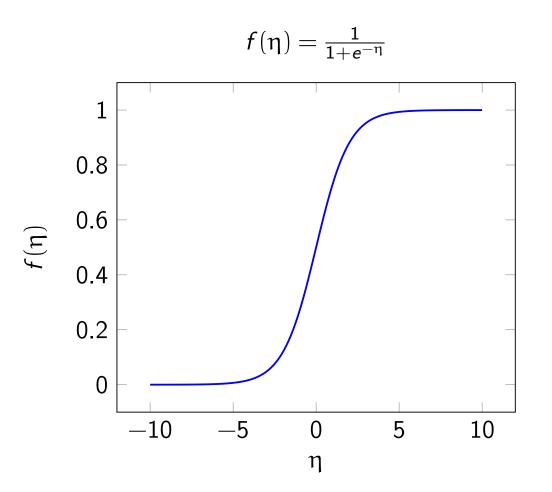
$$p(y | x) = h(x)^{y} (1 - h(x))^{1 - y}.$$
(16)

How should we parameterize h(x)?

- What is p(y = 1 | x) and p(y = 0 | x)? $h(x) \in (0, 1)$.
- What is the mean of Y | X = x? h(x). (Think how we parameterize the mean in linear regression)
- Need a function f to map the linear predictor $\theta^T x$ in \mathbb{R} to (0,1):

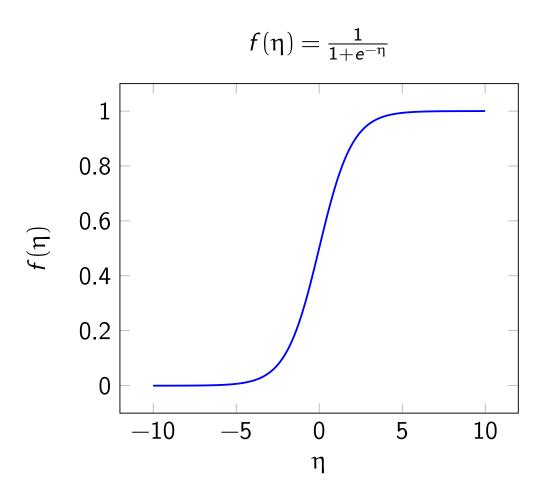
$$f(\eta) = \frac{1}{1 + e^{-\eta}}$$
 logistic function

(17)

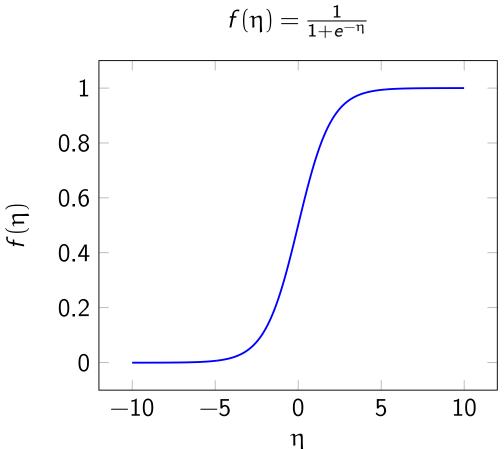


$$P(Y=1|X) = f(\theta^{T}X)$$

•
$$p(y | x) = \text{Bernoulli}(f(\theta^T x)).$$



• $p(y | x) = \text{Bernoulli}(f(\theta^T x))$. $f(\theta^T x)$ • When do we have p(y = 1 | x) = 1 and p(y = 0 | x) = 1? $(-f(\theta^T x))$

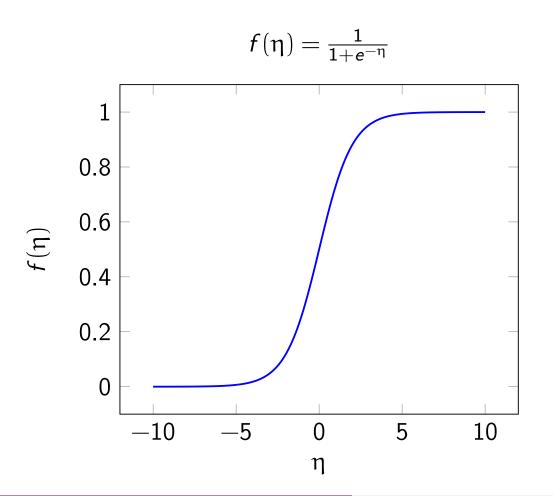


p(y=1|x) = p(y=0|x) $\log \frac{p(y=1|x)}{p(y=0|x)} = 0$

- $p(y | x) = \text{Bernoulli}(f(\theta^T x)).$
- When do we have p(y = 1 | x) = 1 and p(y = 0 | x) = 1?
- Exercise: show that the log odds is

$$\log \frac{p(y=1 \mid x)}{p(y=0 \mid x)} = \begin{array}{c} \theta^{T} x = 0 \\ \theta^{T} x = 0 \\ \text{(18)} \end{array}$$

$$\Rightarrow \text{ linear decision boundary}$$
(19)



- $p(y | x) = \text{Bernoulli}(f(\theta^T x)).$
- When do we have p(y = 1 | x) = 1 and p(y = 0 | x) = 1?
- Exercise: show that the log odds is

$$\log \frac{p(y=1 \mid x)}{p(y=0 \mid x)} = \theta^T x.$$
(18)

 \implies linear decision boundary (19)

 How do we extend it to multiclass classification? (more on this later)

Similar to linear regression, let's estimate θ by maximizing the conditional log likelihood.

$$\max P(D) = \prod_{i=1}^{N} \left(1 - f(\theta^{T} x^{(n)}) \right)^{\frac{1 - y^{(n)}}{n}} \left(f(\theta^{T} x^{(n)}) \right)^{y^{(n)}}$$

$$\max \log P(D) = \sum_{i=1}^{N} \left(1 - y^{(n)} \right) \log \left(1 - f(\theta^{T} x^{(n)}) + y^{(n)} \right)$$

$$+ y^{(n)} \log f(\theta^{T} x^{(n)})$$

$$\frac{\partial}{\partial \theta} = 0 \implies \cdots$$

(21)

Similar to linear regression, let's estimate θ by maximizing the conditional log likelihood.

$$\ell(\theta) = \sum_{n=1}^{N} \log p(y^{(n)} | x^{(n)}; \theta)$$

(20)

Similar to linear regression, let's estimate θ by maximizing the conditional log likelihood.

$$\ell(\theta) = \sum_{n=1}^{N} \log p(y^{(n)} | x^{(n)}; \theta)$$

$$= \sum_{n=1}^{N} y^{(n)} \log f(\theta^{T} x^{(n)}) + (1 - y^{(n)}) \log(1 - f(\theta^{T} x^{(n)}))$$
(21)

Similar to linear regression, let's estimate θ by maximizing the conditional log likelihood.

$$\ell(\theta) = \sum_{n=1}^{N} \log p(y^{(n)} | x^{(n)}; \theta)$$

$$= \sum_{n=1}^{N} y^{(n)} \log f(\theta^{T} x^{(n)}) + (1 - y^{(n)}) \log(1 - f(\theta^{T} x^{(n)}))$$
(21)

- Closed-form solutions are not available.
- But, the likelihood is concave—gradient ascent gives us the unique optimal solution.

$$\theta := \theta + \alpha \nabla_{\theta} \ell(\theta). \tag{22}$$

Math review: Chain rule

If z depends on y which itself depends on x, e.g.,
$$z = (y(x))^2$$
, then $\frac{dz}{dx} = \frac{dz}{dy}\frac{dy}{dx}$.

Math review: Chain rule

If z depends on y which itself depends on x, e.g.,
$$z = (y(x))^2$$
, then $\frac{dz}{dx} = \frac{dz}{dy}\frac{dy}{dx}$.

Likelihood for a single example: $\ell^n = y^{(n)} \log f(\theta^T x^{(n)}) + (1 - y^{(n)}) \log(1 - f(\theta^T x^{(n)})).$

Math review: Chain rule If z depends on y which itself depends on x, e.g., $z = (y(x))^2$, then $\frac{dz}{dx} = \frac{dz}{dy}\frac{dy}{dx}$. Likelihood for a single example: $\ell^n = y^{(n)} \log f(\theta^T x^{(n)}) + (1 - y^{(n)}) \log(1 - f(\theta^T x^{(n)})).$ $\frac{f'(z)}{z} = -(\mu e^{-z})^{-2} \left(-e^{-z}\right)^{-2}$ $= f(z) \cdot (1 - f(z))$ $\partial \ell^n$ $\partial \ell^n \partial f^n$ (23) $\overline{\partial \theta_i} = \overline{\partial f^n} \overline{\partial \theta_i}$

(26)

Math review: Chain rule

If z depends on y which itself depends on x, e.g., $z = (y(x))^2$, then $\frac{dz}{dx} = \frac{dz}{dy}\frac{dy}{dx}$.

Likelihood for a single example: $\ell^n = \underline{y^{(n)}} \log \underline{f(\theta^T x^{(n)})} + \underline{(1-y^{(n)})} \log (1-f(\theta^T x^{(n)})).$

$$\frac{\partial \ell^{n}}{\partial \theta_{i}} = \frac{\partial \ell^{n}}{\partial f^{n}} \frac{\partial f^{n}}{\partial \theta_{i}}$$

$$= \left(\frac{y^{(n)}}{f^{n}} - \frac{1 - y^{(n)}}{1 - f^{n}}\right) \frac{\partial f^{n}}{\partial \theta_{i}}$$

$$\frac{d}{dx} \ln x = \frac{1}{x}$$
(23)
(23)

(26)

Math review: Chain rule

If z depends on y which itself depends on x, e.g., $z = (y(x))^2$, then $\frac{dz}{dx} = \frac{dz}{dy}\frac{dy}{dx}$.

