
Probabilistic models - Bayesian Methods

Mengye Ren

(Slides credit to David Rosenberg, He He, et al.)

NYU

Oct 8, 2024

CSCI-GA 2565 1 / 73

 



Overview

CSCI-GA 2565 3 / 73



Why probabilistic modeling?

A unified framework that covers many models, e.g., linear regression, logistic regression
Learning as statistical inference
Principled ways to incorporate your belief on the data generating distribution (inductive
biases)

CSCI-GA 2565 4 / 73

I
distribution of y

categorial 8
Gaussian NCM 62



Two ways of generating data

Two ways to model how the data is generated:

Conditional: p(y | x)
Generative: p(x ,y)

How to estimate the parameters of our model? Maximum likelihood estimation.
Compare and contrast conditional and generative models.

CSCI-GA 2565 5 / 73



Two ways of generating data

Two ways to model how the data is generated:
Conditional: p(y | x)
Generative: p(x ,y)

How to estimate the parameters of our model? Maximum likelihood estimation.
Compare and contrast conditional and generative models.

CSCI-GA 2565 5 / 73



Two ways of generating data

Two ways to model how the data is generated:
Conditional: p(y | x)
Generative: p(x ,y)

How to estimate the parameters of our model? Maximum likelihood estimation.

Compare and contrast conditional and generative models.

CSCI-GA 2565 5 / 73

pea ply x Ply p x y



Two ways of generating data

Two ways to model how the data is generated:
Conditional: p(y | x)
Generative: p(x ,y)

How to estimate the parameters of our model? Maximum likelihood estimation.
Compare and contrast conditional and generative models.

CSCI-GA 2565 5 / 73



Conditional models

CSCI-GA 2565 6 / 73



Linear regression

Linear regression is one of the most important methods in machine learning and statistics.
Goal: Predict a real-valued target y (also called response) from a vector of features x (also
called covariates).

Examples:
Predicting house price given location, condition, build year etc.
Predicting medical cost of a person given age, sex, region, BMI etc.
Predicting age of a person based on their photos.

CSCI-GA 2565 7 / 73



Linear regression

Linear regression is one of the most important methods in machine learning and statistics.
Goal: Predict a real-valued target y (also called response) from a vector of features x (also
called covariates).
Examples:

Predicting house price given location, condition, build year etc.
Predicting medical cost of a person given age, sex, region, BMI etc.
Predicting age of a person based on their photos.

CSCI-GA 2565 7 / 73



Problem setup

Data Training examples D= {(x(n),y (n))}Nn=1, where x 2 Rd and y 2 R.

Model A linear function h (parametrized by ✓) to predict y from x :

h(x) =
dX

i=0

✓ixi = ✓T x , (1)

where ✓ 2 Rd are the parameters (also called weights).
Note that

We incorporate the bias term (also called the intercept term) into x (i.e. x0 = 1).
We use superscript to denote the example id and subscript to denote the dimension id.

CSCI-GA 2565 8 / 73



Problem setup

Data Training examples D= {(x(n),y (n))}Nn=1, where x 2 Rd and y 2 R.
Model A linear function h (parametrized by ✓) to predict y from x :

h(x) =
dX

i=0

✓ixi = ✓T x , (1)

where ✓ 2 Rd are the parameters (also called weights).

Note that
We incorporate the bias term (also called the intercept term) into x (i.e. x0 = 1).
We use superscript to denote the example id and subscript to denote the dimension id.

CSCI-GA 2565 8 / 73



Problem setup

Data Training examples D= {(x(n),y (n))}Nn=1, where x 2 Rd and y 2 R.
Model A linear function h (parametrized by ✓) to predict y from x :

h(x) =
dX

i=0

✓ixi = ✓T x , (1)

where ✓ 2 Rd are the parameters (also called weights).
Note that

We incorporate the bias term (also called the intercept term) into x (i.e. x0 = 1).
We use superscript to denote the example id and subscript to denote the dimension id.

CSCI-GA 2565 8 / 73

0

to 02



Parameter estimation

Loss function We estimate ✓ by minimizing the squared loss (the least square method):

J(✓) =
1
N

NX

n=1

⇣
y
(n)-✓T x(n)

⌘2
. (empirical risk) (2)

Matrix form Let X 2 RN⇥d be the design matrix whose rows are input features.
Let y 2 RN be the vector of all targets.
We want to solve

✓̂= argmin
✓

(X✓- y)T (X✓- y). (3)

Solution Closed-form solution: ✓̂= (XT
X )-1

X
T y.

Review questions
Derive the solution for linear regression.
What if XT

X is not invertible?

CSCI-GA 2565 9 / 73

11A



Parameter estimation

Loss function We estimate ✓ by minimizing the squared loss (the least square method):

J(✓) =
1
N

NX

n=1

⇣
y
(n)-✓T x(n)

⌘2
. (empirical risk) (2)

Matrix form Let X 2 RN⇥d be the design matrix whose rows are input features.
Let y 2 RN be the vector of all targets.

We want to solve

✓̂= argmin
✓

(X✓- y)T (X✓- y). (3)

Solution Closed-form solution: ✓̂= (XT
X )-1

X
T y.

Review questions
Derive the solution for linear regression.
What if XT

X is not invertible?

CSCI-GA 2565 9 / 73



Parameter estimation

Loss function We estimate ✓ by minimizing the squared loss (the least square method):

J(✓) =
1
N

NX

n=1

⇣
y
(n)-✓T x(n)

⌘2
. (empirical risk) (2)

Matrix form Let X 2 RN⇥d be the design matrix whose rows are input features.
Let y 2 RN be the vector of all targets.
We want to solve

✓̂= argmin
✓

(X✓- y)T (X✓- y). (3)

Solution Closed-form solution: ✓̂= (XT
X )-1

X
T y.

Review questions
Derive the solution for linear regression.
What if XT

X is not invertible?

CSCI-GA 2565 9 / 73

TXᵗX 2 40
2 40 2 Ty D

TX O Ty XTx



Parameter estimation

Loss function We estimate ✓ by minimizing the squared loss (the least square method):

J(✓) =
1
N

NX

n=1

⇣
y
(n)-✓T x(n)

⌘2
. (empirical risk) (2)

Matrix form Let X 2 RN⇥d be the design matrix whose rows are input features.
Let y 2 RN be the vector of all targets.
We want to solve

✓̂= argmin
✓

(X✓- y)T (X✓- y). (3)

Solution Closed-form solution: ✓̂= (XT
X )-1

X
T y.

Review questions
Derive the solution for linear regression.
What if XT

X is not invertible?

CSCI-GA 2565 9 / 73



Parameter estimation

Loss function We estimate ✓ by minimizing the squared loss (the least square method):

J(✓) =
1
N

NX

n=1

⇣
y
(n)-✓T x(n)

⌘2
. (empirical risk) (2)

Matrix form Let X 2 RN⇥d be the design matrix whose rows are input features.
Let y 2 RN be the vector of all targets.
We want to solve

✓̂= argmin
✓

(X✓- y)T (X✓- y). (3)

Solution Closed-form solution: ✓̂= (XT
X )-1

X
T y.

Review questions
Derive the solution for linear regression.
What if XT

X is not invertible?
CSCI-GA 2565 9 / 73

RidgeRegression II

I pseudo inverse of I



Review

We’ve seen
Linear regression: response is a linear function of the inputs
Estimate parameters by minimize the squared loss

But...
Why squared loss is a reasonable choice for regression problems?
What assumptions are we making on the data? (inductive bias)

Next,
Derive linear regression from a probabilistic modeling perspective.

CSCI-GA 2565 10 / 73



Review

We’ve seen
Linear regression: response is a linear function of the inputs
Estimate parameters by minimize the squared loss

But...
Why squared loss is a reasonable choice for regression problems?
What assumptions are we making on the data? (inductive bias)

Next,
Derive linear regression from a probabilistic modeling perspective.

CSCI-GA 2565 10 / 73



Review

We’ve seen
Linear regression: response is a linear function of the inputs
Estimate parameters by minimize the squared loss

But...
Why squared loss is a reasonable choice for regression problems?
What assumptions are we making on the data? (inductive bias)

Next,
Derive linear regression from a probabilistic modeling perspective.

CSCI-GA 2565 10 / 73



Assumptions in linear regression

x and y are related through a linear function:

y = ✓T x +✏, (4)

where ✏ is the residual error capturing all unmodeled effects (e.g., noise).
The errors are distributed iid (independently and identically distributed):

✏ ⇠N(0,�2). (5)

What’s the distribution of Y | X = x?

p(y | x ;✓) =N(✓T x ,�2). (6)

Imagine putting a Gaussian bump around the output of the linear predictor.

CSCI-GA 2565 11 / 73



Assumptions in linear regression

x and y are related through a linear function:

y = ✓T x +✏, (4)

where ✏ is the residual error capturing all unmodeled effects (e.g., noise).

The errors are distributed iid (independently and identically distributed):

✏ ⇠N(0,�2). (5)

What’s the distribution of Y | X = x?

p(y | x ;✓) =N(✓T x ,�2). (6)

Imagine putting a Gaussian bump around the output of the linear predictor.

CSCI-GA 2565 11 / 73



Assumptions in linear regression

x and y are related through a linear function:

y = ✓T x +✏, (4)

where ✏ is the residual error capturing all unmodeled effects (e.g., noise).
The errors are distributed iid (independently and identically distributed):

✏ ⇠N(0,�2). (5)

What’s the distribution of Y | X = x?

p(y | x ;✓) =N(✓T x ,�2). (6)

Imagine putting a Gaussian bump around the output of the linear predictor.

CSCI-GA 2565 11 / 73

Tx

y N Tx 62



Assumptions in linear regression

x and y are related through a linear function:

y = ✓T x +✏, (4)

where ✏ is the residual error capturing all unmodeled effects (e.g., noise).
The errors are distributed iid (independently and identically distributed):

✏ ⇠N(0,�2). (5)

What’s the distribution of Y | X = x?

p(y | x ;✓) =N(✓T x ,�2). (6)

Imagine putting a Gaussian bump around the output of the linear predictor.

CSCI-GA 2565 11 / 73



Assumptions in linear regression

x and y are related through a linear function:

y = ✓T x +✏, (4)

where ✏ is the residual error capturing all unmodeled effects (e.g., noise).
The errors are distributed iid (independently and identically distributed):

✏ ⇠N(0,�2). (5)

What’s the distribution of Y | X = x?

p(y | x ;✓) =N(✓T x ,�2). (6)

Imagine putting a Gaussian bump around the output of the linear predictor.

CSCI-GA 2565 11 / 73



Assumptions in linear regression

x and y are related through a linear function:

y = ✓T x +✏, (4)

where ✏ is the residual error capturing all unmodeled effects (e.g., noise).
The errors are distributed iid (independently and identically distributed):

✏ ⇠N(0,�2). (5)

What’s the distribution of Y | X = x?

p(y | x ;✓) =N(✓T x ,�2). (6)

Imagine putting a Gaussian bump around the output of the linear predictor.

CSCI-GA 2565 11 / 73



Maximum likelihood estimation (MLE)

Given a probabilistic model and a dataset D, how to estimate the model parameters ✓?

The maximum likelihood principle says that we should maximize the (conditional) likelihood
of the data:

L(✓)
def
= p(D;✓) (7)

=
NY

n=1

p(y (n) | x(n);✓). (examples are distributed iid)

(8)

In practice, we maximize the log likelihood `(✓), or equivalently, minimize the negative log
likelihood (NLL).

CSCI-GA 2565 12 / 73



Maximum likelihood estimation (MLE)

Given a probabilistic model and a dataset D, how to estimate the model parameters ✓?
The maximum likelihood principle says that we should maximize the (conditional) likelihood
of the data:

L(✓)
def
= p(D;✓) (7)

=
NY

n=1

p(y (n) | x(n);✓). (examples are distributed iid)

(8)

In practice, we maximize the log likelihood `(✓), or equivalently, minimize the negative log
likelihood (NLL).

CSCI-GA 2565 12 / 73



Maximum likelihood estimation (MLE)

Given a probabilistic model and a dataset D, how to estimate the model parameters ✓?
The maximum likelihood principle says that we should maximize the (conditional) likelihood
of the data:

L(✓)
def
= p(D;✓) (7)

=
NY

n=1

p(y (n) | x(n);✓). (examples are distributed iid) (8)

In practice, we maximize the log likelihood `(✓), or equivalently, minimize the negative log
likelihood (NLL).

CSCI-GA 2565 12 / 73



Maximum likelihood estimation (MLE)

Given a probabilistic model and a dataset D, how to estimate the model parameters ✓?
The maximum likelihood principle says that we should maximize the (conditional) likelihood
of the data:

L(✓)
def
= p(D;✓) (7)

=
NY

n=1

p(y (n) | x(n);✓). (examples are distributed iid) (8)

In practice, we maximize the log likelihood `(✓), or equivalently, minimize the negative log
likelihood (NLL).

CSCI-GA 2565 12 / 73



MLE for linear regression

Let’s find the MLE solution for our model. Recall that Y | X = x ⇠N(✓T x ,�2).

`(✓)
def
= logL(✓) (9)

= log
NY

n=1

p(y (n) | x(n);✓) (10)

=
NX

n=1

logp(y (n) | x(n);✓) (11)

=
NX

n=1

log
1p
2⇡�

exp

 

-

�
y
(n)-✓T x(n)

�2

2�2

!