Likelihood for a single example: $\ell^n = y^{(n)} \log f(\theta^T x^{(n)}) + (1 - y^{(n)}) \log(1 - f(\theta^T x^{(n)})).$

$$\frac{\partial \ell^{n}}{\partial \theta_{i}} = \frac{\partial \ell^{n}}{\partial f^{n}} \frac{\partial f^{n}}{\partial \theta_{i}}$$

$$= \left(\frac{y^{(n)}}{f^{n}} - \frac{1 - y^{(n)}}{1 - f^{n}}\right) \frac{\partial f^{n}}{\partial \theta_{i}}$$

$$= \left(\frac{y^{(n)}}{f^{n}} - \frac{1 - y^{(n)}}{1 - f^{n}}\right) \left(\frac{f^{n}(1 - f^{n})x_{i}^{(n)}}{f^{n}}\right)$$
Exercise: apply chain rule to $\frac{\partial f^{n}}{\partial \theta_{i}}$

$$= (y^{(n)} - f^{n})x_{i}^{(n)}$$
Simplify by algebra (26)

Math review: Chain rule

If z depends on y which itself depends on x, e.g., $z = (y(x))^2$, then $\frac{dz}{dx} = \frac{dz}{dy}\frac{dy}{dx}$.

Likelihood for a single example: $\ell^n = y^{(n)} \log f(\theta^T x^{(n)}) + (1 - y^{(n)}) \log(1 - f(\theta^T x^{(n)})).$

The full gradient is thus $\frac{\partial \ell}{\partial \theta_i} = \sum_{n=1}^{N} (y^{(n)} - f(\theta^T x^{(n)})) x_i^{(n)}$.

A closer look at the gradient

$$\frac{\partial \ell}{\partial \theta_i} = \sum_{n=1}^{N} (y^{(n)} - f(\theta^T x^{(n)})) x_i^{(n)}$$
(27)

A closer look at the gradient

$$\frac{\partial \ell}{\partial \theta_i} = \sum_{n=1}^{N} (y^{(n)} - f(\theta^T x^{(n)})) x_i^{(n)}$$
(27)

A closer look at the gradient

$$LR \cdot \frac{\partial l}{\partial \theta_{i}} = \sum_{n=1}^{N} \left(Y^{(n)} - \Theta^{T} X^{(n)} \right) X^{(n)}$$
$$\frac{\partial l}{\partial \theta_{i}} = \sum_{n=1}^{N} \left(Y^{(n)} - \frac{f}{f} \left(\Theta^{T} X^{(n)} \right) \right) x_{i}^{(n)}$$

- Does this look familiar?
- Our derivation for linear regression and logistic regression are quite similar...
- Next, a more general family of models.

(27)

linear regression logistic regression

	linear regression	logistic regression
Combine the inputs	$\theta^T x$ (linear)	$\theta^T x$ (linear)

	linear regression	logistic regression
Combine the inputs	θ ^T x (linear)	θ ^T x (linear)
Output	real	categorical
Conditional distribution	Gaussian	Bernoulli

-

-

	linear regression	logistic regression
Combine the inputs	$\theta^T x$ (linear)	$\theta^T x$ (linear)
Output	real	categorical
Conditional distribution	Gaussian	Bernoulli
Transfer function $f(\theta^T x)$	identity	logistic

Compare linear regression and logistic regression

	linear regression	logistic regression
Combine the inputs	$\theta^T x$ (linear)	$\theta^T x$ (linear)
Output	real y~ N(OTx,	categorical
Conditional distribution	Gaussian	Categorical $\gamma \sim B($ Bernoulli
Transfer function $f(\theta^T x)$	identity	logistic
$Mean \ \mathbb{E}(Y \mid X = x; \theta)$	$f(\theta^T x)$	$f(\theta^T x)$

Compare linear regression and logistic regression

	linear regression	logistic regression
Combine the inputs Output Conditional distribution Transfer function $f(\theta^T x)$ Mean $\mathbb{E}(Y X = x; \theta)$	$\theta^T x$ (linear) real Gaussian identity $f(\theta^T x)$	$\begin{array}{c} \theta^{T} x \text{ (linear)} \\ \text{categorical} \\ \text{Bernoulli} \\ \text{logistic} \\ f(\theta^{T} x) \end{array}$

- x enters through a linear function.
- The main difference between the formulations is due to different conditional distributions.
- Can we generalize the idea to handle other output types, e.g., positive integers?

Construct a generalized regression model

Task: Given x, predict p(y | x)

- Modeling:
 - Choose a parametric family of distributions $p(y; \theta)$ with parameters $\theta \in \Theta$
 - $\bullet\,$ Choose a transfer function that maps a linear predictor in $\mathbb R$ to $\Theta\,$

$$\underbrace{x}_{\in \mathsf{R}^d} \mapsto \underbrace{w}_{\in \mathsf{R}}^{\mathsf{T}} x \mapsto \underbrace{f(w}_{\in \Theta}^{\mathsf{T}} x)_{\in \Theta} = \theta, \tag{28}$$

Learning: MLE: $\hat{\theta} \in \arg \max_{\theta} \log p(\mathcal{D}; \hat{\theta})$ **Inference**: For prediction, use $x \to f(w^T x)$

Construct a generalized regression model

Task: Given *x*, predict p(y | x)

Modeling:

- Choose a parametric family of distributions $p(y; \theta)$ with parameters $\theta \in \Theta$
- $\bullet\,$ Choose a transfer function that maps a linear predictor in $\mathbb R$ to $\Theta\,$

$$\underbrace{x}_{\in \mathbb{R}^d} \mapsto \underbrace{w^T x}_{\in \mathbb{R}} \mapsto \underbrace{f(w^T x)}_{\in \Theta} = \theta, \qquad (28)$$

Learning: MLE: $\hat{\theta} \in \arg \max_{\theta} \log p(\mathcal{D}; \hat{\theta})$ **Inference**: For prediction, use $x \to f(w^T x)$

Example: Construct Poisson regression

Say we want to predict the number of people entering a restaurant in New York during lunch time.

- What features would be useful?
- What's a good model for number of visitors (the output distribution)?

Example: Construct Poisson regression

Say we want to predict the number of people entering a restaurant in New York during lunch time.

- What features would be useful?
- What's a good model for number of visitors (the output distribution)?

Math review: Poisson distribution

Given a random variable $Y \in 0, 1, 2, ...$ following Poisson(λ), we have

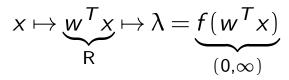
$$\underline{p(Y=k;\lambda)} = \frac{\lambda^k e^{-\lambda}}{k!}, \qquad f: \mathcal{R} \to \mathcal{R}_{>0}$$
(29)

where $\lambda > 0$ and $\mathbb{E}[Y] = \lambda$.

The Poisson distribution is usually used to model the number of events occurring during a fixed period of time.

Example: Construct Poisson regression

We've decided that $Y | X = x \sim \text{Poisson}(\eta)$, what should be the transfer function f? *x* enters linearly:



Standard approach is to take

$$f(w^{T}x) = \exp(w^{T}x).$$
Likelihood of the full dataset $\mathcal{D} = \{(x_{1}, y_{1}), \dots, (x_{n}, y_{n})\}:$

$$p(Y = k) = \frac{\lambda^{k} e^{-\lambda}}{k!}$$

$$\log p(y_{i}; \lambda_{i}) = [y_{i} \log \lambda_{i} - \lambda_{i} - \log(y_{i}!)]$$
(30)
$$\arg \max \log p(\mathcal{D}; w) = \sum_{i=1}^{n} [y_{i} \log [\exp(w^{T}x_{i})] - \exp(w^{T}x_{i}) - \log(y_{i}!)]$$
(31)
$$= \sum_{i=1}^{n} [y_{i}w^{T}x_{i} - \exp(w^{T}x_{i}) - \log(y_{i}!)]$$
(32)

Multinomial Logistic Regression handles >2 Classes

- Say we want to get the predicted categorical distribution for a given $x \in \mathbb{R}^d$.
- First compute the scores $(\in \mathbb{R}^k)$ and then their softmax:

$$x \mapsto (\langle w_1, x \rangle, \dots, \langle w_k, x \rangle) \mapsto \theta = \begin{pmatrix} \exp(w_1^T x) \\ \sum_{i=1}^k \exp(w_i^T x) \end{pmatrix}, \dots, \frac{\exp(w_k^T x)}{\sum_{i=1}^k \exp(w_i^T x)} \end{pmatrix}$$

$$\begin{array}{c} & & \\ &$$

Multinomial Logistic Regression

- Say we want to get the predicted categorical distribution for a given $x \in \mathbb{R}^d$.
- First compute the scores $(\in \mathbb{R}^k)$ and then their softmax:

$$x \mapsto ((w_1, x), \dots, \langle w_k, x \rangle) \mapsto \theta = \left(\frac{\exp(w_1^T x)}{\sum_{i=1}^k \exp(w_i^T x)}, \dots, \frac{\exp(w_k^T x)}{\sum_{i=1}^k \exp(w_i^T x)}\right)$$

• We can write the conditional probability for any $y \in \{1, ..., k\}$ as

$$p(y \mid x; w) = \frac{\exp\left(w_{y}^{T} x\right)}{\sum_{i=1}^{k} \exp\left(w_{i}^{T} x\right)}.$$

Recipe for contructing a conditional distribution for prediction:

- Optime input and output space (as for any other model).
- **2** Choose the output distribution $p(y | x; \theta)$ based on the task
- **3** Choose the transfer function that maps $w^T x$ to a Θ .
- (The formal family is called "generalized linear models".)

Learning:

- Fit the model by maximum likelihood estimation.
- Closed solutions do not exist in general, so we use gradient ascent.

Generative models

We've seen

- Model the conditional distribution $p(y | x; \theta)$ using generalized linear models.
- (Previously) Directly map x to y, e.g., perceptron.

Next,

- Model the joint distribution $p(x, y; \theta)$.
- Predict the label for x as $\operatorname{arg\,max}_{y \in \mathcal{Y}} p(x, y; \theta)$.

Training:

p(x,y)

Training:

$$p(x, y) = p(x \mid y)p(y)$$
(33)

Training:

 $p(x,y) = p(x \mid y)p(y)$

(35)

(33)

Training:

 $p(x,y) = p(x \mid y)p(y)$

Testing:

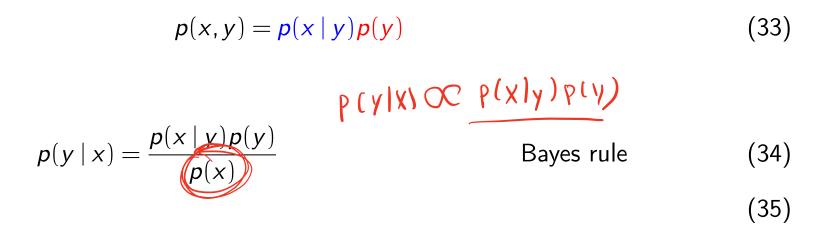
 $p(y \mid x)$

(33)

(35)

Training:

Testing:



Training:

$$p(x, y) = p(x \mid y)p(y)$$
(33)

Testing:

$$p(y | x) = \frac{p(x | y)p(y)}{p(x)}$$
Bayes rule (34)
$$\arg\max_{y} p(y | x) = \arg\max_{y} p(x | y)p(y)$$
(35)

Let's consider binary text classification (e.g., fake vs genuine review) as a motivating example.

Let's consider binary text classification (e.g., fake vs genuine review) as a motivating example. **Bag-of-words** representation of a document

- ["machine", "learning", "is", "fun", "."]
- $x_i \in \{0, 1\}$: whether the *i*-th word in our vocabulary exists in the input

 $x = [x_1, x_2, \dots, x_d]$ where d = vocabulary size

Let's consider binary text classification (e.g., fake vs genuine review) as a motivating example. **Bag-of-words** representation of a document

- ["machine", "learning", "is", "fun", "."]
- $x_i \in \{0, 1\}$: whether the *i*-th word in our vocabulary exists in the input

 $x = [x_1, x_2, \dots, x_d]$ where d = vocabulary size

What's the probability of a document x?

(36)

Let's consider binary text classification (e.g., fake vs genuine review) as a motivating example. **Bag-of-words** representation of a document

- ["machine", "learning", "is", "fun", "."]
- $x_i \in \{0, 1\}$: whether the *i*-th word in our vocabulary exists in the input

$$x = [x_1, x_2, \dots, x_d] \text{ where } d = \text{vocabulary size}$$
(36)
What's the probability of a document x?
$$p(x \mid y) = p(x_1, \dots, x_d \mid y)$$
$$= p(x_1 \mid y) p(x_2 \mid y, x_1) p(x_3 \mid y, x_2, x_1) \dots p(x_d \mid y, x_{d-1}, \dots, x_1) \text{ chain rule}$$
(38)

$$=\prod_{i=1}^{d} p(x_i | y, x_{< i}) \qquad \qquad P(x_d | x_i, x_{d-1}, y) \qquad (39)$$
$$= P(x_d | y)$$

Challenge: $p(x_i | y, x_{< i})$ is hard to model (and estimate), especially for large *i*.

Challenge: $p(x_i | y, x_{\le i})$ is hard to model (and estimate), especially for large *i*. Solution:

Naive Bayes assumption

Features are **conditionally independent** given the label:

$$p(x \mid y) = \prod_{i=1}^{d} p(x_i \mid y).$$

(40)

A strong assumption in general, but works well in practice.

Parametrize $p(x_i | y)$ and p(y)

For binary x_i , assume $p(x_i | y)$ follows Bernoulli distributions.

$$p(x_i = 1 | y = 1) = \theta_{i,1}, \ p(x_i = 1 | y = 0) = \theta_{i,0}.$$
 (41)

Parametrize $p(x_i | y)$ and p(y)

For binary
$$x_i$$
, assume $p(x_i | y)$ follows Bernoulli distributions. $z + 1$
 $p(x_i = 1 | y = 1) = \theta_{i,1}, \quad p(x_i = 1 | y = 0) = \theta_{i,0}.$ (41)
Similarly,

$$p(y=1) = \underline{\theta}_0. \qquad p(\gamma = 0) = (-\theta_0) \qquad (42)$$

Parametrize $p(x_i | y)$ and p(y)

For binary x_i , assume $p(x_i | y)$ follows Bernoulli distributions.

$$p(x_{i} = 1 | y = 1) = \theta_{i,1}, \quad p(x_{i} = 1 | y = 0) = \theta_{i,0}.$$
(41)
Similarly,

$$p(y = 1) = \theta_{0}.$$

$$p(y) = \prod_{i=1}^{N} p(X^{(n)}, Y^{(n)}) = \prod_{i=1}^{N} p(Y^{(n)}) \prod_{i=1}^{d} \theta_{i,y} \prod (X^{(n)}_{i=1}) + (1 - \theta_{i,y}) \prod (Y^{(n)}_{i=1}) + (1 - \theta_{i,y}) \prod (Y^{(n)}_{i=1}) + (1 - \theta_{i,y}) \prod (Y^{(n)}_{i=1}) + (1 - \theta_{i,y}) \prod (X^{(n)}_{i=1}) + (1 - \theta_{i,y}) \prod (X^{(n)}_{i=1}$$

Indicator function \mathbb{I} {condition} evaluates to 1 if "condition" is true and 0 otherwise.

CSCI-GA 2565

We maximize the likelihood of the data $\prod_{n=1}^{N} p_{\theta}(x^{(n)}, y^{(n)})$ (as opposed to the *conditional* likelihood we've seen before).

We maximize the likelihood of the data $\prod_{n=1}^{N} p_{\theta}(x^{(n)}, y^{(n)})$ (as opposed to the *conditional* likelihood we've seen before).

$$\frac{\partial}{\partial \theta_{j,1}} \ell = \frac{\partial}{\partial \theta_{j,1}} \sum_{n=1}^{N} \sum_{i=1}^{d} \log \left(\theta_{i,y^{(n)}} \mathbb{I}\left\{ x_i^{(n)} = 1 \right\} + \left(1 - \theta_{i,y^{(n)}} \right) \mathbb{I}\left\{ x_i^{(n)} = 0 \right\} \right) + \log p_{\theta_0}(y^{(n)})$$

$$\tag{46}$$

We maximize the likelihood of the data $\prod_{n=1}^{N} p_{\theta}(x^{(n)}, y^{(n)})$ (as opposed to the *conditional* likelihood we've seen before).

$$\frac{\partial}{\partial \theta_{j,1}} \ell = \frac{\partial}{\partial \theta_{j,1}} \sum_{n=1}^{N} \sum_{i=1}^{d} \log \left(\theta_{i,y^{(n)}} \mathbb{I}\left\{ x_i^{(n)} = 1 \right\} + \left(1 - \theta_{i,y^{(n)}} \right) \mathbb{I}\left\{ x_i^{(n)} = 0 \right\} \right) + \log p_{\theta_0}(y^{(n)})$$

$$\tag{46}$$

$$= \frac{\partial}{\partial \theta_{j,1}} \sum_{n=1}^{N} \log \left(\theta_{j,y^{(n)}} \mathbb{I}\left\{ x_j^{(n)} = 1 \right\} + \left(1 - \theta_{j,y^{(n)}} \right) \mathbb{I}\left\{ x_j^{(n)} = 0 \right\} \right) \quad \text{ignore } i \neq j \quad (47)$$

(48)

$$\left(\sum I(\lambda=1)\right)\Theta_{j}^{\prime} = \sum I(\lambda=1, \chi_{j=1})$$

We maximize the likelihood of the data $\prod_{n=1}^{N} p_{\theta}(x^{(n)}, y^{(n)})$ (as opposed to the *conditional* likelihood we've seen before).

$$\frac{\partial}{\partial \theta_{j,1}} \ell = \frac{\partial}{\partial \theta_{j,1}} \sum_{n=1}^{N} \sum_{i=1}^{d} \log \left(\theta_{i,y^{(n)}} \mathbb{I}\left\{ x_i^{(n)} = 1 \right\} + \left(1 - \theta_{i,y^{(n)}} \right) \mathbb{I}\left\{ x_i^{(n)} = 0 \right\} \right) + \log p_{\theta_0}(y^{(n)})$$

$$\tag{46}$$

$$= \frac{\partial}{\partial \theta_{j,1}} \sum_{n=1}^{N} \log \left(\theta_{j,y^{(n)}} \mathbb{I}\left\{ x_j^{(n)} = 1 \right\} + \left(1 - \theta_{j,y^{(n)}} \right) \mathbb{I}\left\{ x_j^{(n)} = 0 \right\} \right) \quad \text{ignore } i \neq j \quad (47)$$

$$= \sum_{n=1}^{N} \mathbb{I}\left\{y^{(n)} = 1 \land x_{j}^{(n)} = 1\right\} \frac{1}{\theta_{j,1}} \quad \mathbb{I}\left\{y^{(n)} = 1 \land x_{j}^{(n)} = 0\right\} \frac{1}{1 - \theta_{j,1}} \quad \text{ignore } y^{(n)} = 0$$

$$= \bigcirc \qquad \implies \left(\left|-\theta_{j,1}\right|\right) \sum_{\gamma=1}^{N} \mathbb{I}\left(\left|\gamma=1, \times_{j}\right|=1\right) = \left|\theta_{j,1}\right| \sum_{\gamma=1, \times_{j}} \mathbb{I}\left(\left|\gamma=1, \times_{j}\right|=0\right) \quad (48)$$

$$\left(\sum_{\gamma=1, \times_{j}} \mathbb{I}\left(\left|\gamma=1, \times_{j}\right|=1\right) + \mathbb{I}\left(\left|\gamma=1, \times_{j}\right|=0\right)\right) \quad \theta_{j,1} = \sum_{\gamma=1, \times_{j}} \mathbb{I}\left(\left|\gamma=1, \times_{j}\right|=1\right)$$

CSCI-GA 2565

MLE solution for our NB model

Set $\frac{\partial}{\partial \theta_{j,1}} \ell$ to zero:

$$\theta_{j,1} = \frac{\sum_{n=1}^{N} \mathbb{I}\left\{y^{(n)} = 1 \land x_{j}^{(n)} = 1\right\}}{\sum_{n=1}^{N} \mathbb{I}\left\{y^{(n)} = 1\right\}}$$

(49)

MLE solution for our NB model

Set $\frac{\partial}{\partial \theta_{j,1}} \ell$ to zero:

$$\theta_{j,1} = \frac{\sum_{n=1}^{N} \mathbb{I}\left\{y^{(n)} = 1 \land x_{j}^{(n)} = 1\right\}}{\sum_{n=1}^{N} \mathbb{I}\left\{y^{(n)} = 1\right\}}$$

In practice, count words:

number of fake reviews containing "absolutely" number of fake reviews

fake # reviews

Exercise: show that

(49)

Review

tinyurl.com/ml-lecb
$$p(x_d | x_1 \cdots x_k, Y) = P(x_d | y)$$

NB assumption: conditionally independent features given the label Recipe for learning a NB model: Gaussian

- **1** Choose $p(x_i | y)$, e.g., Bernoulli distribution for binary x_i .
- 2 Choose p(y), often a categorical distribution.
- **③** Estimate parameters by MLE (same as the strategy for conditional models) .