(12)

= N log
1p
2⇡�

-
1

2�2

NX

n=1

⇣
y
(n)-✓T x(n)

⌘2

(13)

CSCI-GA 2565 13 / 73



MLE for linear regression

Let’s find the MLE solution for our model. Recall that Y | X = x ⇠N(✓T x ,�2).

`(✓)
def
= logL(✓) (9)

= log
NY

n=1

p(y (n) | x(n);✓) (10)

=
NX

n=1

logp(y (n) | x(n);✓) (11)

=
NX

n=1

log
1p
2⇡�

exp

 

-

�
y
(n)-✓T x(n)

�2

2�2

!

(12)

= N log
1p
2⇡�

-
1

2�2

NX

n=1

⇣
y
(n)-✓T x(n)

⌘2

(13)

CSCI-GA 2565 13 / 73



MLE for linear regression

Let’s find the MLE solution for our model. Recall that Y | X = x ⇠N(✓T x ,�2).

`(✓)
def
= logL(✓) (9)

= log
NY

n=1

p(y (n) | x(n);✓) (10)

=
NX

n=1

logp(y (n) | x(n);✓) (11)

=
NX

n=1

log
1p
2⇡�

exp

 

-

�
y
(n)-✓T x(n)

�2

2�2

!

(12)

= N log
1p
2⇡�

-
1

2�2

NX

n=1

⇣
y
(n)-✓T x(n)

⌘2

(13)

CSCI-GA 2565 13 / 73



MLE for linear regression

Let’s find the MLE solution for our model. Recall that Y | X = x ⇠N(✓T x ,�2).

`(✓)
def
= logL(✓) (9)

= log
NY

n=1

p(y (n) | x(n);✓) (10)

=
NX

n=1

logp(y (n) | x(n);✓) (11)

=
NX

n=1

log
1p
2⇡�

exp

 

-

�
y
(n)-✓T x(n)

�2

2�2

!

(12)

= N log
1p
2⇡�

-
1

2�2

NX

n=1

⇣
y
(n)-✓T x(n)

⌘2
(13)

CSCI-GA 2565 13 / 73



MLE for linear regression

Let’s find the MLE solution for our model. Recall that Y | X = x ⇠N(✓T x ,�2).

`(✓)
def
= logL(✓) (9)

= log
NY

n=1

p(y (n) | x(n);✓) (10)

=
NX

n=1

logp(y (n) | x(n);✓) (11)

=
NX

n=1

log
1p
2⇡�

exp

 

-

�
y
(n)-✓T x(n)

�2

2�2

!

(12)

= N log
1p
2⇡�

-
1

2�2

NX

n=1

⇣
y
(n)-✓T x(n)

⌘2
(13)

CSCI-GA 2565 13 / 73



MLE for linear regression

Let’s find the MLE solution for our model. Recall that Y | X = x ⇠N(✓T x ,�2).

`(✓)
def
= logL(✓) (9)

= log
NY

n=1

p(y (n) | x(n);✓) (10)

=
NX

n=1

logp(y (n) | x(n);✓) (11)

=
NX

n=1

log
1p
2⇡�

exp

 

-

�
y
(n)-✓T x(n)

�2

2�2

!

(12)

= N log
1p
2⇡�

-
1

2�2

NX

n=1

⇣
y
(n)-✓T x(n)

⌘2
(13)

CSCI-GA 2565 13 / 73



Gradient of the likelihood

Recall that we obtained the normal equation by setting the derivative of the squared loss to
zero. Now let’s compute the derivative of the likelihood w.r.t. the parameters.

`(✓) = N log
1p
2⇡�

-
1

2�2

NX

n=1

⇣
y
(n)-✓T x(n)

⌘2
(14)

@`

@✓i
=-

1
�2

NX

n=1

(y (n)-✓T x(n))x(n)i .

(15)

CSCI-GA 2565 14 / 73



Gradient of the likelihood

Recall that we obtained the normal equation by setting the derivative of the squared loss to
zero. Now let’s compute the derivative of the likelihood w.r.t. the parameters.

`(✓) = N log
1p
2⇡�

-
1

2�2

NX

n=1

⇣
y
(n)-✓T x(n)

⌘2
(14)

@`

@✓i
=-

1
�2

NX

n=1

(y (n)-✓T x(n))x(n)i . (15)

CSCI-GA 2565 14 / 73



Gradient of the likelihood

Recall that we obtained the normal equation by setting the derivative of the squared loss to
zero. Now let’s compute the derivative of the likelihood w.r.t. the parameters.

`(✓) = N log
1p
2⇡�

-
1

2�2

NX

n=1

⇣
y
(n)-✓T x(n)

⌘2
(14)

@`

@✓i
=-

1
�2

NX

n=1

(y (n)-✓T x(n))x(n)i . (15)

CSCI-GA 2565 14 / 73



Review

We’ve seen
Linear regression assumes that Y | X = x follows a Gaussian distribution
MLE of linear regression is equivalent to the least square method

However,
Sometimes Gaussian distribution is not a reasonable assumption, e.g., classification
Can we use the same modeling approach for other prediction tasks?

Next,
Derive logistic regression for classification.

CSCI-GA 2565 15 / 73



Review

We’ve seen
Linear regression assumes that Y | X = x follows a Gaussian distribution
MLE of linear regression is equivalent to the least square method

However,
Sometimes Gaussian distribution is not a reasonable assumption, e.g., classification
Can we use the same modeling approach for other prediction tasks?

Next,
Derive logistic regression for classification.

CSCI-GA 2565 15 / 73



Review

We’ve seen
Linear regression assumes that Y | X = x follows a Gaussian distribution
MLE of linear regression is equivalent to the least square method

However,
Sometimes Gaussian distribution is not a reasonable assumption, e.g., classification
Can we use the same modeling approach for other prediction tasks?

Next,
Derive logistic regression for classification.

CSCI-GA 2565 15 / 73



Assumptions in logistic regression

Consider binary classification where Y 2 {0,1}. What should be the distribution Y | X = x?

We model p(y | x) as a Bernoulli distribution:

p(y | x) = h(x)y (1-h(x))1-y . (16)

How should we parameterize h(x)?
What is p(y = 1 | x) and p(y = 0 | x)? h(x) 2 (0,1).
What is the mean of Y | X = x? h(x). (Think how we parameterize the mean in linear
regression)
Need a function f to map the linear predictor ✓T x in R to (0,1):

f (⌘) =
1

1+ e-⌘
logistic function (17)

CSCI-GA 2565 16 / 73



Assumptions in logistic regression

Consider binary classification where Y 2 {0,1}. What should be the distribution Y | X = x?
We model p(y | x) as a Bernoulli distribution:

p(y | x) = h(x)y (1-h(x))1-y . (16)

How should we parameterize h(x)?
What is p(y = 1 | x) and p(y = 0 | x)? h(x) 2 (0,1).
What is the mean of Y | X = x? h(x). (Think how we parameterize the mean in linear
regression)
Need a function f to map the linear predictor ✓T x in R to (0,1):

f (⌘) =
1

1+ e-⌘
logistic function (17)

CSCI-GA 2565 16 / 73



Assumptions in logistic regression

Consider binary classification where Y 2 {0,1}. What should be the distribution Y | X = x?
We model p(y | x) as a Bernoulli distribution:

p(y | x) = h(x)y (1-h(x))1-y . (16)

How should we parameterize h(x)?

What is p(y = 1 | x) and p(y = 0 | x)? h(x) 2 (0,1).
What is the mean of Y | X = x? h(x). (Think how we parameterize the mean in linear
regression)
Need a function f to map the linear predictor ✓T x in R to (0,1):

f (⌘) =
1

1+ e-⌘
logistic function (17)

CSCI-GA 2565 16 / 73



Assumptions in logistic regression

Consider binary classification where Y 2 {0,1}. What should be the distribution Y | X = x?
We model p(y | x) as a Bernoulli distribution:

p(y | x) = h(x)y (1-h(x))1-y . (16)

How should we parameterize h(x)?
What is p(y = 1 | x) and p(y = 0 | x)?

h(x) 2 (0,1).
What is the mean of Y | X = x? h(x). (Think how we parameterize the mean in linear
regression)
Need a function f to map the linear predictor ✓T x in R to (0,1):

f (⌘) =
1

1+ e-⌘
logistic function (17)

CSCI-GA 2565 16 / 73



Assumptions in logistic regression

Consider binary classification where Y 2 {0,1}. What should be the distribution Y | X = x?
We model p(y | x) as a Bernoulli distribution:

p(y | x) = h(x)y (1-h(x))1-y . (16)

How should we parameterize h(x)?
What is p(y = 1 | x) and p(y = 0 | x)? h(x) 2 (0,1).

What is the mean of Y | X = x? h(x). (Think how we parameterize the mean in linear
regression)
Need a function f to map the linear predictor ✓T x in R to (0,1):

f (⌘) =
1

1+ e-⌘
logistic function (17)

CSCI-GA 2565 16 / 73

4 1 hex

4 0 1 hex



Assumptions in logistic regression

Consider binary classification where Y 2 {0,1}. What should be the distribution Y | X = x?
We model p(y | x) as a Bernoulli distribution:

p(y | x) = h(x)y (1-h(x))1-y . (16)

How should we parameterize h(x)?
What is p(y = 1 | x) and p(y = 0 | x)? h(x) 2 (0,1).
What is the mean of Y | X = x?

h(x). (Think how we parameterize the mean in linear
regression)
Need a function f to map the linear predictor ✓T x in R to (0,1):

f (⌘) =
1

1+ e-⌘
logistic function (17)

CSCI-GA 2565 16 / 73



Assumptions in logistic regression

Consider binary classification where Y 2 {0,1}. What should be the distribution Y | X = x?
We model p(y | x) as a Bernoulli distribution:

p(y | x) = h(x)y (1-h(x))1-y . (16)

How should we parameterize h(x)?
What is p(y = 1 | x) and p(y = 0 | x)? h(x) 2 (0,1).
What is the mean of Y | X = x? h(x). (Think how we parameterize the mean in linear
regression)

Need a function f to map the linear predictor ✓T x in R to (0,1):

f (⌘) =
1

1+ e-⌘
logistic function (17)

CSCI-GA 2565 16 / 73

YE o.is OI 0,1



Assumptions in logistic regression

Consider binary classification where Y 2 {0,1}. What should be the distribution Y | X = x?
We model p(y | x) as a Bernoulli distribution:

p(y | x) = h(x)y (1-h(x))1-y . (16)

How should we parameterize h(x)?
What is p(y = 1 | x) and p(y = 0 | x)? h(x) 2 (0,1).
What is the mean of Y | X = x? h(x). (Think how we parameterize the mean in linear
regression)
Need a function f to map the linear predictor ✓T x in R to (0,1):

f (⌘) =
1

1+ e-⌘
logistic function (17)

CSCI-GA 2565 16 / 73



Logistic regression

-10 -5 0 5 10

0

0.2

0.4

0.6

0.8

1

⌘

f
(⌘
)

f (⌘) = 1
1+e-⌘

p(y | x) = Bernoulli(f (✓T x)).

When do we have p(y = 1 | x) = 1 and
p(y = 0 | x) = 1?
Exercise: show that the log odds is

log
p(y = 1 | x)

p(y = 0 | x)
= ✓T x . (18)

=) linear decision boundary (19)

How do we extend it to multiclass
classification? (more on this later)

CSCI-GA 2565 17 / 73

PIYA X f Tx



Logistic regression

-10 -5 0 5 10

0

0.2

0.4

0.6

0.8

1

⌘

f
(⌘
)

f (⌘) = 1
1+e-⌘

p(y | x) = Bernoulli(f (✓T x)).
When do we have p(y = 1 | x) = 1 and
p(y = 0 | x) = 1?

Exercise: show that the log odds is

log
p(y = 1 | x)

p(y = 0 | x)
= ✓T x . (18)

=) linear decision boundary (19)

How do we extend it to multiclass
classification? (more on this later)

CSCI-GA 2565 17 / 73

flotx

1 f X



Logistic regression

-10 -5 0 5 10

0

0.2

0.4

0.6

0.8

1

⌘

f
(⌘
)

f (⌘) = 1
1+e-⌘

p(y | x) = Bernoulli(f (✓T x)).
When do we have p(y = 1 | x) = 1 and
p(y = 0 | x) = 1?
Exercise: show that the log odds is

log
p(y = 1 | x)

p(y = 0 | x)
= ✓T x . (18)

=) linear decision boundary (19)

How do we extend it to multiclass
classification? (more on this later)

CSCI-GA 2565 17 / 73

p x I I p 4 0 X
1 o



Logistic regression

-10 -5 0 5 10

0

0.2

0.4

0.6

0.8

1

⌘

f
(⌘
)

f (⌘) = 1
1+e-⌘

p(y | x) = Bernoulli(f (✓T x)).
When do we have p(y = 1 | x) = 1 and
p(y = 0 | x) = 1?
Exercise: show that the log odds is

log
p(y = 1 | x)

p(y = 0 | x)
= ✓T x . (18)

=) linear decision boundary (19)

How do we extend it to multiclass
classification? (more on this later)

CSCI-GA 2565 17 / 73



MLE for logistic regression

Similar to linear regression, let’s estimate ✓ by maximizing the conditional log likelihood.