Next, NB with continuous features.

NB with continuous inputs

Let's consider a multiclass classification task with continuous inputs.

$$p(x_i \mid y) \sim \mathcal{N}(\mu_{i,y}, \sigma_{i,y}^2)$$

$$p(y = k) = \theta_k$$
(52)
(53)

NB with continuous inputs

Let's consider a multiclass classification task with continuous inputs.

$$p(x_i \mid y) \sim \mathcal{N}(\mu_{i,y}, \sigma_{i,y}^2)$$

$$p(y = k) = \theta_k$$
(52)
(53)

Likelihood of the data:

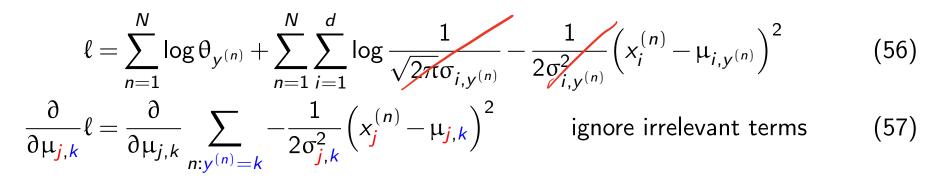
$$p(\mathcal{D}) = \prod_{n=1}^{N} p(y^{(n)}) \prod_{i=1}^{d} \underline{p}(x_i^{(n)} \mid y^{(n)})$$
(54)
$$= \prod_{n=1}^{N} \theta_{y^{(n)}} \prod_{i=1}^{d} \frac{1}{\sqrt{2\pi}\sigma_{i,y^{(n)}}} \exp\left(-\frac{1}{2\sigma_{i,y^{(n)}}^2} \left(x_i^{(n)} - \mu_{i,y^{(n)}}\right)^2\right)$$
(55)

Log likelihood:

$$\ell = \sum_{n=1}^{N} \log \theta_{y^{(n)}} + \sum_{n=1}^{N} \sum_{i=1}^{d} \log \frac{1}{\sqrt{2\pi}\sigma_{i,y^{(n)}}} - \frac{1}{2\sigma_{i,y^{(n)}}^2} \left(x_i^{(n)} - \mu_{i,y^{(n)}}\right)^2$$
(56)

(58)

Log likelihood:



(58)

Log likelihood:

$$\ell = \sum_{n=1}^{N} \log \theta_{y^{(n)}} + \sum_{n=1}^{N} \sum_{i=1}^{d} \log \frac{1}{\sqrt{2\pi} \sigma_{i,y^{(n)}}} - \frac{1}{2\sigma_{i,y^{(n)}}^{2}} \left(x_{i}^{(n)} - \mu_{i,y^{(n)}}\right)^{2}$$
(56)

$$\frac{\partial}{\partial \mu_{j,k}} \ell = \frac{\partial}{\partial \mu_{j,k}} \sum_{\substack{n:y^{(n)} = k \\ n:y^{(n)} = k}} -\frac{1}{2\sigma_{j,k}^{2}} \left(x_{j}^{(n)} - \mu_{j,k}\right)^{2}$$
ignore irrelevant terms (57)

$$= \sum_{\substack{n:y^{(n)} = k \\ \sigma_{j,k}^{2}}} \left(\frac{1}{2\sigma_{j,k}^{2}} \left(x_{j}^{(n)} - \mu_{j,k}\right)\right) = O \qquad \sum_{\substack{n:y^{(n)} = k \\ n:y^{(n)} = k}} \chi_{j}^{(n)}$$
(58)

Log likelihood:

$$\ell = \sum_{n=1}^{N} \log \theta_{y^{(n)}} + \sum_{n=1}^{N} \sum_{i=1}^{d} \log \frac{1}{\sqrt{2\pi} \sigma_{i,y^{(n)}}} - \frac{1}{2\sigma_{i,y^{(n)}}^{2}} \left(x_{i}^{(n)} - \mu_{i,y^{(n)}}\right)^{2}$$
(56)
$$\frac{\partial}{\partial \mu_{j,k}} \ell = \frac{\partial}{\partial \mu_{j,k}} \sum_{n:y^{(n)}=k} -\frac{1}{2\sigma_{j,k}^{2}} \left(x_{j}^{(n)} - \mu_{j,k}\right)^{2}$$
ignore irrelevant terms (57)
$$= \sum_{n:y^{(n)}=k} \frac{1}{\sigma_{j,k}^{2}} \left(x_{j}^{(n)} - \mu_{j,k}\right)$$
(58)

Set $\frac{\partial}{\partial \mu_{j,k}} \ell$ to zero:

$$\mu_{j,k} = \frac{\sum_{n:y^{(n)}=k} x_j^{(n)}}{\sum_{n:y^{(n)}=k} 1}$$

Log likelihood:

$$\ell = \sum_{n=1}^{N} \log \theta_{y^{(n)}} + \sum_{n=1}^{N} \sum_{i=1}^{d} \log \frac{1}{\sqrt{2\pi} \sigma_{i,y^{(n)}}} - \frac{1}{2\sigma_{i,y^{(n)}}^{2}} \left(x_{i}^{(n)} - \mu_{i,y^{(n)}}\right)^{2}$$
(56)
$$\frac{\partial}{\partial \mu_{j,k}} \ell = \frac{\partial}{\partial \mu_{j,k}} \sum_{n:y^{(n)}=k} -\frac{1}{2\sigma_{j,k}^{2}} \left(x_{j}^{(n)} - \mu_{j,k}\right)^{2}$$
ignore irrelevant terms (57)
$$= \sum_{n:y^{(n)}=k} \frac{1}{\sigma_{j,k}^{2}} \left(x_{j}^{(n)} - \mu_{j,k}\right)$$
(58)

Set $\frac{\partial}{\partial \mu_{j,k}} \ell$ to zero:

$$\mu_{j,k} = \frac{\sum_{n:y^{(n)}=k} x_j^{(n)}}{\sum_{n:y^{(n)}=k} 1} = \text{sample mean of } x_j \text{ in class } k$$

Show that

$$\sigma_{j,k}^{2} = \frac{\sum_{n:y^{(n)}=k} \left(x_{j}^{(n)} - \mu_{j,k}\right)^{2}}{\sum_{n:y^{(n)}=k} 1} = \text{sample variance of } x_{j} \text{ in class } k \tag{60}$$
$$\theta_{k} = \frac{\sum_{n:y^{(n)}=k} 1}{N} \qquad \text{(class prior)} \tag{61}$$

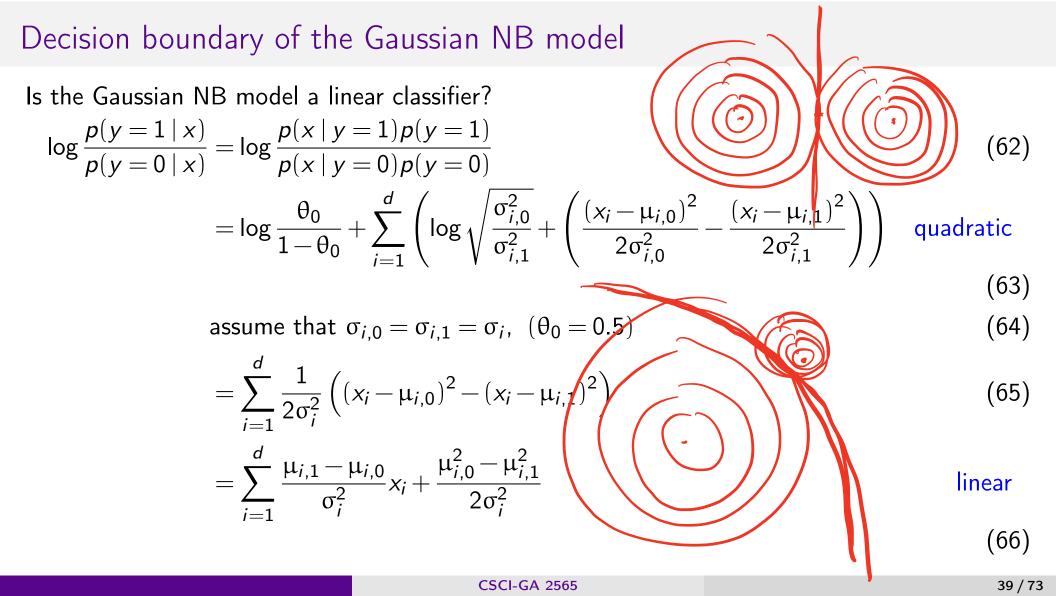
Is the Gaussian NB model a linear classifier?

Is the Gaussian NB model a linear classifier? $\log \frac{p(y=1 \mid x)}{p(y=0 \mid x)} = \log \frac{p(x \mid y=1)p(y=1)}{p(x \mid y=0)p(y=0)}$

Is the Gaussian NB model a linear classifier? $\log \frac{p(y=1 \mid x)}{p(y=0 \mid x)} = \log \frac{p(x \mid y=1)p(y=1)}{p(x \mid y=0)p(y=0)}$ $= \log \frac{\theta_0}{1-\theta_0} + \sum_{i=1}^d \left(\log \sqrt{\frac{\sigma_{i,0}^2}{\sigma_{i,1}^2}} + \left(\frac{(x_i - \mu_{i,0})^2}{2\sigma_{i,0}^2} - \frac{(x_i - \mu_{i,1})^2}{2\sigma_{i,1}^2}\right)\right)$

(62)

Is the Gaussian NB model a linear classifier? $\log \frac{p(y=1 \mid x)}{p(y=0 \mid x)} = \log \frac{p(x \mid y=1)p(y=1)}{p(x \mid y=0)p(y=0)}$ $= \log \frac{\theta_0}{1-\theta_0} + \sum_{i=1}^d \left(\log \sqrt{\frac{\sigma_{i,0}^2}{\sigma_{i,1}^2}} + \left(\frac{(x_i - \mu_{i,0})^2}{2\sigma_{i,0}^2} - \frac{(x_i - \mu_{i,1})^2}{2\sigma_{i,1}^2} \right) \right)$ (62) (62) (63)



Assuming the variance of each feature is the same for both classes, we have

$$\log \frac{p(y=1 \mid x)}{p(y=0 \mid x)} = \sum_{i=1}^{d} \frac{\mu_{i,1} - \mu_{i,0}}{\sigma_i^2} x_i + \frac{\mu_{i,0}^2 - \mu_{i,1}^2}{2\sigma_i^2} = \theta^T x$$
 where else have we seen it?