`(✓) =
NX

n=1

logp(y (n) | x(n);✓) (20)

=
NX

n=1

y
(n) log f (✓T x(n))+(1- y

(n)) log(1- f (✓T x(n)))

(21)

Closed-form solutions are not available.
But, the likelihood is concave—gradient ascent gives us the unique optimal solution.

✓ := ✓+↵r✓`(✓). (22)

CSCI-GA 2565 18 / 73

Max PCD IT i flotxing cotxin

I
maxlogPCD

1 y log 1 flow

y log f m

0



MLE for logistic regression

Similar to linear regression, let’s estimate ✓ by maximizing the conditional log likelihood.

`(✓) =
NX

n=1

logp(y (n) | x(n);✓) (20)

=
NX

n=1

y
(n) log f (✓T x(n))+(1- y

(n)) log(1- f (✓T x(n)))

(21)

Closed-form solutions are not available.
But, the likelihood is concave—gradient ascent gives us the unique optimal solution.

✓ := ✓+↵r✓`(✓). (22)

CSCI-GA 2565 18 / 73



MLE for logistic regression

Similar to linear regression, let’s estimate ✓ by maximizing the conditional log likelihood.

`(✓) =
NX

n=1

logp(y (n) | x(n);✓) (20)

=
NX

n=1

y
(n) log f (✓T x(n))+(1- y

(n)) log(1- f (✓T x(n))) (21)

Closed-form solutions are not available.
But, the likelihood is concave—gradient ascent gives us the unique optimal solution.

✓ := ✓+↵r✓`(✓). (22)

CSCI-GA 2565 18 / 73



MLE for logistic regression

Similar to linear regression, let’s estimate ✓ by maximizing the conditional log likelihood.

`(✓) =
NX

n=1

logp(y (n) | x(n);✓) (20)

=
NX

n=1

y
(n) log f (✓T x(n))+(1- y

(n)) log(1- f (✓T x(n))) (21)

Closed-form solutions are not available.
But, the likelihood is concave—gradient ascent gives us the unique optimal solution.

✓ := ✓+↵r✓`(✓). (22)

CSCI-GA 2565 18 / 73



Gradient descent for logistic regression

Math review: Chain rule

If z depends on y which itself depends on x , e.g., z = (y(x))2, then dz
dx = dz

dy
dy
dx .

Likelihood for a single example: `n = y
(n) log f (✓T x(n))+(1- y

(n)) log(1- f (✓T x(n))).

@`n

@✓i
=

@`n

@f n
@f n

@✓i
(23)

=

✓
y
(n)

f n
-

1- y
(n)

1- f n

◆
@f n

@✓i

d

dx
lnx =

1
x

(24)

=

✓
y
(n)

f n
-

1- y
(n)

1- f n

◆⇣
f
n(1- f

n)x(n)i

⌘
Exercise: apply chain rule to

@f n

@✓i
(25)

= (y (n)- f
n)x(n)i simplify by algebra

(26)

The full gradient is thus @`
@✓i

=
PN

n=1(y
(n)- f (✓T x(n)))x(n)i .

CSCI-GA 2565 19 / 73



Gradient descent for logistic regression

Math review: Chain rule

If z depends on y which itself depends on x , e.g., z = (y(x))2, then dz
dx = dz

dy
dy
dx .

Likelihood for a single example: `n = y
(n) log f (✓T x(n))+(1- y

(n)) log(1- f (✓T x(n))).

@`n

@✓i
=

@`n

@f n
@f n

@✓i
(23)

=

✓
y
(n)

f n
-

1- y
(n)

1- f n

◆
@f n

@✓i

d

dx
lnx =

1
x

(24)

=

✓
y
(n)

f n
-

1- y
(n)

1- f n

◆⇣
f
n(1- f

n)x(n)i

⌘
Exercise: apply chain rule to

@f n

@✓i
(25)

= (y (n)- f
n)x(n)i simplify by algebra

(26)

The full gradient is thus @`
@✓i

=
PN

n=1(y
(n)- f (✓T x(n)))x(n)i .

CSCI-GA 2565 19 / 73



Gradient descent for logistic regression

Math review: Chain rule

If z depends on y which itself depends on x , e.g., z = (y(x))2, then dz
dx = dz

dy
dy
dx .

Likelihood for a single example: `n = y
(n) log f (✓T x(n))+(1- y

(n)) log(1- f (✓T x(n))).

@`n

@✓i
=

@`n

@f n
@f n

@✓i
(23)

=

✓
y
(n)

f n
-

1- y
(n)

1- f n

◆
@f n

@✓i

d

dx
lnx =

1
x

(24)

=

✓
y
(n)

f n
-

1- y
(n)

1- f n

◆⇣
f
n(1- f

n)x(n)i

⌘
Exercise: apply chain rule to

@f n

@✓i
(25)

= (y (n)- f
n)x(n)i simplify by algebra

(26)

The full gradient is thus @`
@✓i

=
PN

n=1(y
(n)- f (✓T x(n)))x(n)i .

CSCI-GA 2565 19 / 73

f 2 he z e
Z 1

2 He 4 e
t

f Z 1 fiz



Gradient descent for logistic regression

Math review: Chain rule

If z depends on y which itself depends on x , e.g., z = (y(x))2, then dz
dx = dz

dy
dy
dx .

Likelihood for a single example: `n = y
(n) log f (✓T x(n))+(1- y

(n)) log(1- f (✓T x(n))).

@`n

@✓i
=

@`n

@f n
@f n

@✓i
(23)

=

✓
y
(n)

f n
-

1- y
(n)

1- f n

◆
@f n

@✓i

d

dx
lnx =

1
x

(24)

=

✓
y
(n)

f n
-

1- y
(n)

1- f n

◆⇣
f
n(1- f

n)x(n)i

⌘
Exercise: apply chain rule to

@f n

@✓i
(25)

= (y (n)- f
n)x(n)i simplify by algebra

(26)

The full gradient is thus @`
@✓i

=
PN

n=1(y
(n)- f (✓T x(n)))x(n)i .

CSCI-GA 2565 19 / 73



Gradient descent for logistic regression

Math review: Chain rule

If z depends on y which itself depends on x , e.g., z = (y(x))2, then dz
dx = dz

dy
dy
dx .

Likelihood for a single example: `n = y
(n) log f (✓T x(n))+(1- y

(n)) log(1- f (✓T x(n))).

@`n

@✓i
=

@`n

@f n
@f n

@✓i
(23)

=

✓
y
(n)

f n
-

1- y
(n)

1- f n

◆
@f n

@✓i

d

dx
lnx =

1
x

(24)

=

✓
y
(n)

f n
-

1- y
(n)

1- f n

◆⇣
f
n(1- f

n)x(n)i

⌘
Exercise: apply chain rule to

@f n

@✓i
(25)

= (y (n)- f
n)x(n)i simplify by algebra (26)

The full gradient is thus @`
@✓i

=
PN

n=1(y
(n)- f (✓T x(n)))x(n)i .

CSCI-GA 2565 19 / 73



Gradient descent for logistic regression

Math review: Chain rule

If z depends on y which itself depends on x , e.g., z = (y(x))2, then dz
dx = dz

dy
dy
dx .

Likelihood for a single example: `n = y
(n) log f (✓T x(n))+(1- y

(n)) log(1- f (✓T x(n))).

@`n

@✓i
=

@`n

@f n
@f n

@✓i
(23)

=

✓
y
(n)

f n
-

1- y
(n)

1- f n

◆
@f n

@✓i

d

dx
lnx =

1
x

(24)

=

✓
y
(n)

f n
-

1- y
(n)

1- f n

◆⇣
f
n(1- f

n)x(n)i

⌘
Exercise: apply chain rule to

@f n

@✓i
(25)

= (y (n)- f
n)x(n)i simplify by algebra (26)

The full gradient is thus @`
@✓i

=
PN

n=1(y
(n)- f (✓T x(n)))x(n)i .

CSCI-GA 2565 19 / 73



A closer look at the gradient

@`

@✓i
=

NX

n=1

(y (n)- f (✓T x(n)))x(n)i (27)

Does this look familiar?
Our derivation for linear regression and logistic regression are quite similar...
Next, a more general family of models.

CSCI-GA 2565 20 / 73



A closer look at the gradient

@`

@✓i
=

NX

n=1

(y (n)- f (✓T x(n)))x(n)i (27)

Does this look familiar?
Our derivation for linear regression and logistic regression are quite similar...
Next, a more general family of models.

CSCI-GA 2565 20 / 73



A closer look at the gradient

@`

@✓i
=

NX

n=1

(y (n)- f (✓T x(n)))x(n)i (27)

Does this look familiar?
Our derivation for linear regression and logistic regression are quite similar...
Next, a more general family of models.

CSCI-GA 2565 20 / 73

LR
n n

A



Compare linear regression and logistic regression

linear regression logistic regression

Combine the inputs ✓T x (linear) ✓T x (linear)
Output real categorical
Conditional distribution Gaussian Bernoulli
Transfer function f (✓T x) identity logistic
Mean E(Y | X = x ;✓) f (✓T x) f (✓T x)

x enters through a linear function.
The main difference between the formulations is due to different conditional distributions.
Can we generalize the idea to handle other output types, e.g., positive integers?

CSCI-GA 2565 21 / 73



Compare linear regression and logistic regression

linear regression logistic regression

Combine the inputs ✓T x (linear) ✓T x (linear)

Output real categorical
Conditional distribution Gaussian Bernoulli
Transfer function f (✓T x) identity logistic
Mean E(Y | X = x ;✓) f (✓T x) f (✓T x)

x enters through a linear function.
The main difference between the formulations is due to different conditional distributions.
Can we generalize the idea to handle other output types, e.g., positive integers?

CSCI-GA 2565 21 / 73



Compare linear regression and logistic regression

linear regression logistic regression

Combine the inputs ✓T x (linear) ✓T x (linear)
Output real categorical
Conditional distribution Gaussian Bernoulli

Transfer function f (✓T x) identity logistic
Mean E(Y | X = x ;✓) f (✓T x) f (✓T x)

x enters through a linear function.
The main difference between the formulations is due to different conditional distributions.
Can we generalize the idea to handle other output types, e.g., positive integers?

CSCI-GA 2565 21 / 73



Compare linear regression and logistic regression

linear regression logistic regression

Combine the inputs ✓T x (linear) ✓T x (linear)
Output real categorical
Conditional distribution Gaussian Bernoulli
Transfer function f (✓T x) identity logistic

Mean E(Y | X = x ;✓) f (✓T x) f (✓T x)

x enters through a linear function.
The main difference between the formulations is due to different conditional distributions.
Can we generalize the idea to handle other output types, e.g., positive integers?

CSCI-GA 2565 21 / 73



Compare linear regression and logistic regression

linear regression logistic regression

Combine the inputs ✓T x (linear) ✓T x (linear)
Output real categorical
Conditional distribution Gaussian Bernoulli
Transfer function f (✓T x) identity logistic
Mean E(Y | X = x ;✓) f (✓T x) f (✓T x)

x enters through a linear function.
The main difference between the formulations is due to different conditional distributions.
Can we generalize the idea to handle other output types, e.g., positive integers?

CSCI-GA 2565 21 / 73

y NCEX.SI y B III



Compare linear regression and logistic regression

linear regression logistic regression

Combine the inputs ✓T x (linear) ✓T x (linear)
Output real categorical
Conditional distribution Gaussian Bernoulli
Transfer function f (✓T x) identity logistic
Mean E(Y | X = x ;✓) f (✓T x) f (✓T x)

x enters through a linear function.
The main difference between the formulations is due to different conditional distributions.
Can we generalize the idea to handle other output types, e.g., positive integers?

CSCI-GA 2565 21 / 73

Poisson



Construct a generalized regression model

Task: Given x , predict p(y | x)
Modeling:

Choose a parametric family of distributions p(y ;✓) with parameters ✓ 2⇥

Choose a transfer function that maps a linear predictor in R to ⇥

x|{z}
2Rd

7! w
T
x|{z}

2R

7! f (wT
x)| {z }

2⇥

= ✓, (28)

Learning: MLE: ✓̂ 2 argmax✓ logp(D; ✓̂)
Inference: For prediction, use x ! f (wT

x)

CSCI-GA 2565 22 / 73



Construct a generalized regression model

Task: Given x , predict p(y | x)
Modeling:

Choose a parametric family of distributions p(y ;✓) with parameters ✓ 2⇥

Choose a transfer function that maps a linear predictor in R to ⇥

x|{z}
2Rd

7! w
T
x|{z}

2R

7! f (wT
x)| {z }

2⇥

= ✓, (28)

Learning: MLE: ✓̂ 2 argmax✓ logp(D; ✓̂)
Inference: For prediction, use x ! f (wT

x)

CSCI-GA 2565 22 / 73

O
O O



Example: Construct Poisson regression

Say we want to predict the number of people entering a restaurant in New York during lunch
time.

What features would be useful?
What’s a good model for number of visitors (the output distribution)?

Math review: Poisson distribution
Given a random variable Y 2 0,1,2, . . . following Poisson(�), we have

p(Y = k ;�) =
�ke-�

k!
, (29)

where �> 0 and E[Y ] = �.

The Poisson distribution is usually used to model the number of events occurring during a fixed
period of time.

CSCI-GA 2565 23 / 73



Example: Construct Poisson regression

Say we want to predict the number of people entering a restaurant in New York during lunch
time.

What features would be useful?
What’s a good model for number of visitors (the output distribution)?

Math review: Poisson distribution
Given a random variable Y 2 0,1,2, . . . following Poisson(�), we have

p(Y = k ;�) =
�ke-�

k!
, (29)

where �> 0 and E[Y ] = �.

The Poisson distribution is usually used to model the number of events occurring during a fixed
period of time.

CSCI-GA 2565 23 / 73

f R Rso



Example: Construct Poisson regression

We’ve decided that Y | X = x ⇠ Poisson(⌘), what should be the transfer function f ?
x enters linearly:

x 7! w
T
x|{z}

R

7! �= f (wT
x)| {z }

(0,1)

Standard approach is to take
f (wT

x) = exp
�
w

T
x
�
.

Likelihood of the full dataset D= {(x1,y1), . . . ,(xn,yn)}:

logp(yi ;�i ) = [yi log�i -�i - log (yi !)] (30)

logp(D;w) =
nX

i=1

⇥
yi log

⇥
exp
�
w

T
xi
�⇤

- exp
�
w

T
xi
�
- log (yi !)

⇤
(31)

=
nX

i=1

⇥
yiw

T
xi - exp

�
w

T
xi
�
- log (yi !)

⇤
(32)

CSCI-GA 2565 24 / 73

P Y k
e d

k

arguwax



Multinomial Logistic Regression

Say we want to get the predicted categorical distribution for a given x 2 Rd .
First compute the scores (2 Rk) and then their softmax:

x 7! (hw1,xi , . . . ,hwk ,xi) 7! ✓=

 
exp
�
w

T
1 x
�

Pk
i=1 exp

�
wT
i x
� , . . . ,

exp
�
w

T
k x
�

Pk
i=1 exp

�
wT
i x
�

!

We can write the conditional probability for any y 2 {1, . . . ,k} as

p(y | x ;w) =
exp
�
w

T
y x
�

Pk
i=1 exp

�
wT
i x
� .

CSCI-GA 2565 25 / 73

handles 72 classes

I y K

f 10x

1 f x y o



Multinomial Logistic Regression

Say we want to get the predicted categorical distribution for a given x 2 Rd .
First compute the scores (2 Rk) and then their softmax:

x 7! (hw1,xi , . . . ,hwk ,xi) 7! ✓=

 
exp
�
w

T
1 x
�

Pk
i=1 exp

�
wT
i x
� , . . . ,

exp
�
w

T
k x
�

Pk
i=1 exp

�
wT
i x
�

!

We can write the conditional probability for any y 2 {1, . . . ,k} as

p(y | x ;w) =
exp
�
w

T
y x
�

Pk
i=1 exp

�
wT
i x
� .

CSCI-GA 2565 25 / 73

0



Review

Recipe for contructing a conditional distribution for prediction:
1 Define input and output space (as for any other model).
2 Choose the output distribution p(y | x ;✓) based on the task
3 Choose the transfer function that maps w

T
x to a ⇥.

4 (The formal family is called “generalized linear models”.)
Learning:

Fit the model by maximum likelihood estimation.
Closed solutions do not exist in general, so we use gradient ascent.

CSCI-GA 2565 26 / 73



Generative models

CSCI-GA 2565 27 / 73



Review

We’ve seen
Model the conditional distribution p(y | x ;✓) using generalized linear models.
(Previously) Directly map x to y , e.g., perceptron.

Next,
Model the joint distribution p(x ,y ;✓).
Predict the label for x as argmaxy2Y p(x ,y ;✓).

CSCI-GA 2565 28 / 73



Generative modeling through the Bayes rule

Training:

p(x ,y)

= p(x | y)p(y)

(33)

Testing:

p(y | x) =
p(x | y)p(y)

p(x)
Bayes rule (34)

argmax
y

p(y | x) = argmax
y

p(x | y)p(y)

(35)

CSCI-GA 2565 29 / 73



Generative modeling through the Bayes rule

Training:

p(x ,y) = p(x | y)p(y) (33)

Testing:

p(y | x) =
p(x | y)p(y)

p(x)
Bayes rule (34)

argmax
y

p(y | x) = argmax
y

p(x | y)p(y)

(35)

CSCI-GA 2565 29 / 73



Generative modeling through the Bayes rule

Training:

p(x ,y) = p(x | y)p(y) (33)

Testing:

p(y | x) =
p(x | y)p(y)

p(x)
Bayes rule (34)

argmax
y

p(y | x) = argmax
y

p(x | y)p(y)

(35)

CSCI-GA 2565 29 / 73



Generative modeling through the Bayes rule

Training:

p(x ,y) = p(x | y)p(y) (33)

Testing:

p(y | x)

=
p(x | y)p(y)

p(x)
Bayes rule (34)

argmax
y

p(y | x) = argmax
y

p(x | y)p(y)

(35)

CSCI-GA 2565 29 / 73



Generative modeling through the Bayes rule

Training:

p(x ,y) = p(x | y)p(y) (33)

Testing:

p(y | x) =
p(x | y)p(y)

p(x)
Bayes rule (34)

argmax
y

p(y | x) = argmax
y

p(x | y)p(y)

(35)

CSCI-GA 2565 29 / 73

ply A PYEV



Generative modeling through the Bayes rule

Training:

p(x ,y) = p(x | y)p(y) (33)

Testing:

p(y | x) =
p(x | y)p(y)

p(x)
Bayes rule (34)

argmax
y

p(y | x) = argmax
y

p(x | y)p(y) (35)

CSCI-GA 2565 29 / 73



Naive Bayes (NB) models

Let’s consider binary text classification (e.g., fake vs genuine review) as a motivating example.

Bag-of-words representation of a document
[“machine”, “learning”, “is”, “fun”, “.”]
xi 2 {0,1}: whether the i-th word in our vocabulary exists in the input

x = [x1,x2, . . . ,xd ] where d = vocabulary size (36)

What’s the probability of a document x?

p(x | y) = p(x1, . . . ,xd | y) (37)
= p(x1 | y)p(x2 | y ,x1)p(x3 | y ,x2,x1) . . .p(xd | y ,xd-1, . . . ,x1) chain rule (38)

=
dY

i=1

p(xi | y ,x<i ) (39)

CSCI-GA 2565 30 / 73



Naive Bayes (NB) models

Let’s consider binary text classification (e.g., fake vs genuine review) as a motivating example.
Bag-of-words representation of a document

[“machine”, “learning”, “is”, “fun”, “.”]
xi 2 {0,1}: whether the i-th word in our vocabulary exists in the input

x = [x1,x2, . . . ,xd ] where d = vocabulary size (36)

What’s the probability of a document x?

p(x | y) = p(x1, . . . ,xd | y) (37)
= p(x1 | y)p(x2 | y ,x1)p(x3 | y ,x2,x1) . . .p(xd | y ,xd-1, . . . ,x1) chain rule (38)

=
dY

i=1

p(xi | y ,x<i ) (39)

CSCI-GA 2565 30 / 73



Naive Bayes (NB) models

Let’s consider binary text classification (e.g., fake vs genuine review) as a motivating example.
Bag-of-words representation of a document

[“machine”, “learning”, “is”, “fun”, “.”]
xi 2 {0,1}: whether the i-th word in our vocabulary exists in the input

x = [x1,x2, . . . ,xd ] where d = vocabulary size (36)

What’s the probability of a document x?

p(x | y) = p(x1, . . . ,xd | y) (37)
= p(x1 | y)p(x2 | y ,x1)p(x3 | y ,x2,x1) . . .p(xd | y ,xd-1, . . . ,x1) chain rule (38)

=
dY

i=1

p(xi | y ,x<i ) (39)

CSCI-GA 2565 30 / 73



Naive Bayes (NB) models

Let’s consider binary text classification (e.g., fake vs genuine review) as a motivating example.
Bag-of-words representation of a document

[“machine”, “learning”, “is”, “fun”, “.”]
xi 2 {0,1}: whether the i-th word in our vocabulary exists in the input

x = [x1,x2, . . . ,xd ] where d = vocabulary size (36)

What’s the probability of a document x?

p(x | y) = p(x1, . . . ,xd | y) (37)
= p(x1 | y)p(x2 | y ,x1)p(x3 | y ,x2,x1) . . .p(xd | y ,xd-1, . . . ,x1) chain rule (38)

=
dY

i=1

p(xi | y ,x<i ) (39)

CSCI-GA 2565 30 / 73

pixy

p x y P X1X2 X d.LY

cnHtp yP

pexdl.it Xd Y

pexdly



Naive Bayes assumption

Challenge: p(xi | y ,x<i ) is hard to model (and estimate), especially for large i .

Solution:

Naive Bayes assumption
Features are conditionally independent given the label:

p(x | y) =
dY

i=1

p(xi | y). (40)

A strong assumption in general, but works well in practice.

CSCI-GA 2565 31 / 73



Naive Bayes assumption

Challenge: p(xi | y ,x<i ) is hard to model (and estimate), especially for large i .
Solution:

Naive Bayes assumption
Features are conditionally independent given the label:

p(x | y) =
dY

i=1

p(xi | y). (40)

A strong assumption in general, but works well in practice.

CSCI-GA 2565 31 / 73



Parametrize p(xi | y) and p(y)

For binary xi , assume p(xi | y) follows Bernoulli distributions.

p(xi = 1 | y = 1) = ✓i ,1, p(xi = 1 | y = 0) = ✓i ,0. (41)

Similarly,

p(y = 1) = ✓0. (42)

Thus,

p(x ,y) = p(x | y)p(y) (43)

= p(y)
dY

i=1

p(xi | y) NB assumption (44)

= p(y)
dY

i=1

✓i ,y I {xi = 1}+(1-✓i ,y )I {xi = 0} (45)

Indicator function I {condition} evaluates to 1 if “condition” is true and 0 otherwise.

CSCI-GA 2565 32 / 73



Parametrize p(xi | y) and p(y)

For binary xi , assume p(xi | y) follows Bernoulli distributions.

p(xi = 1 | y = 1) = ✓i ,1, p(xi = 1 | y = 0) = ✓i ,0. (41)

Similarly,

p(y = 1) = ✓0. (42)

Thus,

p(x ,y) = p(x | y)p(y) (43)

= p(y)
dY

i=1

p(xi | y) NB assumption (44)

= p(y)
dY

i=1

✓i ,y I {xi = 1}+(1-✓i ,y )I {xi = 0} (45)

Indicator function I {condition} evaluates to 1 if “condition” is true and 0 otherwise.

CSCI-GA 2565 32 / 73

24 1

e

P14 0 1 00



Parametrize p(xi | y) and p(y)

For binary xi , assume p(xi | y) follows Bernoulli distributions.

p(xi = 1 | y = 1) = ✓i ,1, p(xi = 1 | y = 0) = ✓i ,0. (41)

Similarly,

p(y = 1) = ✓0. (42)

Thus,

p(x ,y) = p(x | y)p(y) (43)

= p(y)
dY

i=1

p(xi | y) NB assumption (44)

= p(y)
dY

i=1

✓i ,y I {xi = 1}+(1-✓i ,y )I {xi = 0} (45)

Indicator function I {condition} evaluates to 1 if “condition” is true and 0 otherwise.
CSCI-GA 2565 32 / 73

PD Pexn y
n

Pain

logPCD legply

II leg 0114 1 0 I 1



MLE for our NB model

We maximize the likelihood of the data
QN

n=1 p✓(x
(n),y (n)) (as opposed to the conditional

likelihood we’ve seen before).

@

@✓j ,1
`=

@

@✓j ,1

NX

n=1

dX

i=1

log
⇣
✓i ,y (n)I

⌦
x
(n)
i = 1

↵
+
⇣
1-✓i ,y (n)

⌘
I
⌦
x
(n)
i = 0

↵⌘
+ logp✓0(y

(n))

(46)

=
@

@✓j ,1

NX

n=1

log
⇣
✓j ,y (n)I

⌦
x
(n)
j = 1

↵
+
⇣
1-✓j ,y (n)

⌘
I
⌦
x
(n)
j = 0

↵⌘
ignore i 6= j (47)

=
NX

n=1

I
⌦
y
(n) = 1^ x

(n)
j = 1

↵ 1
✓j ,1

+ I
⌦
y
(n) = 1^ x

(n)
j = 0

↵ 1
1-✓j ,1

ignore y
(n) = 0

(48)

CSCI-GA 2565 33 / 73



MLE for our NB model

We maximize the likelihood of the data
QN

n=1 p✓(x
(n),y (n)) (as opposed to the conditional

likelihood we’ve seen before).

@

@✓j ,1
`=

@

@✓j ,1

NX

n=1

dX

i=1

log
⇣
✓i ,y (n)I

⌦
x
(n)
i = 1

↵
+
⇣
1-✓i ,y (n)

⌘
I
⌦
x
(n)
i = 0

↵⌘
+ logp✓0(y

(n))

(46)

=
@

@✓j ,1

NX

n=1

log
⇣
✓j ,y (n)I

⌦
x
(n)
j = 1

↵
+
⇣
1-✓j ,y (n)

⌘
I
⌦
x
(n)
j = 0

↵⌘
ignore i 6= j (47)

=
NX

n=1

I
⌦
y
(n) = 1^ x

(n)
j = 1

↵ 1
✓j ,1

+ I
⌦
y
(n) = 1^ x

(n)
j = 0

↵ 1
1-✓j ,1

ignore y
(n) = 0

(48)

CSCI-GA 2565 33 / 73



MLE for our NB model

We maximize the likelihood of the data
QN

n=1 p✓(x
(n),y (n)) (as opposed to the conditional

likelihood we’ve seen before).