(67)

Assuming the variance of each feature is the same for both classes, we have

$$\log \frac{p(y=1 \mid x)}{p(y=0 \mid x)} = \sum_{i=1}^{d} \frac{\mu_{i,1} - \mu_{i,0}}{\sigma_i^2} x_i + \frac{\mu_{i,0}^2 - \mu_{i,1}^2}{2\sigma_i^2}$$
(67)
= $\theta^T x$ where else have we seen it? (68)

$$\theta_{i} = \frac{\mu_{i,1} - \mu_{i,0}}{\sigma_{i}^{2}}$$
$$\theta_{0} = \sum_{i=1}^{d} \frac{\mu_{i,0}^{2} - \mu_{i,1}^{2}}{2\sigma_{i}^{2}}$$

for $i \in [1, d]$ (70) bias term (71)

(69)

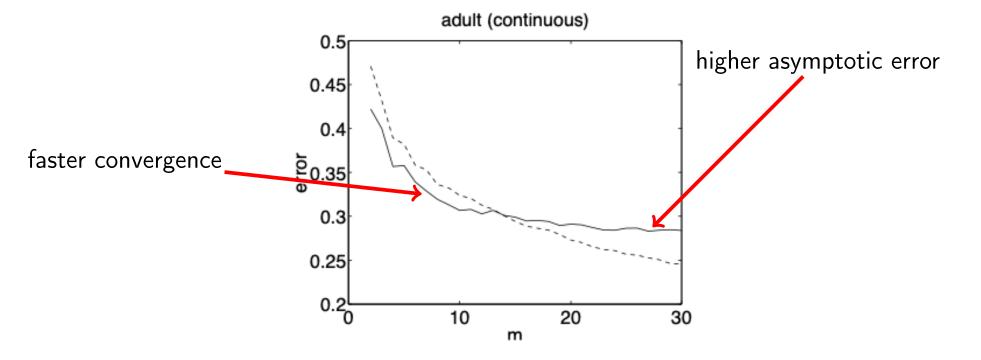
	logistic regression	Gaussian naive Bayes
model type	conditional/discriminative	generative
parametrization	$p(y \mid x)$	$p(x \mid y), p(y)$
assumptions on Y	Bernoulli	Bernoulli
assumptions on X	—	Gaussian
decision boundary	$\theta_{LR}^T x$	$\theta_{\sf GNB}^{T} x$

	logistic regression	Gaussian naive Bayes
model type	conditional/discriminative	generative
parametrization	$p(y \mid x)$	$p(x \mid y), p(y)$
assumptions on Y	Bernoulli	Bernoulli
assumptions on X	—	Gaussian
decision boundary	$\theta_{LR}^{T} x$	$\theta_{GNB}^{T} x$

Given the same training data, is $\theta_{LR}=\theta_{GNB}?$

Generative vs discriminative classifiers

Ng, A. and Jordan, M. (2002). On discriminative versus generative classifiers: A comparison of logistic regression and naive Bayes. In Advances in Neural Information Processing Systems 14.



Solid line: naive Bayes; dashed line: logistic regression.

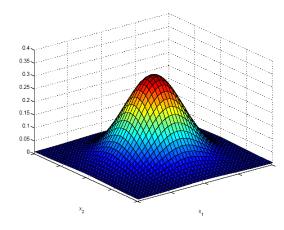
Logistic regression and Gaussian naive Bayes converge to the same classifier asymptotically, assuming the GNB assumption holds.

- Data points are generated from Gaussian distributions for each class
- Each dimension is independently generated
- Shared variance

What if the GNB assumption is not true?

Multivariate Gaussian Distribution

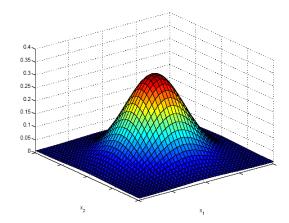
•
$$\mathbf{x} \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$$
, a Gaussian (or normal) distribution defined as
Vector matrix $p(\mathbf{x}) = \frac{1}{(2\pi)^{d/2} |\boldsymbol{\Sigma}|^{1/2}} \exp\left[-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right]$



Multivariate Gaussian Distribution

• $x \sim \mathcal{N}(\mu, \Sigma)$, a Gaussian (or normal) distribution defined as

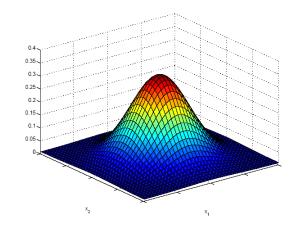
$$p(\mathbf{x}) = \frac{1}{(2\pi)^{d/2} |\Sigma|^{1/2}} \exp\left[-\frac{1}{2} (\mathbf{x} - \mu)^T \Sigma^{-1} (\mathbf{x} - \mu)\right]$$



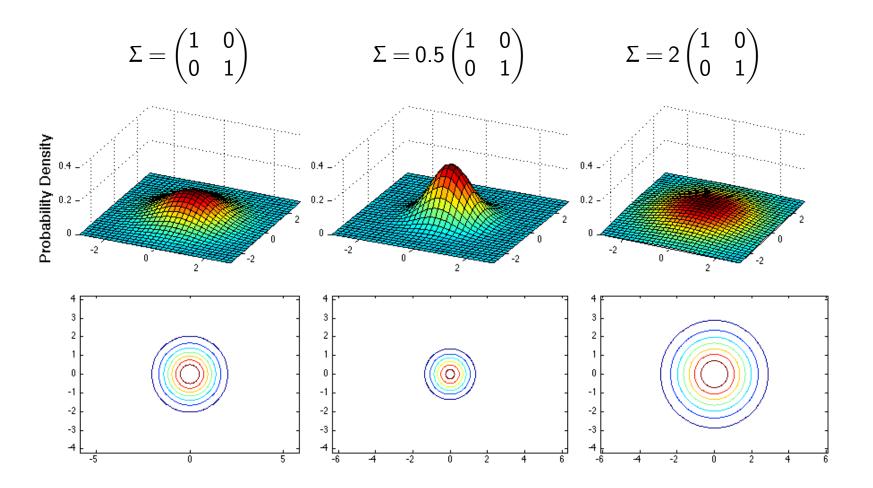
• Mahalanobis distance $(x - \mu_k)^T \Sigma^{-1} (x - \mu_k)$ measures the distance from x to μ in terms of Σ

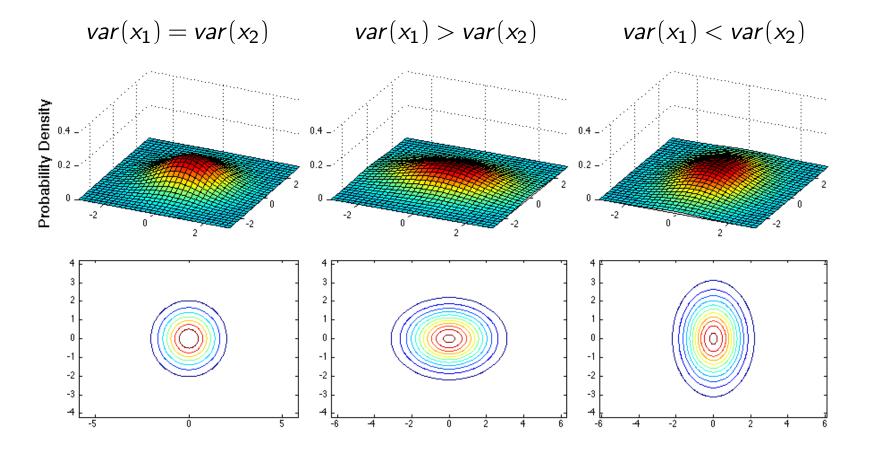
Multivariate Gaussian Distribution

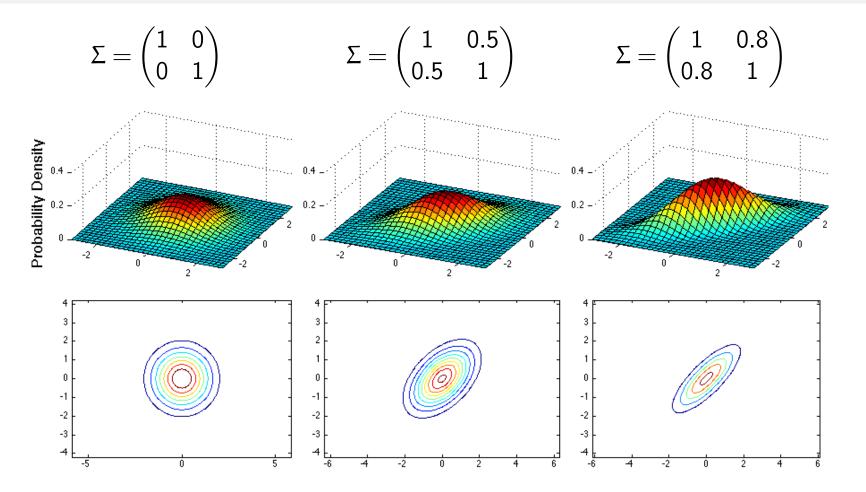
•
$$x \sim \mathcal{N}(\mu, \Sigma)$$
 a Gaussian (or normal) distribution defined as
 $p(x) = \frac{1}{(2\pi)^{d/2} |\Sigma|^{1/2}} \exp\left[-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)\right]$