@

@✓j ,1
`=

@

@✓j ,1

NX

n=1

dX

i=1

log
⇣
✓i ,y (n)I

⌦
x
(n)
i = 1

↵
+
⇣
1-✓i ,y (n)

⌘
I
⌦
x
(n)
i = 0

↵⌘
+ logp✓0(y

(n))

(46)

=
@

@✓j ,1

NX

n=1

log
⇣
✓j ,y (n)I

⌦
x
(n)
j = 1

↵
+
⇣
1-✓j ,y (n)

⌘
I
⌦
x
(n)
j = 0

↵⌘
ignore i 6= j (47)

=
NX

n=1

I
⌦
y
(n) = 1^ x

(n)
j = 1

↵ 1
✓j ,1

+ I
⌦
y
(n) = 1^ x

(n)
j = 0

↵ 1
1-✓j ,1

ignore y
(n) = 0

(48)

CSCI-GA 2565 33 / 73



MLE for our NB model

We maximize the likelihood of the data
QN

n=1 p✓(x
(n),y (n)) (as opposed to the conditional

likelihood we’ve seen before).

@

@✓j ,1
`=

@

@✓j ,1

NX

n=1

dX

i=1

log
⇣
✓i ,y (n)I

⌦
x
(n)
i = 1

↵
+
⇣
1-✓i ,y (n)

⌘
I
⌦
x
(n)
i = 0

↵⌘
+ logp✓0(y

(n))

(46)

=
@

@✓j ,1

NX

n=1

log
⇣
✓j ,y (n)I

⌦
x
(n)
j = 1

↵
+
⇣
1-✓j ,y (n)

⌘
I
⌦
x
(n)
j = 0

↵⌘
ignore i 6= j (47)

=
NX

n=1

I
⌦
y
(n) = 1^ x

(n)
j = 1

↵ 1
✓j ,1

+ I
⌦
y
(n) = 1^ x

(n)
j = 0

↵ 1
1-✓j ,1

ignore y
(n) = 0

(48)

CSCI-GA 2565 33 / 73

C OMEN



MLE solution for our NB model

Set @
@✓j ,1

` to zero:

✓j ,1 =

PN
n=1 I

⌦
y
(n) = 1^ x

(n)
j = 1

↵

PN
n=1 I

�
y (n) = 1

 (49)

In practice, count words:

number of fake reviews containing “absolutely”
number of fake reviews

Exercise: show that

✓j ,0 =

PN
n=1 I

⌦
y
(n) = 0^ x

(n)
j = 1

↵

PN
n=1 I

�
y (n) = 0

 (50)

✓0 =

PN
n=1 I

�
y
(n) = 1

 

N
(51)

CSCI-GA 2565 34 / 73



MLE solution for our NB model

Set @
@✓j ,1

` to zero:

✓j ,1 =

PN
n=1 I

⌦
y
(n) = 1^ x

(n)
j = 1

↵

PN
n=1 I

�
y (n) = 1

 (49)

In practice, count words:

number of fake reviews containing “absolutely”
number of fake reviews

Exercise: show that

✓j ,0 =

PN
n=1 I

⌦
y
(n) = 0^ x

(n)
j = 1

↵

PN
n=1 I

�
y (n) = 0

 (50)

✓0 =

PN
n=1 I

�
y
(n) = 1

 

N
(51)

CSCI-GA 2565 34 / 73

p ya



Review

NB assumption: conditionally independent features given the label
Recipe for learning a NB model:

1 Choose p(xi | y), e.g., Bernoulli distribution for binary xi .
2 Choose p(y), often a categorical distribution.
3 Estimate parameters by MLE (same as the strategy for conditional models) .

Next, NB with continuous features.

CSCI-GA 2565 35 / 73

tinyurl.com ml Lec6pexdlx Kill P

Gaussian



NB with continuous inputs

Let’s consider a multiclass classification task with continuous inputs.

p(xi | y) ⇠N(µi ,y ,�
2
i ,y ) (52)

p(y = k) = ✓k (53)

Likelihood of the data:

p(D) =
NY

n=1

p(y (n))
dY

i=1

p(x(n)i | y
(n)) (54)

=
NY

n=1

✓y (n)

dY

i=1

1p
2⇡�i ,y (n)

exp

 

-
1

2�2
i ,y (n)

⇣
x
(n)
i -µi ,y (n)

⌘2
!

(55)

CSCI-GA 2565 36 / 73



NB with continuous inputs

Let’s consider a multiclass classification task with continuous inputs.

p(xi | y) ⇠N(µi ,y ,�
2
i ,y ) (52)

p(y = k) = ✓k (53)

Likelihood of the data:

p(D) =
NY

n=1

p(y (n))
dY

i=1

p(x(n)i | y
(n)) (54)

=
NY

n=1

✓y (n)

dY

i=1

1p
2⇡�i ,y (n)

exp

 

-
1

2�2
i ,y (n)

⇣
x
(n)
i -µi ,y (n)

⌘2
!

(55)

CSCI-GA 2565 36 / 73



MLE for Gaussian NB

Log likelihood:

`=
NX

n=1

log✓y (n) +
NX

n=1

dX

i=1

log
1p

2⇡�i ,y (n)

-
1

2�2
i ,y (n)

⇣
x
(n)
i -µi ,y (n)

⌘2
(56)

@

@µj ,k
`=

@

@µj ,k

X

n:y (n)=k

-
1

2�2
j ,k

⇣
x
(n)
j -µj ,k

⌘2
ignore irrelevant terms (57)

=
X

n:y (n)=k

1
�2
j ,k

⇣
x
(n)
j -µj ,k

⌘

(58)

Set @
@µj ,k

` to zero:

µj ,k =

P
n:y (n)=k x

(n)
jP

n:y (n)=k 1
= sample mean of xj in class k

(59)

CSCI-GA 2565 37 / 73



MLE for Gaussian NB

Log likelihood:

`=
NX

n=1

log✓y (n) +
NX

n=1

dX

i=1

log
1p

2⇡�i ,y (n)

-
1

2�2
i ,y (n)

⇣
x
(n)
i -µi ,y (n)

⌘2
(56)

@

@µj ,k
`=

@

@µj ,k

X

n:y (n)=k

-
1

2�2
j ,k

⇣
x
(n)
j -µj ,k

⌘2
ignore irrelevant terms (57)

=
X

n:y (n)=k

1
�2
j ,k

⇣
x
(n)
j -µj ,k

⌘

(58)

Set @
@µj ,k

` to zero:

µj ,k =

P
n:y (n)=k x

(n)
jP

n:y (n)=k 1
= sample mean of xj in class k

(59)

CSCI-GA 2565 37 / 73

r



MLE for Gaussian NB

Log likelihood:

`=
NX

n=1

log✓y (n) +
NX

n=1

dX

i=1

log
1p

2⇡�i ,y (n)

-
1

2�2
i ,y (n)

⇣
x
(n)
i -µi ,y (n)

⌘2
(56)

@

@µj ,k
`=

@

@µj ,k

X

n:y (n)=k

-
1

2�2
j ,k

⇣
x
(n)
j -µj ,k

⌘2
ignore irrelevant terms (57)

=
X

n:y (n)=k

1
�2
j ,k

⇣
x
(n)
j -µj ,k

⌘
(58)

Set @
@µj ,k

` to zero:

µj ,k =

P
n:y (n)=k x

(n)
jP

n:y (n)=k 1
= sample mean of xj in class k

(59)

CSCI-GA 2565 37 / 73

I 0 Fine

F



MLE for Gaussian NB

Log likelihood:

`=
NX

n=1

log✓y (n) +
NX

n=1

dX

i=1

log
1p

2⇡�i ,y (n)

-
1

2�2
i ,y (n)

⇣
x
(n)
i -µi ,y (n)

⌘2
(56)

@

@µj ,k
`=

@

@µj ,k

X

n:y (n)=k

-
1

2�2
j ,k

⇣
x
(n)
j -µj ,k

⌘2
ignore irrelevant terms (57)

=
X

n:y (n)=k

1
�2
j ,k

⇣
x
(n)
j -µj ,k

⌘
(58)

Set @
@µj ,k

` to zero:

µj ,k =

P
n:y (n)=k x

(n)
jP

n:y (n)=k 1

= sample mean of xj in class k

(59)

CSCI-GA 2565 37 / 73



MLE for Gaussian NB

Log likelihood:

`=
NX

n=1

log✓y (n) +
NX

n=1

dX

i=1

log
1p

2⇡�i ,y (n)

-
1

2�2
i ,y (n)

⇣
x
(n)
i -µi ,y (n)

⌘2
(56)

@

@µj ,k
`=

@

@µj ,k

X

n:y (n)=k

-
1

2�2
j ,k

⇣
x
(n)
j -µj ,k

⌘2
ignore irrelevant terms (57)

=
X

n:y (n)=k

1
�2
j ,k

⇣
x
(n)
j -µj ,k

⌘
(58)

Set @
@µj ,k

` to zero:

µj ,k =

P
n:y (n)=k x

(n)
jP

n:y (n)=k 1
= sample mean of xj in class k (59)

CSCI-GA 2565 37 / 73



MLE for Gaussian NB

Show that

�2
j ,k =

P
n:y (n)=k

⇣
x
(n)
j -µj ,k

⌘2

P
n:y (n)=k 1

= sample variance of xj in class k (60)

✓k =

P
n:y (n)=k 1
N

(class prior) (61)

CSCI-GA 2565 38 / 73



Decision boundary of the Gaussian NB model

Is the Gaussian NB model a linear classifier?

log
p(y = 1 | x)

p(y = 0 | x)
= log

p(x | y = 1)p(y = 1)
p(x | y = 0)p(y = 0)

(62)

= log
✓0

1-✓0
+

dX

i=1

 

log

s
�2
i ,0

�2
i ,1

+

 
(xi -µi ,0)

2

2�2
i ,0

-
(xi -µi ,1)

2

2�2
i ,1

!!

quadratic

(63)

assume that �i ,0 = �i ,1 = �i , (✓0 = 0.5) (64)

=
dX

i=1

1
2�2

i

⇣
(xi -µi ,0)

2- (xi -µi ,1)
2
⌘

(65)

=
dX

i=1

µi ,1-µi ,0

�2
i

xi +
µ2
i ,0-µ2

i ,1

2�2
i

linear

(66)

CSCI-GA 2565 39 / 73



Decision boundary of the Gaussian NB model

Is the Gaussian NB model a linear classifier?

log
p(y = 1 | x)

p(y = 0 | x)
= log

p(x | y = 1)p(y = 1)
p(x | y = 0)p(y = 0)

(62)

= log
✓0

1-✓0
+

dX

i=1

 

log

s
�2
i ,0

�2
i ,1

+

 
(xi -µi ,0)

2

2�2
i ,0

-
(xi -µi ,1)

2

2�2
i ,1

!!

quadratic

(63)

assume that �i ,0 = �i ,1 = �i , (✓0 = 0.5) (64)

=
dX

i=1

1
2�2

i

⇣
(xi -µi ,0)

2- (xi -µi ,1)
2
⌘

(65)

=
dX

i=1

µi ,1-µi ,0

�2
i

xi +
µ2
i ,0-µ2

i ,1

2�2
i

linear

(66)

CSCI-GA 2565 39 / 73



Decision boundary of the Gaussian NB model

Is the Gaussian NB model a linear classifier?

log
p(y = 1 | x)

p(y = 0 | x)
= log

p(x | y = 1)p(y = 1)
p(x | y = 0)p(y = 0)

(62)

= log
✓0

1-✓0
+

dX

i=1

 

log

s
�2
i ,0

�2
i ,1

+

 
(xi -µi ,0)

2

2�2
i ,0

-
(xi -µi ,1)

2

2�2
i ,1

!!

quadratic

(63)

assume that �i ,0 = �i ,1 = �i , (✓0 = 0.5) (64)

=
dX

i=1

1
2�2

i

⇣
(xi -µi ,0)

2- (xi -µi ,1)
2
⌘

(65)

=
dX

i=1

µi ,1-µi ,0

�2
i

xi +
µ2
i ,0-µ2

i ,1

2�2
i

linear

(66)

CSCI-GA 2565 39 / 73



Decision boundary of the Gaussian NB model

Is the Gaussian NB model a linear classifier?

log
p(y = 1 | x)

p(y = 0 | x)
= log

p(x | y = 1)p(y = 1)
p(x | y = 0)p(y = 0)

(62)

= log
✓0

1-✓0
+

dX

i=1

 

log

s
�2
i ,0

�2
i ,1

+

 
(xi -µi ,0)

2

2�2
i ,0

-
(xi -µi ,1)

2

2�2
i ,1

!!

quadratic

(63)

assume that �i ,0 = �i ,1 = �i , (✓0 = 0.5) (64)

=
dX

i=1

1
2�2

i

⇣
(xi -µi ,0)

2- (xi -µi ,1)
2
⌘

(65)

=
dX

i=1

µi ,1-µi ,0

�2
i

xi +
µ2
i ,0-µ2

i ,1

2�2
i

linear

(66)

CSCI-GA 2565 39 / 73



Decision boundary of the Gaussian NB model

Is the Gaussian NB model a linear classifier?

log
p(y = 1 | x)

p(y = 0 | x)
= log

p(x | y = 1)p(y = 1)
p(x | y = 0)p(y = 0)

(62)

= log
✓0

1-✓0
+

dX

i=1

 

log

s
�2
i ,0

�2
i ,1

+

 
(xi -µi ,0)

2

2�2
i ,0

-
(xi -µi ,1)

2

2�2
i ,1

!!

quadratic

(63)

assume that �i ,0 = �i ,1 = �i , (✓0 = 0.5) (64)

=
dX

i=1

1
2�2

i

⇣
(xi -µi ,0)

2- (xi -µi ,1)
2
⌘

(65)

=
dX

i=1

µi ,1-µi ,0

�2
i

xi +
µ2
i ,0-µ2

i ,1

2�2
i

linear

(66)

CSCI-GA 2565 39 / 73

OR



Decision boundary of the Gaussian NB model

Assuming the variance of each feature is the same for both classes, we have

log
p(y = 1 | x)

p(y = 0 | x)
=

dX

i=1

µi ,1-µi ,0

�2
i

xi +
µ2
i ,0-µ2

i ,1

2�2
i

(67)

= ✓T x where else have we seen it? (68)
(69)

✓i =
µi ,1-µi ,0

�2
i

for i 2 [1,d ] (70)

✓0 =
dX

i=1

µ2
i ,0-µ2

i ,1

2�2
i

bias term (71)

CSCI-GA 2565 40 / 73



Decision boundary of the Gaussian NB model

Assuming the variance of each feature is the same for both classes, we have

log
p(y = 1 | x)

p(y = 0 | x)
=

dX

i=1

µi ,1-µi ,0

�2
i

xi +
µ2
i ,0-µ2

i ,1

2�2
i

(67)

= ✓T x where else have we seen it? (68)
(69)

✓i =
µi ,1-µi ,0

�2
i

for i 2 [1,d ] (70)

✓0 =
dX

i=1

µ2
i ,0-µ2

i ,1

2�2
i

bias term (71)

CSCI-GA 2565 40 / 73



Naive Bayes vs logistic regression

logistic regression Gaussian naive Bayes

model type conditional/discriminative generative
parametrization p(y | x) p(x | y), p(y)
assumptions on Y Bernoulli Bernoulli
assumptions on X — Gaussian
decision boundary ✓TLRx ✓TGNBx

Given the same training data, is ✓LR = ✓GNB?

CSCI-GA 2565 41 / 73



Naive Bayes vs logistic regression

logistic regression Gaussian naive Bayes

model type conditional/discriminative generative
parametrization p(y | x) p(x | y), p(y)
assumptions on Y Bernoulli Bernoulli
assumptions on X — Gaussian
decision boundary ✓TLRx ✓TGNBx

Given the same training data, is ✓LR = ✓GNB?

CSCI-GA 2565 41 / 73



Generative vs discriminative classifiers

Ng, A. and Jordan, M. (2002). On discriminative versus generative classifiers: A comparison of
logistic regression and naive Bayes. In Advances in Neural Information Processing Systems 14.

faster convergence

higher asymptotic error

Solid line: naive Bayes; dashed line: logistic regression.

CSCI-GA 2565 42 / 73

https://ai.stanford.edu/~ang/papers/nips01-discriminativegenerative.pdf
https://ai.stanford.edu/~ang/papers/nips01-discriminativegenerative.pdf


Naive Bayes vs logistic regression

Logistic regression and Gaussian naive Bayes converge to the same classifier asymptotically,
assuming the GNB assumption holds.

Data points are generated from Gaussian distributions for each class
Each dimension is independently generated
Shared variance

What if the GNB assumption is not true?

CSCI-GA 2565 43 / 73



Multivariate Gaussian Distribution

x ⇠N(µ,⌃), a Gaussian (or normal) distribution defined as

p(x) =
1

(2⇡)d/2|⌃|1/2 exp


-

1
2
(x-µ)T⌃-1(x-µ)

�

Mahalanobis distance (x-µk)T⌃-1(x-µk) measures the distance from x to µ in terms of
⌃

It normalizes for difference in variances and correlations

CSCI-GA 2565 44 / 73

reltormatrix



Multivariate Gaussian Distribution

x ⇠N(µ,⌃), a Gaussian (or normal) distribution defined as

p(x) =
1

(2⇡)d/2|⌃|1/2 exp


-

1
2
(x-µ)T⌃-1(x-µ)

�

Mahalanobis distance (x-µk)T⌃-1(x-µk) measures the distance from x to µ in terms of
⌃

It normalizes for difference in variances and correlations

CSCI-GA 2565 44 / 73



Multivariate Gaussian Distribution

x ⇠N(µ,⌃), a Gaussian (or normal) distribution defined as

p(x) =
1

(2⇡)d/2|⌃|1/2 exp


-

1
2
(x-µ)T⌃-1(x-µ)

�

Mahalanobis distance (x-µk)T⌃-1(x-µk) measures the distance from x to µ in terms of
⌃

It normalizes for difference in variances and correlations
CSCI-GA 2565 44 / 73

0
diagonal



Bivariate Normal

⌃=

✓
1 0

0 1

◆
⌃= 0.5

✓
1 0

0 1

◆
⌃= 2

✓
1 0

0 1

◆

CSCI-GA 2565 45 / 73



Bivariate Normal

var(x1) = var(x2) var(x1)> var(x2) var(x1)< var(x2)

CSCI-GA 2565 46 / 73



Bivariate Normal

⌃=

✓
1 0
0 1

◆
⌃=

✓
1 0.5

0.5 1

◆
⌃=

✓
1 0.8

0.8 1

◆

CSCI-GA 2565 47 / 73



Bivariate Normal

Cov(x1,x2) = 0 Cov(x1,x2)> 0 Cov(x1,x2)< 0

CSCI-GA 2565 48 / 73



Gaussian Bayes Classifier

Gaussian Bayes Classifier in its general form assumes that p(x|y) is distributed according
to a multivariate normal (Gaussian) distribution
Multivariate Gaussian distribution:

p(x|t = k) =
1

(2⇡)d/2|⌃k |
1/2 exp


-

1
2
(x-µk)

T⌃-1
k (x-µk)

�

where |⌃k | denotes the determinant of the matrix, and d is dimension of x

Each class k has associated mean vector µk and covariance matrix ⌃k

⌃k has O(d2) parameters - could be hard to estimate

CSCI-GA 2565 49 / 73



Gaussian Bayes Classifier

Gaussian Bayes Classifier in its general form assumes that p(x|y) is distributed according
to a multivariate normal (Gaussian) distribution
Multivariate Gaussian distribution:

p(x|t = k) =
1

(2⇡)d/2|⌃k |
1/2 exp


-

1
2
(x-µk)

T⌃-1
k (x-µk)

�

where |⌃k | denotes the determinant of the matrix, and d is dimension of x
Each class k has associated mean vector µk and covariance matrix ⌃k

⌃k has O(d2) parameters - could be hard to estimate

CSCI-GA 2565 49 / 73



Gaussian Bayes Classifier

Gaussian Bayes Classifier in its general form assumes that p(x|y) is distributed according
to a multivariate normal (Gaussian) distribution
Multivariate Gaussian distribution:

p(x|t = k) =
1

(2⇡)d/2|⌃k |
1/2 exp


-

1
2
(x-µk)

T⌃-1
k (x-µk)

�

where |⌃k | denotes the determinant of the matrix, and d is dimension of x
Each class k has associated mean vector µk and covariance matrix ⌃k

⌃k has O(d2) parameters - could be hard to estimate

CSCI-GA 2565 49 / 73



Example

CSCI-GA 2565 50 / 73



Gaussian Bayes Binary Classifier Cases

Different cases on the covariance matrix:
Full covariance: Quadratic decision boundary
Shared covariance: Linear decision boundary
Naive Bayes: Diagonal covariance matrix, quadratic decision boundary

GBC vs. Logistic Regression:
If data is truly Gaussian distributed, then shared covariance = logistic regression.
But logistic regression can learn other distributions.

CSCI-GA 2565 51 / 73



Gaussian Bayes Binary Classifier Cases

Different cases on the covariance matrix:
Full covariance: Quadratic decision boundary
Shared covariance: Linear decision boundary
Naive Bayes: Diagonal covariance matrix, quadratic decision boundary

GBC vs. Logistic Regression:
If data is truly Gaussian distributed, then shared covariance = logistic regression.
But logistic regression can learn other distributions.

CSCI-GA 2565 51 / 73



Summary

Probabilistic framework of using maximum likelihood as a more principled way to derive
loss functions.
Conditional vs. generative
Generative models the joint distribution, and may lead to more assumption on the data.

When there is very few data point, it may be hard to model the distribution.
Is there an equivalent “regularization” in a probabilistic framework?

CSCI-GA 2565 52 / 73



Summary

Probabilistic framework of using maximum likelihood as a more principled way to derive
loss functions.
Conditional vs. generative
Generative models the joint distribution, and may lead to more assumption on the data.
When there is very few data point, it may be hard to model the distribution.
Is there an equivalent “regularization” in a probabilistic framework?

CSCI-GA 2565 52 / 73



Bayesian ML: Classical Statistics

CSCI-GA 2565 53 / 73



Parametric Family of Densities

A parametric family of densities is a set

{p(y | ✓) : ✓ 2⇥} ,

where p(y | ✓) is a density on a sample space Y, and

✓ is a parameter in a [finite dimensional] parameter space ⇥.

This is the common starting point for a treatment of classical or Bayesian statistics.
In this lecture, whenever we say “density”, we could replace it with “mass function.” (and
replace integrals with sums).

CSCI-GA 2565 54 / 73



Parametric Family of Densities

A parametric family of densities is a set

{p(y | ✓) : ✓ 2⇥} ,

where p(y | ✓) is a density on a sample space Y, and

✓ is a parameter in a [finite dimensional] parameter space ⇥.

This is the common starting point for a treatment of classical or Bayesian statistics.
In this lecture, whenever we say “density”, we could replace it with “mass function.” (and
replace integrals with sums).

CSCI-GA 2565 54 / 73



Frequentist or “Classical” Statistics

We’re still working with a parametric family of densities:

{p(y | ✓) | ✓ 2⇥} .

Assume that p(y | ✓) governs the world we are observing, for some ✓ 2⇥.

If we knew the right ✓ 2⇥, there would be no need for statistics.

But instead of ✓, we have data D: y1, . . . ,yn sampled i.i.d. from p(y | ✓).

Statistics is about how to get by with D in place of ✓.

CSCI-GA 2565 55 / 73



Frequentist or “Classical” Statistics

We’re still working with a parametric family of densities:

{p(y | ✓) | ✓ 2⇥} .

Assume that p(y | ✓) governs the world we are observing, for some ✓ 2⇥.

If we knew the right ✓ 2⇥, there would be no need for statistics.

But instead of ✓, we have data D: y1, . . . ,yn sampled i.i.d. from p(y | ✓).

Statistics is about how to get by with D in place of ✓.

CSCI-GA 2565 55 / 73



Frequentist or “Classical” Statistics

We’re still working with a parametric family of densities:

{p(y | ✓) | ✓ 2⇥} .

Assume that p(y | ✓) governs the world we are observing, for some ✓ 2⇥.

If we knew the right ✓ 2⇥, there would be no need for statistics.

But instead of ✓, we have data D: y1, . . . ,yn sampled i.i.d. from p(y | ✓).

Statistics is about how to get by with D in place of ✓.

CSCI-GA 2565 55 / 73



Frequentist or “Classical” Statistics

We’re still working with a parametric family of densities:

{p(y | ✓) | ✓ 2⇥} .

Assume that p(y | ✓) governs the world we are observing, for some ✓ 2⇥.

If we knew the right ✓ 2⇥, there would be no need for statistics.

But instead of ✓, we have data D: y1, . . . ,yn sampled i.i.d. from p(y | ✓).

Statistics is about how to get by with D in place of ✓.

CSCI-GA 2565 55 / 73



Frequentist or “Classical” Statistics

We’re still working with a parametric family of densities:

{p(y | ✓) | ✓ 2⇥} .

Assume that p(y | ✓) governs the world we are observing, for some ✓ 2⇥.

If we knew the right ✓ 2⇥, there would be no need for statistics.

But instead of ✓, we have data D: y1, . . . ,yn sampled i.i.d. from p(y | ✓).

Statistics is about how to get by with D in place of ✓.

CSCI-GA 2565 55 / 73



Point Estimation

One type of statistical problem is point estimation.

A statistic s = s(D) is any function of the data.

A statistic ✓̂= ✓̂(D) taking values in ⇥ is a point estimator of ✓.

A good point estimator will have ✓̂⇡ ✓.
Desirable statistical properties of point estimators:

Consistency: As data size n!1, we get ✓̂n ! ✓.

Efficiency: (Roughly speaking) ✓̂n is as accurate as we can get from a sample of size n.

Maximum likelihood estimators are consistent and efficient under reasonable conditions.

CSCI-GA 2565 56 / 73



Point Estimation

One type of statistical problem is point estimation.

A statistic s = s(D) is any function of the data.

A statistic ✓̂= ✓̂(D) taking values in ⇥ is a point estimator of ✓.