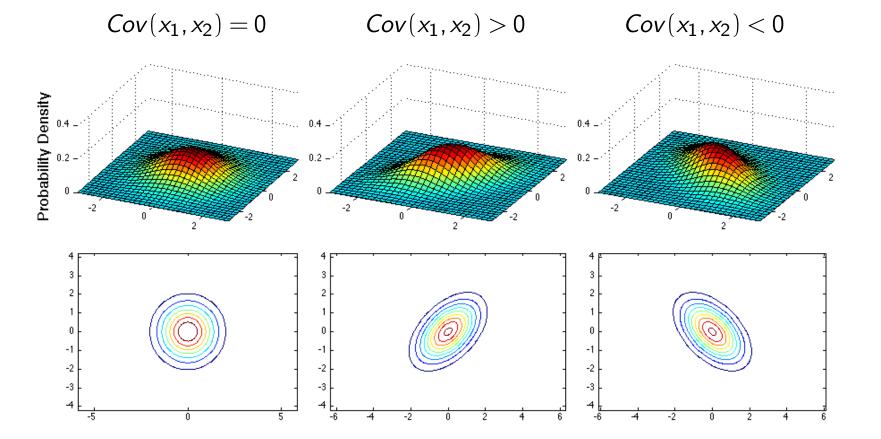


- Mahalanobis distance $(x \mu_k)^T \Sigma^{-1} (x \mu_k)$ measures the distance from x to μ in terms of Σ
- It normalizes for difference in variances and correlations









- Gaussian Bayes Classifier in its general form assumes that p(x|y) is distributed according to a multivariate normal (Gaussian) distribution
- Multivariate Gaussian distribution:

$$p(\mathbf{x}|t=k) = \frac{1}{(2\pi)^{d/2} |\Sigma_k|^{1/2}} \exp\left[-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu}_k)^T \Sigma_k^{-1} (\mathbf{x} - \boldsymbol{\mu}_k)\right]$$

where $|\Sigma_k|$ denotes the determinant of the matrix, and d is dimension of x

- Gaussian Bayes Classifier in its general form assumes that p(x|y) is distributed according to a multivariate normal (Gaussian) distribution
- Multivariate Gaussian distribution:

$$p(\mathbf{x}|t=k) = \frac{1}{(2\pi)^{d/2} |\Sigma_k|^{1/2}} \exp\left[-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu}_k)^T \Sigma_k^{-1} (\mathbf{x} - \boldsymbol{\mu}_k)\right]$$

where $|\Sigma_k|$ denotes the determinant of the matrix, and d is dimension of x

• Each class k has associated mean vector μ_k and covariance matrix Σ_k

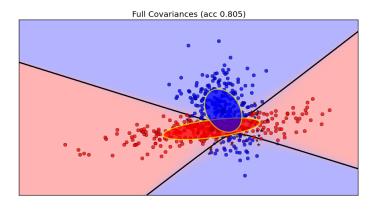
- Gaussian Bayes Classifier in its general form assumes that p(x|y) is distributed according to a multivariate normal (Gaussian) distribution
- Multivariate Gaussian distribution:

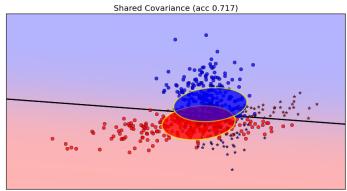
$$p(\mathbf{x}|t=k) = \frac{1}{(2\pi)^{d/2} |\Sigma_k|^{1/2}} \exp\left[-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu}_k)^T \Sigma_k^{-1} (\mathbf{x} - \boldsymbol{\mu}_k)\right]$$

where $|\Sigma_k|$ denotes the determinant of the matrix, and d is dimension of x

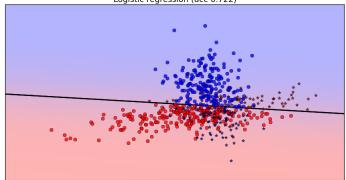
- Each class k has associated mean vector μ_k and covariance matrix Σ_k
- Σ_k has $O(d^2)$ parameters could be hard to estimate

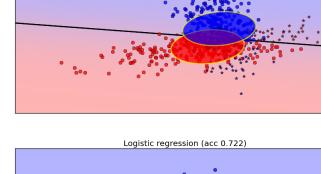
Example





Naive Bayes (acc 0.780)





Different cases on the covariance matrix:

- Full covariance: Quadratic decision boundary
- Shared covariance: Linear decision boundary
- Naive Bayes: Diagonal covariance matrix, quadratic decision boundary

Different cases on the covariance matrix:

- Full covariance: Quadratic decision boundary
- Shared covariance: Linear decision boundary
- Naive Bayes: Diagonal covariance matrix, quadratic decision boundary

GBC vs. Logistic Regression:

- If data is truly Gaussian distributed, then shared covariance = logistic regression.
- But logistic regression can learn other distributions.

- Probabilistic framework of using maximum likelihood as a more principled way to derive loss functions.
- Conditional vs. generative
- Generative models the joint distribution, and may lead to more assumption on the data.

- Probabilistic framework of using maximum likelihood as a more principled way to derive loss functions.
- Conditional vs. generative
- Generative models the joint distribution, and may lead to more assumption on the data.
- When there is very few data point, it may be hard to model the distribution.
- Is there an equivalent "regularization" in a probabilistic framework?

Bayesian ML: Classical Statistics

Parametric Family of Densities

• A parametric family of densities is a set

 $\{p(y \mid \theta) : \theta \in \Theta\},\$

- where $p(y \mid \theta)$ is a density on a **sample space** \mathcal{Y} , and
- θ is a **parameter** in a [finite dimensional] **parameter space** Θ .

• A parametric family of densities is a set

 $\{p(y \mid \theta) : \theta \in \Theta\},\$

- where $p(y | \theta)$ is a density on a **sample space** \mathcal{Y} , and
- θ is a **parameter** in a [finite dimensional] **parameter space** Θ .
- This is the common starting point for a treatment of classical or Bayesian statistics.
- In this lecture, whenever we say "density", we could replace it with "mass function." (and replace integrals with sums).

• We're still working with a parametric family of densities:

 $\{p(y \mid \theta) \mid \theta \in \Theta\}.$

 $\{p(y \mid \theta) \mid \theta \in \Theta\}.$

• Assume that $p(y | \theta)$ governs the world we are observing, for some $\theta \in \Theta$.

 $\{p(y \mid \theta) \mid \theta \in \Theta\}.$

- Assume that $p(y | \theta)$ governs the world we are observing, for some $\theta \in \Theta$.
- If we knew the right $\theta \in \Theta$, there would be no need for statistics.

 $\{p(y \mid \theta) \mid \theta \in \Theta\}.$

- Assume that $p(y | \theta)$ governs the world we are observing, for some $\theta \in \Theta$.
- If we knew the right $\theta \in \Theta$, there would be no need for statistics.
- But instead of θ , we have data \mathcal{D} : y_1, \ldots, y_n sampled i.i.d. from $p(y \mid \theta)$.

 $\{p(y \mid \theta) \mid \theta \in \Theta\}.$

- Assume that $p(y | \theta)$ governs the world we are observing, for some $\theta \in \Theta$.
- If we knew the right $\theta \in \Theta$, there would be no need for statistics.
- But instead of θ , we have data \mathcal{D} : y_1, \ldots, y_n sampled i.i.d. from $p(y \mid \theta)$.
- Statistics is about how to get by with \mathcal{D} in place of θ .

• One type of statistical problem is **point estimation**.

- One type of statistical problem is **point estimation**.
- A statistic $s = s(\mathcal{D})$ is any function of the data.

- One type of statistical problem is **point estimation**.
- A statistic $s = s(\mathcal{D})$ is any function of the data.
- A statistic $\hat{\theta} = \hat{\theta}(\mathcal{D})$ taking values in Θ is a **point estimator of** θ .

- One type of statistical problem is **point estimation**.
- A statistic $s = s(\mathcal{D})$ is any function of the data.
- A statistic $\hat{\theta} = \hat{\theta}(\mathcal{D})$ taking values in Θ is a **point estimator of** θ .
- A good point estimator will have $\hat{\theta} \approx \theta$.
- Desirable statistical properties of point estimators:

- One type of statistical problem is **point estimation**.
- A statistic $s = s(\mathcal{D})$ is any function of the data.
- A statistic $\hat{\theta} = \hat{\theta}(\mathcal{D})$ taking values in Θ is a **point estimator of** θ .
- A good point estimator will have $\hat{\theta} \approx \theta$.
- Desirable statistical properties of point estimators:
 - **Consistency:** As data size $n \to \infty$, we get $\hat{\theta}_n \to \theta$.

- One type of statistical problem is **point estimation**.
- A statistic $s = s(\mathcal{D})$ is any function of the data.
- A statistic $\hat{\theta} = \hat{\theta}(\mathcal{D})$ taking values in Θ is a **point estimator of** θ .
- A good point estimator will have $\hat{\theta} \approx \theta$.
- Desirable statistical properties of point estimators:
 - **Consistency:** As data size $n \to \infty$, we get $\hat{\theta}_n \to \theta$.
 - Efficiency: (Roughly speaking) $\hat{\theta}_n$ is as accurate as we can get from a sample of size n.

- One type of statistical problem is **point estimation**.
- A statistic $s = s(\mathcal{D})$ is any function of the data.
- A statistic $\hat{\theta} = \hat{\theta}(\mathcal{D})$ taking values in Θ is a **point estimator of** θ .
- A good point estimator will have $\hat{\theta} \approx \theta$.
- Desirable statistical properties of point estimators:
 - **Consistency:** As data size $n \to \infty$, we get $\hat{\theta}_n \to \theta$.
 - Efficiency: (Roughly speaking) $\hat{\theta}_n$ is as accurate as we can get from a sample of size n.
- Maximum likelihood estimators are consistent and efficient under reasonable conditions.

Example of Point Estimation: Coin Flipping

• Parametric family of mass functions:

 $p(\text{Heads} | \theta) = \theta$,

for $\theta \in \Theta = (0, 1)$.

- Data $\mathcal{D} = (H, H, T, T, T, T, T, H, \dots, T)$, assumed i.i.d. flips.
 - *n_h*: number of heads
 - *n_t*: number of tails

- Data $\mathcal{D} = (H, H, T, T, T, T, T, H, \dots, T)$, assumed i.i.d. flips.
 - *n_h*: number of heads
 - *n*_t: number of tails
- Likelihood function for data $\mathcal{D}:$

$$L_{\mathcal{D}}(\theta) =$$

- Data $\mathcal{D} = (H, H, T, T, T, T, T, H, \dots, T)$, assumed i.i.d. flips.
 - *n_h*: number of heads
 - *n*_t: number of tails
- Likelihood function for data $\mathcal{D}:$

$$L_{\mathcal{D}}(\theta) = p(\mathcal{D} \mid \theta) = \theta^{n_h} (1 - \theta)^{n_t}$$

• As usual, it is easier to maximize the log-likelihood function:

$$\hat{\theta}_{\mathsf{MLE}} = \arg \max \log L_{\mathcal{D}}(\theta) \\ \substack{\theta \in \Theta} \\ = \arg \max [n_h \log \theta + n_t \log(1 - \theta)] \\ \substack{\theta \in \Theta} \end{cases}$$

- Data $\mathcal{D} = (H, H, T, T, T, T, T, H, \dots, T)$, assumed i.i.d. flips.
 - *n_h*: number of heads
 - *n_t*: number of tails
- Likelihood function for data $\mathcal{D}:$

$$L_{\mathcal{D}}(\theta) = p(\mathcal{D} \mid \theta) = \theta^{n_h} (1 - \theta)^{n_t}$$

• As usual, it is easier to maximize the log-likelihood function:

$$\hat{\theta}_{\mathsf{MLE}} = \arg \max_{\substack{\theta \in \Theta \\ \theta \in \Theta}} \log L_{\mathcal{D}}(\theta)$$

$$= \arg \max_{\substack{\theta \in \Theta \\ \theta \in \Theta}} [n_h \log \theta + n_t \log(1 - \theta)]$$

• First order condition (equating the derivative to zero):

$$\frac{n_h}{\theta} - \frac{n_t}{1 - \theta} = 0 \iff \theta = \frac{n_h}{n_h + n_t}$$

- Data $\mathcal{D} = (H, H, T, T, T, T, T, H, \dots, T)$, assumed i.i.d. flips.
 - *n_h*: number of heads
 - *n_t*: number of tails
- Likelihood function for data $\mathcal{D}:$

$$L_{\mathcal{D}}(\theta) = p(\mathcal{D} \mid \theta) = \theta^{n_h} (1 - \theta)^{n_t}$$

• As usual, it is easier to maximize the log-likelihood function:

$$\begin{split} \hat{\theta}_{\mathsf{MLE}} &= \arg \max \log L_{\mathcal{D}}(\theta) \\ &= \arg \max [n_h \log \theta + n_t \log(1 - \theta)] \\ &= \theta \in \Theta \end{split}$$

• First order condition (equating the derivative to zero):

$$\frac{n_h}{\theta} - \frac{n_t}{1 - \theta} = 0 \iff \theta = \frac{n_h}{n_h + n_t} \qquad \hat{\theta}_{\mathsf{MLE}} \text{ is the empirical fraction of heads.}$$

Bayesian Statistics: Introduction

• Baysian statistics introduces a crucial new ingredient: the **prior distribution**.

- Baysian statistics introduces a crucial new ingredient: the **prior distribution**.
- A prior distribution $p(\theta)$ is a distribution on the parameter space Θ .

- Baysian statistics introduces a crucial new ingredient: the **prior distribution**.
- A prior distribution $p(\theta)$ is a distribution on the parameter space Θ .
- The prior reflects our belief about θ , before seeing any data.

A [parametric] Bayesian model consists of two pieces:
A parametric family of densities

 $\{p(\mathcal{D} \mid \theta) \mid \theta \in \Theta\}.$

A [parametric] Bayesian model consists of two pieces:
A parametric family of densities

 $\{p(\mathcal{D} \mid \theta) \mid \theta \in \Theta\}.$

2 A prior distribution $p(\theta)$ on parameter space Θ .

• A [parametric] Bayesian model consists of two pieces:

A parametric family of densities

 $\{p(\mathcal{D} \mid \theta) \mid \theta \in \Theta\}.$

2 A prior distribution $p(\theta)$ on parameter space Θ .

• Putting the pieces together, we get a joint density on θ and \mathcal{D} :

 $\boldsymbol{p}(\mathcal{D},\boldsymbol{\theta}) = \boldsymbol{p}(\mathcal{D} \mid \boldsymbol{\theta})\boldsymbol{p}(\boldsymbol{\theta}).$

• The posterior distribution for θ is $p(\theta \mid \mathcal{D})$.

- The posterior distribution for θ is $p(\theta \mid \mathcal{D})$.
- Whereas the prior represents belief about θ before observing data \mathcal{D} ,

- The posterior distribution for θ is $p(\theta \mid \mathcal{D})$.
- Whereas the prior represents belief about θ before observing data \mathcal{D} ,
- The posterior represents the rationally updated belief about θ , after seeing \mathcal{D} .

• By Bayes rule, can write the posterior distribution as

 $p(\theta \mid \mathcal{D})$

• By Bayes rule, can write the posterior distribution as

$$p(\theta \mid \mathcal{D}) = \frac{p(\mathcal{D} \mid \theta)p(\theta)}{p(\mathcal{D})}.$$

• By Bayes rule, can write the posterior distribution as

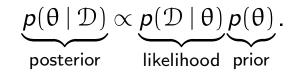
$$p(\theta \mid \mathcal{D}) = \frac{p(\mathcal{D} \mid \theta)p(\theta)}{p(\mathcal{D})}.$$

• Let's consider both sides as functions of θ , for fixed \mathcal{D} .

• By Bayes rule, can write the posterior distribution as

$$p(\theta \mid \mathcal{D}) = \frac{p(\mathcal{D} \mid \theta)p(\theta)}{p(\mathcal{D})}.$$

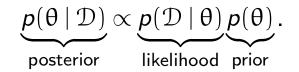
- Let's consider both sides as functions of θ , for fixed \mathcal{D} .
- Then both sides are densities on Θ and we can write



• By Bayes rule, can write the posterior distribution as

$$p(\theta \mid \mathcal{D}) = \frac{p(\mathcal{D} \mid \theta)p(\theta)}{p(\mathcal{D})}.$$

- Let's consider both sides as functions of θ , for fixed \mathcal{D} .
- $\bullet\,$ Then both sides are densities on Θ and we can write



• Where \propto means we've dropped factors that are independent of θ .

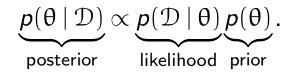
• By Bayes rule, can write the posterior distribution as

$$p(\theta \mid \mathcal{D}) = \frac{p(\mathcal{D} \mid \theta)p(\theta)}{p(\mathcal{D})}$$

MLE: argmax
$$P(D|\theta)$$

 Θ
MAP: argmax $P(D|\theta)P(\theta)$
 Θ

- Let's consider both sides as functions of θ , for fixed \mathcal{D} .
- $\bullet\,$ Then both sides are densities on Θ and we can write



- Where \propto means we've dropped factors that are independent of θ .
- Maximum a posteriori: Find $\hat{\theta}_{MAP}$ Maximize the posterior distribution.

• Recall that we have a parametric family of mass functions:

 $p(\text{Heads} | \theta) = \theta$,

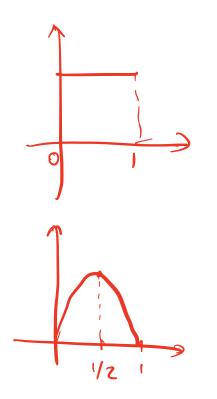
for $\theta \in \Theta = (0, 1)$.

• Recall that we have a parametric family of mass functions:

 $p(\text{Heads} | \theta) = \theta$,

for $\theta \in \Theta = (0, 1)$.

• We need a prior distribution $p(\theta)$ on $\Theta = (0, 1)$.



• Recall that we have a parametric family of mass functions:

 $p(\text{Heads} \mid \theta) = \theta$,

for $\theta \in \Theta = (0, 1)$.

- We need a prior distribution $p(\theta)$ on $\Theta = (0, 1)$.
- One convenient choice would be a distribution from the Beta family

• Prior:

$$\begin{array}{ll} \theta & \sim & \mathsf{Beta}(\alpha,\beta) \\ \rho(\theta) & \propto & \theta^{\alpha-1} \left(1\!-\!\theta\right)^{\beta-1} \end{array}$$

Figure by Horas based on the work of Krishnavedala (Own work) [Public domain], via Wikimedia Commons http://commons.wikimedia.org/wiki/File:Beta_distribution_pdf.svg.

• Prior:

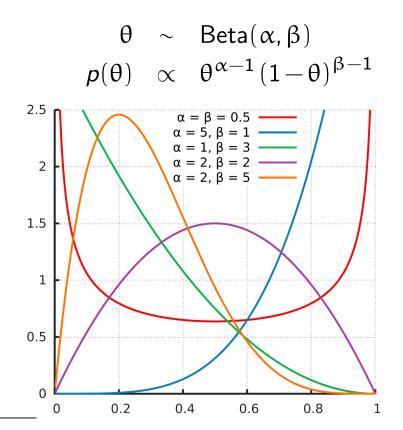


Figure by Horas based on the work of Krishnavedala (Own work) [Public domain], via Wikimedia Commons http://commons.wikimedia.org/wiki/File:Beta_distribution_pdf.svg.

CSCI-GA 2565

• Prior:

$$\begin{array}{ll} \theta & \sim & \operatorname{Beta}(h,t) \\ \rho(\theta) & \propto & \theta^{h-1} \left(1-\theta\right)^{t-1} \end{array}$$

• Prior:

$$\begin{array}{ll} \theta & \sim & \operatorname{Beta}(h,t) \\ \rho(\theta) & \propto & \theta^{h-1} \left(1-\theta\right)^{t-1} \end{array}$$

• Mean of Beta distribution:

$$\mathbb{E}\theta = \frac{h}{h+t}$$

• Prior:

$$\theta \sim \operatorname{Beta}(h, t)$$

 $p(\theta) \propto \theta^{h-1} (1-\theta)^{t-1}$

• Mean of Beta distribution:

$$\mathbb{E}\theta = \frac{h}{h+t}$$

• Mode of Beta distribution:

$$\arg\max_{\theta} p(\theta) = \frac{h-1}{h+t-2}$$

for h, t > 1.

• Prior:

$$\theta \sim Beta(h,t)$$

 $p(\theta) \propto \underline{\theta^{h-1}(1-\theta)^{t-1}}$

 $p(\theta) \propto \underline{\theta^{h-1}(1-\theta)^{t-1}}$

 $p(\theta) \propto \underline{\theta^{h-1}(1-\theta)^{t-1}}$

 $p(\theta) \propto \underline{\theta^{h-1}(1-\theta)^{t-1}}$

 $p(\theta) \propto \underline{\theta^{h-1}(1-\theta)^{t-1}}$

• Prior:

tion $\begin{array}{l}
\theta \sim \operatorname{Beta}(h,t) \\
p(\theta) \propto \theta^{h-1}(1-\theta)^{t-1} \\
L(\theta) = p(\mathcal{D} \mid \theta) = \underline{\theta}^{n_h}(1-\theta)^{n_t} \\
\end{array} \xrightarrow{\text{MLE :}} \\
\theta^{n_h}(1-\theta)^{n_t} \\
\theta^{n_h}(1-\theta)^{n_t} \\
\theta^{n_h}(1-\theta)^{n_t} \\
\theta^{n_h}(1-\theta)^{n_t} \\
\theta^{n_h}(1-\theta)^{n_h} \\
\theta^{n_h}(1-\theta)^$

• Likelihood function

• Prior:

$$\begin{array}{ll} \theta & \sim & \operatorname{Beta}(h,t) \\ p(\theta) & \propto & \theta^{h-1} \left(1-\theta\right)^{t-1} \end{array}$$

• Likelihood function

$$L(\theta) = p(\mathcal{D} \mid \theta) = \theta^{n_h} (1 - \theta)^{n_t}$$

• Posterior density:

 $p(\theta \mid \mathcal{D}) \propto p(\theta)p(\mathcal{D} \mid \theta)$

• Prior:

 $\theta \sim \text{Beta}(h, t)$ $p(\theta) \propto \theta^{h-1} (1-\theta)^{t-1}$ $L(\theta) = p(\mathcal{D} \mid \theta) = \theta^{n_h} (1-\theta)^{n_t}$

• Likelihood function

• Posterior density:

$$\begin{array}{ll} \rho(\theta \mid \mathcal{D}) & \propto & \rho(\theta) \rho(\mathcal{D} \mid \theta) \\ & \propto & \theta^{h-1} \left(1-\theta\right)^{t-1} \times \theta^{n_h} \left(1-\theta\right)^{n_t} \end{array}$$

• Prior:

$$\theta \sim \operatorname{Beta}(h, t)$$

 $p(\theta) \propto \theta^{h-1} (1-\theta)^{t-1}$

• Likelihood function

$$L(\theta) = p(\mathcal{D} \mid \theta) = \theta^{n_h} (1 - \theta)^{n_t}$$

• Posterior density:

$$p(\theta \mid \mathcal{D}) \propto p(\theta)p(\mathcal{D} \mid \theta)$$

$$\propto \theta^{h-1}(1-\theta)^{t-1} \times \theta^{n_h}(1-\theta)^{n_t}$$

$$= \theta^{h-1+n_h}(1-\theta)^{t-1+n_t}$$

The Posterior is in the Beta Family!

• Prior:

$$\begin{array}{ll} \theta & \sim & \operatorname{Beta}(h,t) \\ p(\theta) & \propto & \theta^{h-1} \left(1-\theta\right)^{t-1} \end{array}$$

• Posterior density:

$$p(\theta \mid \mathcal{D}) \propto \theta^{h-1+n_h} (1-\theta)^{t-1+n_t}$$

The Posterior is in the Beta Family!

• Prior:

$$\begin{array}{ll} \theta & \sim & \operatorname{Beta}(h,t) \\ p(\theta) & \propto & \theta^{h-1} \left(1-\theta\right)^{t-1} \end{array}$$

• Posterior density:

$$p(\theta \mid \mathcal{D}) \propto \theta^{h-1+n_h} (1-\theta)^{t-1+n_t} \sim$$

• Posterior is in the beta family:

$$\theta \mid \mathcal{D} \sim \text{Beta}(h+n_h, t+n_t)$$

The Posterior is in the Beta Family!

• Prior:

$$\begin{array}{ll} \theta & \sim & \operatorname{Beta}(h,t) \\ p(\theta) & \propto & \theta^{h-1} \left(1-\theta\right)^{t-1} \end{array}$$

• Posterior density:

$$p(\theta \mid \mathcal{D}) \propto \theta^{h-1+n_h} (1-\theta)^{t-1+n_t}$$

• Posterior is in the beta family:

$$\theta \mid \mathcal{D} \sim \text{Beta}(h+n_h, t+n_t)$$

• Interpretation:

- Prior initializes our counts with *h* heads and *t* tails.
- Posterior increments counts by observed n_h and n_t .

- In this case, the posterior is in the same distribution family as the prior.
- Let π be a family of prior distributions on Θ .

- In this case, the posterior is in the same distribution family as the prior.
- Let π be a family of prior distributions on Θ .
- Let P parametric family of distributions with parameter space Θ .

- In this case, the posterior is in the same distribution family as the prior.
- Let π be a family of prior distributions on Θ .
- Let P parametric family of distributions with parameter space Θ .

Definition

A family of distributions π is conjugate to parametric model *P* if for any prior in π , the posterior is always in π .

- In this case, the posterior is in the same distribution family as the prior.
- Let π be a family of prior distributions on Θ .
- Let P parametric family of distributions with parameter space Θ .

Definition

A family of distributions π is conjugate to parametric model *P* if for any prior in π , the posterior is always in π .

• The beta family is conjugate to the coin-flipping (i.e. Bernoulli) model.

Coin Flipping: Concrete Example

• Suppose we have a coin, possibly biased (parametric probability model):

 $p(\text{Heads} | \theta) = \theta.$

Coin Flipping: Concrete Example

• Suppose we have a coin, possibly biased (parametric probability model):

 $p(\text{Heads} | \theta) = \theta.$

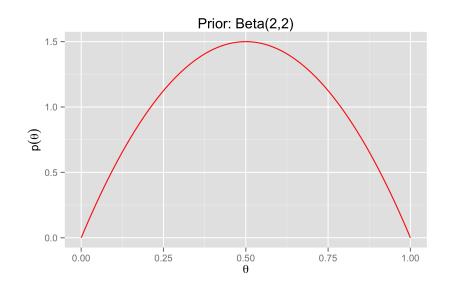
- Parameter space $\theta \in \Theta = [0, 1]$.
- Prior distribution: $\theta \sim \text{Beta}(2,2)$.

Coin Flipping: Concrete Example

• Suppose we have a coin, possibly biased (parametric probability model):

 $p(\text{Heads} | \theta) = \theta.$

- Parameter space $\theta \in \Theta = [0, 1]$.
- Prior distribution: $\theta \sim \text{Beta}(2,2)$.

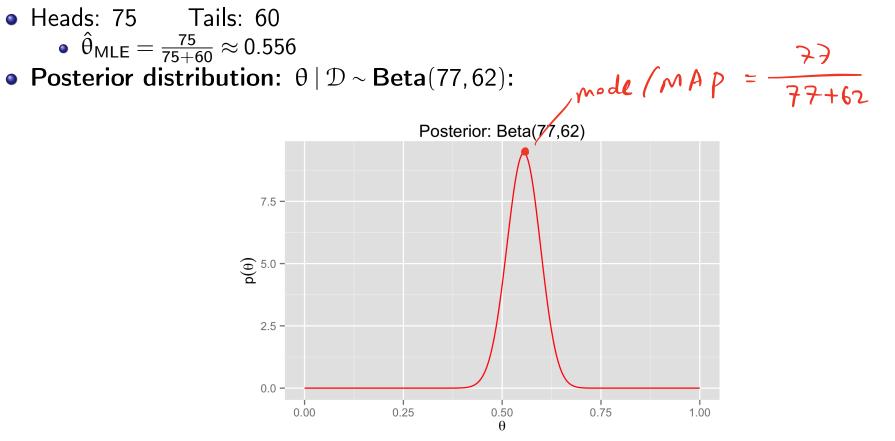


• Next, we gather some data $\mathcal{D} = \{H, H, T, T, T, T, T, H, \dots, T\}$:

- Next, we gather some data $\mathcal{D} = \{H, H, T, T, T, T, T, H, \dots, T\}$:
- Heads: 75 Tails: 60

- Next, we gather some data $\mathcal{D} = \{H, H, T, T, T, T, T, H, \dots, T\}$:
- Heads: 75 Tails: 60 • $\hat{\theta}_{MLE} = \frac{75}{75+60} \approx 0.556$

• Next, we gather some data $\mathcal{D} = \{H, H, T, T, T, T, T, H, \dots, T\}$:



CSCI-GA 2565

- We have the posterior distribution $\theta \mid \mathcal{D}$.
- What if someone asks us for a point estimate $\hat{\theta}$ for $\theta?$

- We have the posterior distribution $\theta \mid \mathcal{D}$.
- What if someone asks us for a point estimate $\hat{\theta}$ for $\theta?$
- Common options:

- We have the posterior distribution $\theta \mid \mathcal{D}$.
- What if someone asks us for a point estimate $\hat{\theta}$ for $\theta?$
- Common options:
 - posterior mean $\hat{\theta} = \mathbb{E}\left[\theta \mid \mathcal{D}\right]$

- We have the posterior distribution $\theta \mid \mathcal{D}$.
- What if someone asks us for a point estimate $\hat{\theta}$ for $\theta?$
- Common options:
 - posterior mean $\hat{\theta} = \mathbb{E}\left[\theta \mid \mathcal{D}\right]$
 - maximum a posteriori (MAP) estimate $\hat{\theta} = \arg \max_{\theta} p(\theta \mid D)$
 - Note: this is the **mode** of the posterior distribution

• Look at it: display uncertainty estimates to our client

- Look at it: display uncertainty estimates to our client
- Extract a **credible set** for θ (a Bayesian confidence interval).
 - e.g. Interval [a, b] is a 95% credible set if

 $\mathbb{P}(\theta \in [a, b] \mid \mathcal{D}) \geqslant 0.95$

What else can we do with a posterior?

- Look at it: display uncertainty estimates to our client
- Extract a credible set for θ (a Bayesian confidence interval).
 - e.g. Interval [a, b] is a 95% credible set if

 $\mathbb{P}(\theta \in [a, b] \mid \mathcal{D}) \ge 0.95$

- Select a point estimate using **Bayesian decision theory**:
 - Choose a loss function.
 - Find action minimizing expected risk w.r.t. posterior

 $0/1 | loss \rightarrow mode$ loss: absolute loss $\rightarrow median$ $[x - \hat{x}]$

Square loss -> mean