A good point estimator will have ✓̂⇡ ✓.
Desirable statistical properties of point estimators:

Consistency: As data size n!1, we get ✓̂n ! ✓.

Efficiency: (Roughly speaking) ✓̂n is as accurate as we can get from a sample of size n.

Maximum likelihood estimators are consistent and efficient under reasonable conditions.

CSCI-GA 2565 56 / 73



Point Estimation

One type of statistical problem is point estimation.

A statistic s = s(D) is any function of the data.

A statistic ✓̂= ✓̂(D) taking values in ⇥ is a point estimator of ✓.

A good point estimator will have ✓̂⇡ ✓.
Desirable statistical properties of point estimators:

Consistency: As data size n!1, we get ✓̂n ! ✓.

Efficiency: (Roughly speaking) ✓̂n is as accurate as we can get from a sample of size n.

Maximum likelihood estimators are consistent and efficient under reasonable conditions.

CSCI-GA 2565 56 / 73



Point Estimation

One type of statistical problem is point estimation.

A statistic s = s(D) is any function of the data.

A statistic ✓̂= ✓̂(D) taking values in ⇥ is a point estimator of ✓.

A good point estimator will have ✓̂⇡ ✓.
Desirable statistical properties of point estimators:

Consistency: As data size n!1, we get ✓̂n ! ✓.

Efficiency: (Roughly speaking) ✓̂n is as accurate as we can get from a sample of size n.

Maximum likelihood estimators are consistent and efficient under reasonable conditions.

CSCI-GA 2565 56 / 73



Point Estimation

One type of statistical problem is point estimation.

A statistic s = s(D) is any function of the data.

A statistic ✓̂= ✓̂(D) taking values in ⇥ is a point estimator of ✓.

A good point estimator will have ✓̂⇡ ✓.
Desirable statistical properties of point estimators:

Consistency: As data size n!1, we get ✓̂n ! ✓.

Efficiency: (Roughly speaking) ✓̂n is as accurate as we can get from a sample of size n.

Maximum likelihood estimators are consistent and efficient under reasonable conditions.

CSCI-GA 2565 56 / 73



Point Estimation

One type of statistical problem is point estimation.

A statistic s = s(D) is any function of the data.

A statistic ✓̂= ✓̂(D) taking values in ⇥ is a point estimator of ✓.

A good point estimator will have ✓̂⇡ ✓.
Desirable statistical properties of point estimators:

Consistency: As data size n!1, we get ✓̂n ! ✓.

Efficiency: (Roughly speaking) ✓̂n is as accurate as we can get from a sample of size n.

Maximum likelihood estimators are consistent and efficient under reasonable conditions.

CSCI-GA 2565 56 / 73



Point Estimation

One type of statistical problem is point estimation.

A statistic s = s(D) is any function of the data.

A statistic ✓̂= ✓̂(D) taking values in ⇥ is a point estimator of ✓.

A good point estimator will have ✓̂⇡ ✓.
Desirable statistical properties of point estimators:

Consistency: As data size n!1, we get ✓̂n ! ✓.

Efficiency: (Roughly speaking) ✓̂n is as accurate as we can get from a sample of size n.

Maximum likelihood estimators are consistent and efficient under reasonable conditions.

CSCI-GA 2565 56 / 73



Example of Point Estimation: Coin Flipping

Parametric family of mass functions:

p(Heads | ✓) = ✓,

for ✓ 2⇥= (0,1).

CSCI-GA 2565 57 / 73



Coin Flipping: MLE

Data D= (H,H,T ,T ,T ,T ,T ,H, . . . ,T ), assumed i.i.d. flips.
nh: number of heads

nt : number of tails

Likelihood function for data D:

LD(✓) = p(D | ✓) = ✓nh (1-✓)nt

As usual, it is easier to maximize the log-likelihood function:

✓̂MLE = argmax
✓2⇥

logLD(✓)

= argmax
✓2⇥

[nh log✓+nt log(1-✓)]

First order condition (equating the derivative to zero):
nh

✓
-

nt

1-✓
= 0 () ✓=

nh

nh+nt
✓̂MLE is the empirical fraction of heads.

CSCI-GA 2565 58 / 73



Coin Flipping: MLE

Data D= (H,H,T ,T ,T ,T ,T ,H, . . . ,T ), assumed i.i.d. flips.
nh: number of heads

nt : number of tails

Likelihood function for data D:

LD(✓) =

p(D | ✓) = ✓nh (1-✓)nt

As usual, it is easier to maximize the log-likelihood function:

✓̂MLE = argmax
✓2⇥

logLD(✓)

= argmax
✓2⇥

[nh log✓+nt log(1-✓)]

First order condition (equating the derivative to zero):
nh

✓
-

nt

1-✓
= 0 () ✓=

nh

nh+nt
✓̂MLE is the empirical fraction of heads.

CSCI-GA 2565 58 / 73



Coin Flipping: MLE

Data D= (H,H,T ,T ,T ,T ,T ,H, . . . ,T ), assumed i.i.d. flips.
nh: number of heads

nt : number of tails

Likelihood function for data D:

LD(✓) = p(D | ✓) = ✓nh (1-✓)nt

As usual, it is easier to maximize the log-likelihood function:

✓̂MLE = argmax
✓2⇥

logLD(✓)

= argmax
✓2⇥

[nh log✓+nt log(1-✓)]

First order condition (equating the derivative to zero):
nh

✓
-

nt

1-✓
= 0 () ✓=

nh

nh+nt
✓̂MLE is the empirical fraction of heads.

CSCI-GA 2565 58 / 73



Coin Flipping: MLE

Data D= (H,H,T ,T ,T ,T ,T ,H, . . . ,T ), assumed i.i.d. flips.
nh: number of heads

nt : number of tails

Likelihood function for data D:

LD(✓) = p(D | ✓) = ✓nh (1-✓)nt

As usual, it is easier to maximize the log-likelihood function:

✓̂MLE = argmax
✓2⇥

logLD(✓)

= argmax
✓2⇥

[nh log✓+nt log(1-✓)]

First order condition (equating the derivative to zero):
nh

✓
-

nt

1-✓
= 0 () ✓=

nh

nh+nt

✓̂MLE is the empirical fraction of heads.

CSCI-GA 2565 58 / 73



Coin Flipping: MLE

Data D= (H,H,T ,T ,T ,T ,T ,H, . . . ,T ), assumed i.i.d. flips.
nh: number of heads

nt : number of tails

Likelihood function for data D:

LD(✓) = p(D | ✓) = ✓nh (1-✓)nt

As usual, it is easier to maximize the log-likelihood function:

✓̂MLE = argmax
✓2⇥

logLD(✓)

= argmax
✓2⇥

[nh log✓+nt log(1-✓)]

First order condition (equating the derivative to zero):
nh

✓
-

nt

1-✓
= 0 () ✓=

nh

nh+nt
✓̂MLE is the empirical fraction of heads.

CSCI-GA 2565 58 / 73



Bayesian Statistics: Introduction

CSCI-GA 2565 59 / 73



Bayesian Statistics

Baysian statistics introduces a crucial new ingredient: the prior distribution.

A prior distribution p(✓) is a distribution on the parameter space ⇥.

The prior reflects our belief about ✓, before seeing any data.

CSCI-GA 2565 60 / 73



Bayesian Statistics

Baysian statistics introduces a crucial new ingredient: the prior distribution.

A prior distribution p(✓) is a distribution on the parameter space ⇥.

The prior reflects our belief about ✓, before seeing any data.

CSCI-GA 2565 60 / 73



Bayesian Statistics

Baysian statistics introduces a crucial new ingredient: the prior distribution.

A prior distribution p(✓) is a distribution on the parameter space ⇥.

The prior reflects our belief about ✓, before seeing any data.

CSCI-GA 2565 60 / 73



A Bayesian Model

A [parametric] Bayesian model consists of two pieces:
1 A parametric family of densities

{p(D | ✓) | ✓ 2⇥} .

2 A prior distribution p(✓) on parameter space ⇥.

Putting the pieces together, we get a joint density on ✓ and D:

p(D,✓) = p(D | ✓)p(✓).

CSCI-GA 2565 61 / 73



A Bayesian Model

A [parametric] Bayesian model consists of two pieces:
1 A parametric family of densities

{p(D | ✓) | ✓ 2⇥} .

2 A prior distribution p(✓) on parameter space ⇥.

Putting the pieces together, we get a joint density on ✓ and D:

p(D,✓) = p(D | ✓)p(✓).

CSCI-GA 2565 61 / 73



A Bayesian Model

A [parametric] Bayesian model consists of two pieces:
1 A parametric family of densities

{p(D | ✓) | ✓ 2⇥} .

2 A prior distribution p(✓) on parameter space ⇥.

Putting the pieces together, we get a joint density on ✓ and D:

p(D,✓) = p(D | ✓)p(✓).

CSCI-GA 2565 61 / 73



The Posterior Distribution

The posterior distribution for ✓ is p(✓ | D).

Whereas the prior represents belief about ✓ before observing data D,

The posterior represents the rationally updated belief about ✓, after seeing D.

CSCI-GA 2565 62 / 73



The Posterior Distribution

The posterior distribution for ✓ is p(✓ | D).

Whereas the prior represents belief about ✓ before observing data D,

The posterior represents the rationally updated belief about ✓, after seeing D.

CSCI-GA 2565 62 / 73



The Posterior Distribution

The posterior distribution for ✓ is p(✓ | D).

Whereas the prior represents belief about ✓ before observing data D,

The posterior represents the rationally updated belief about ✓, after seeing D.

CSCI-GA 2565 62 / 73



Expressing the Posterior Distribution

By Bayes rule, can write the posterior distribution as

p(✓ | D)

=
p(D | ✓)p(✓)

p(D)
.

Let’s consider both sides as functions of ✓, for fixed D.
Then both sides are densities on ⇥ and we can write

p(✓ | D)| {z }
posterior

/ p(D | ✓)| {z }
likelihood

p(✓)|{z}
prior

.

Where / means we’ve dropped factors that are independent of ✓.
Maximum a posteriori: Find ✓̂MAP Maximize the posterior distribution.

CSCI-GA 2565 63 / 73



Expressing the Posterior Distribution

By Bayes rule, can write the posterior distribution as

p(✓ | D) =
p(D | ✓)p(✓)

p(D)
.

Let’s consider both sides as functions of ✓, for fixed D.
Then both sides are densities on ⇥ and we can write

p(✓ | D)| {z }
posterior

/ p(D | ✓)| {z }
likelihood

p(✓)|{z}
prior

.

Where / means we’ve dropped factors that are independent of ✓.
Maximum a posteriori: Find ✓̂MAP Maximize the posterior distribution.

CSCI-GA 2565 63 / 73



Expressing the Posterior Distribution

By Bayes rule, can write the posterior distribution as

p(✓ | D) =
p(D | ✓)p(✓)

p(D)
.

Let’s consider both sides as functions of ✓, for fixed D.

Then both sides are densities on ⇥ and we can write

p(✓ | D)| {z }
posterior

/ p(D | ✓)| {z }
likelihood

p(✓)|{z}
prior

.

Where / means we’ve dropped factors that are independent of ✓.
Maximum a posteriori: Find ✓̂MAP Maximize the posterior distribution.

CSCI-GA 2565 63 / 73



Expressing the Posterior Distribution

By Bayes rule, can write the posterior distribution as

p(✓ | D) =
p(D | ✓)p(✓)

p(D)
.

Let’s consider both sides as functions of ✓, for fixed D.
Then both sides are densities on ⇥ and we can write

p(✓ | D)| {z }
posterior

/ p(D | ✓)| {z }
likelihood

p(✓)|{z}
prior

.

Where / means we’ve dropped factors that are independent of ✓.
Maximum a posteriori: Find ✓̂MAP Maximize the posterior distribution.

CSCI-GA 2565 63 / 73



Expressing the Posterior Distribution

By Bayes rule, can write the posterior distribution as

p(✓ | D) =
p(D | ✓)p(✓)

p(D)
.

Let’s consider both sides as functions of ✓, for fixed D.
Then both sides are densities on ⇥ and we can write

p(✓ | D)| {z }
posterior

/ p(D | ✓)| {z }
likelihood

p(✓)|{z}
prior

.

Where / means we’ve dropped factors that are independent of ✓.

Maximum a posteriori: Find ✓̂MAP Maximize the posterior distribution.

CSCI-GA 2565 63 / 73



Expressing the Posterior Distribution

By Bayes rule, can write the posterior distribution as

p(✓ | D) =
p(D | ✓)p(✓)

p(D)
.

Let’s consider both sides as functions of ✓, for fixed D.
Then both sides are densities on ⇥ and we can write

p(✓ | D)| {z }
posterior

/ p(D | ✓)| {z }
likelihood

p(✓)|{z}
prior

.

Where / means we’ve dropped factors that are independent of ✓.
Maximum a posteriori: Find ✓̂MAP Maximize the posterior distribution.

CSCI-GA 2565 63 / 73

MLE argmaxPCD 0
0

MAP argy
PCD0110



Coin Flipping: Bayesian Model

Recall that we have a parametric family of mass functions:

p(Heads | ✓) = ✓,

for ✓ 2⇥= (0,1).

We need a prior distribution p(✓) on ⇥= (0,1).

One convenient choice would be a distribution from the Beta family

CSCI-GA 2565 64 / 73



Coin Flipping: Bayesian Model

Recall that we have a parametric family of mass functions:

p(Heads | ✓) = ✓,

for ✓ 2⇥= (0,1).

We need a prior distribution p(✓) on ⇥= (0,1).

One convenient choice would be a distribution from the Beta family

CSCI-GA 2565 64 / 73

Et
n



Coin Flipping: Bayesian Model

Recall that we have a parametric family of mass functions:

p(Heads | ✓) = ✓,

for ✓ 2⇥= (0,1).

We need a prior distribution p(✓) on ⇥= (0,1).

One convenient choice would be a distribution from the Beta family

CSCI-GA 2565 64 / 73



Coin Flipping: Beta Prior

Prior:

✓ ⇠ Beta(↵,�)
p(✓) / ✓↵-1 (1-✓)�-1

Figure by Horas based on the work of Krishnavedala (Own work) [Public domain], via Wikimedia Commons
http://commons.wikimedia.org/wiki/File:Beta_distribution_pdf.svg.

CSCI-GA 2565 65 / 73

http://commons.wikimedia.org/wiki/File:Beta_distribution_pdf.svg


Coin Flipping: Beta Prior

Prior:

✓ ⇠ Beta(↵,�)
p(✓) / ✓↵-1 (1-✓)�-1

Figure by Horas based on the work of Krishnavedala (Own work) [Public domain], via Wikimedia Commons
http://commons.wikimedia.org/wiki/File:Beta_distribution_pdf.svg.

CSCI-GA 2565 65 / 73

http://commons.wikimedia.org/wiki/File:Beta_distribution_pdf.svg


Coin Flipping: Beta Prior

Prior:

✓ ⇠ Beta(h, t)
p(✓) / ✓h-1 (1-✓)t-1

Mean of Beta distribution:
E✓=

h

h+ t

Mode of Beta distribution:

argmax
✓

p(✓) =
h-1

h+ t-2

for h, t > 1.

CSCI-GA 2565 66 / 73



Coin Flipping: Beta Prior

Prior:

✓ ⇠ Beta(h, t)
p(✓) / ✓h-1 (1-✓)t-1

Mean of Beta distribution:
E✓=

h

h+ t

Mode of Beta distribution:

argmax
✓

p(✓) =
h-1

h+ t-2

for h, t > 1.

CSCI-GA 2565 66 / 73



Coin Flipping: Beta Prior

Prior:

✓ ⇠ Beta(h, t)
p(✓) / ✓h-1 (1-✓)t-1

Mean of Beta distribution:
E✓=

h

h+ t

Mode of Beta distribution:

argmax
✓

p(✓) =
h-1

h+ t-2

for h, t > 1.

CSCI-GA 2565 66 / 73



Coin Flipping: Posterior

Prior:

✓ ⇠ Beta(h, t)
p(✓) / ✓h-1 (1-✓)t-1

Likelihood function
L(✓) = p(D | ✓) = ✓nh (1-✓)nt

Posterior density:

p(✓ | D) / p(✓)p(D | ✓)

/ ✓h-1 (1-✓)t-1⇥✓nh (1-✓)nt

= ✓h-1+nh (1-✓)t-1+nt

CSCI-GA 2565 67 / 73

D H T T



Coin Flipping: Posterior

Prior:

✓ ⇠ Beta(h, t)
p(✓) / ✓h-1 (1-✓)t-1

Likelihood function
L(✓) = p(D | ✓) = ✓nh (1-✓)nt

Posterior density:

p(✓ | D) / p(✓)p(D | ✓)

/ ✓h-1 (1-✓)t-1⇥✓nh (1-✓)nt

= ✓h-1+nh (1-✓)t-1+nt

CSCI-GA 2565 67 / 73

amita one 0

O
nt



Coin Flipping: Posterior

Prior:

✓ ⇠ Beta(h, t)
p(✓) / ✓h-1 (1-✓)t-1

Likelihood function
L(✓) = p(D | ✓) = ✓nh (1-✓)nt

Posterior density:

p(✓ | D) / p(✓)p(D | ✓)

/ ✓h-1 (1-✓)t-1⇥✓nh (1-✓)nt

= ✓h-1+nh (1-✓)t-1+nt

CSCI-GA 2565 67 / 73



Coin Flipping: Posterior

Prior:

✓ ⇠ Beta(h, t)
p(✓) / ✓h-1 (1-✓)t-1

Likelihood function
L(✓) = p(D | ✓) = ✓nh (1-✓)nt

Posterior density:

p(✓ | D) / p(✓)p(D | ✓)

/ ✓h-1 (1-✓)t-1⇥✓nh (1-✓)nt

= ✓h-1+nh (1-✓)t-1+nt

CSCI-GA 2565 67 / 73



Coin Flipping: Posterior

Prior:

✓ ⇠ Beta(h, t)
p(✓) / ✓h-1 (1-✓)t-1

Likelihood function
L(✓) = p(D | ✓) = ✓nh (1-✓)nt

Posterior density:

p(✓ | D) / p(✓)p(D | ✓)

/ ✓h-1 (1-✓)t-1⇥✓nh (1-✓)nt

= ✓h-1+nh (1-✓)t-1+nt

CSCI-GA 2565 67 / 73



The Posterior is in the Beta Family!

Prior:

✓ ⇠ Beta(h, t)
p(✓) / ✓h-1 (1-✓)t-1

Posterior density:

p(✓ | D) / ✓h-1+nh (1-✓)t-1+nt

Posterior is in the beta family:

✓ | D ⇠ Beta(h+nh, t+nt)

Interpretation:
Prior initializes our counts with h heads and t tails.

Posterior increments counts by observed nh and nt .

CSCI-GA 2565 68 / 73



The Posterior is in the Beta Family!

Prior:

✓ ⇠ Beta(h, t)
p(✓) / ✓h-1 (1-✓)t-1

Posterior density:

p(✓ | D) / ✓h-1+nh (1-✓)t-1+nt

Posterior is in the beta family:

✓ | D ⇠ Beta(h+nh, t+nt)

Interpretation:
Prior initializes our counts with h heads and t tails.

Posterior increments counts by observed nh and nt .

CSCI-GA 2565 68 / 73



The Posterior is in the Beta Family!

Prior:

✓ ⇠ Beta(h, t)
p(✓) / ✓h-1 (1-✓)t-1

Posterior density:

p(✓ | D) / ✓h-1+nh (1-✓)t-1+nt

Posterior is in the beta family:

✓ | D ⇠ Beta(h+nh, t+nt)

Interpretation:
Prior initializes our counts with h heads and t tails.

Posterior increments counts by observed nh and nt .

CSCI-GA 2565 68 / 73



Sidebar: Conjugate Priors

In this case, the posterior is in the same distribution family as the prior.
Let ⇡ be a family of prior distributions on ⇥.

Let P parametric family of distributions with parameter space ⇥.

Definition
A family of distributions ⇡ is conjugate to parametric model P if for any prior in ⇡, the
posterior is always in ⇡.

The beta family is conjugate to the coin-flipping (i.e. Bernoulli) model.

CSCI-GA 2565 69 / 73



Sidebar: Conjugate Priors

In this case, the posterior is in the same distribution family as the prior.
Let ⇡ be a family of prior distributions on ⇥.
Let P parametric family of distributions with parameter space ⇥.

Definition
A family of distributions ⇡ is conjugate to parametric model P if for any prior in ⇡, the
posterior is always in ⇡.

The beta family is conjugate to the coin-flipping (i.e. Bernoulli) model.

CSCI-GA 2565 69 / 73



Sidebar: Conjugate Priors

In this case, the posterior is in the same distribution family as the prior.
Let ⇡ be a family of prior distributions on ⇥.
Let P parametric family of distributions with parameter space ⇥.

Definition
A family of distributions ⇡ is conjugate to parametric model P if for any prior in ⇡, the
posterior is always in ⇡.

The beta family is conjugate to the coin-flipping (i.e. Bernoulli) model.

CSCI-GA 2565 69 / 73



Sidebar: Conjugate Priors

In this case, the posterior is in the same distribution family as the prior.
Let ⇡ be a family of prior distributions on ⇥.
Let P parametric family of distributions with parameter space ⇥.

Definition
A family of distributions ⇡ is conjugate to parametric model P if for any prior in ⇡, the
posterior is always in ⇡.

The beta family is conjugate to the coin-flipping (i.e. Bernoulli) model.

CSCI-GA 2565 69 / 73



Coin Flipping: Concrete Example

Suppose we have a coin, possibly biased (parametric probability model):

p(Heads | ✓) = ✓.

Parameter space ✓ 2⇥= [0,1].
Prior distribution: ✓ ⇠ Beta(2,2).

CSCI-GA 2565 70 / 73



Coin Flipping: Concrete Example

Suppose we have a coin, possibly biased (parametric probability model):

p(Heads | ✓) = ✓.

Parameter space ✓ 2⇥= [0,1].
Prior distribution: ✓ ⇠ Beta(2,2).

CSCI-GA 2565 70 / 73



Coin Flipping: Concrete Example

Suppose we have a coin, possibly biased (parametric probability model):

p(Heads | ✓) = ✓.

Parameter space ✓ 2⇥= [0,1].
Prior distribution: ✓ ⇠ Beta(2,2).

CSCI-GA 2565 70 / 73



Example: Coin Flipping

Next, we gather some data D= {H,H,T ,T ,T ,T ,T ,H, . . . ,T }:

Heads: 75 Tails: 60
✓̂MLE = 75

75+60 ⇡ 0.556

Posterior distribution: ✓ | D ⇠ Beta(77,62):

CSCI-GA 2565 71 / 73



Example: Coin Flipping

Next, we gather some data D= {H,H,T ,T ,T ,T ,T ,H, . . . ,T }:
Heads: 75 Tails: 60

✓̂MLE = 75
75+60 ⇡ 0.556

Posterior distribution: ✓ | D ⇠ Beta(77,62):

CSCI-GA 2565 71 / 73



Example: Coin Flipping

Next, we gather some data D= {H,H,T ,T ,T ,T ,T ,H, . . . ,T }:
Heads: 75 Tails: 60

✓̂MLE = 75
75+60 ⇡ 0.556

Posterior distribution: ✓ | D ⇠ Beta(77,62):

CSCI-GA 2565 71 / 73



Example: Coin Flipping

Next, we gather some data D= {H,H,T ,T ,T ,T ,T ,H, . . . ,T }:
Heads: 75 Tails: 60

✓̂MLE = 75
75+60 ⇡ 0.556

Posterior distribution: ✓ | D ⇠ Beta(77,62):

CSCI-GA 2565 71 / 73

mode MAP 7 62



Bayesian Point Estimates

We have the posterior distribution ✓ | D.
What if someone asks us for a point estimate ✓̂ for ✓?

Common options:
posterior mean ✓̂= E [✓ | D]
maximum a posteriori (MAP) estimate ✓̂= argmax✓ p(✓ | D)

Note: this is the mode of the posterior distribution

CSCI-GA 2565 72 / 73



Bayesian Point Estimates

We have the posterior distribution ✓ | D.
What if someone asks us for a point estimate ✓̂ for ✓?
Common options:

posterior mean ✓̂= E [✓ | D]
maximum a posteriori (MAP) estimate ✓̂= argmax✓ p(✓ | D)

Note: this is the mode of the posterior distribution

CSCI-GA 2565 72 / 73



Bayesian Point Estimates

We have the posterior distribution ✓ | D.
What if someone asks us for a point estimate ✓̂ for ✓?
Common options:

posterior mean ✓̂= E [✓ | D]

maximum a posteriori (MAP) estimate ✓̂= argmax✓ p(✓ | D)
Note: this is the mode of the posterior distribution

CSCI-GA 2565 72 / 73



Bayesian Point Estimates

We have the posterior distribution ✓ | D.
What if someone asks us for a point estimate ✓̂ for ✓?
Common options:

posterior mean ✓̂= E [✓ | D]
maximum a posteriori (MAP) estimate ✓̂= argmax✓ p(✓ | D)

Note: this is the mode of the posterior distribution

CSCI-GA 2565 72 / 73



What else can we do with a posterior?

Look at it: display uncertainty estimates to our client

Extract a credible set for ✓ (a Bayesian confidence interval).
e.g. Interval [a,b] is a 95% credible set if

P(✓ 2 [a,b] | D)> 0.95

Select a point estimate using Bayesian decision theory:
Choose a loss function.

Find action minimizing expected risk w.r.t. posterior

CSCI-GA 2565 73 / 73



What else can we do with a posterior?

Look at it: display uncertainty estimates to our client
Extract a credible set for ✓ (a Bayesian confidence interval).

e.g. Interval [a,b] is a 95% credible set if

P(✓ 2 [a,b] | D)> 0.95

Select a point estimate using Bayesian decision theory:
Choose a loss function.

Find action minimizing expected risk w.r.t. posterior

CSCI-GA 2565 73 / 73



What else can we do with a posterior?

Look at it: display uncertainty estimates to our client
Extract a credible set for ✓ (a Bayesian confidence interval).

e.g. Interval [a,b] is a 95% credible set if

P(✓ 2 [a,b] | D)> 0.95

Select a point estimate using Bayesian decision theory:
Choose a loss function.

Find action minimizing expected risk w.r.t. posterior

CSCI-GA 2565 73 / 73

It
0 1 loss mode

loss absolute loss media

x 1

square loss mean


