
Kernels & Probabilistic Modeling

Mengye Ren

(Slides credit to David Rosenberg, He He, et al.)

NYU

October 1, 2024

CSCI-GA 2565 1 / 99

Slides

CSCI-GA 2565 2 / 99

Logistics

Today (Oct 1): Kernels and Probabilistic Modeling
Oct 8: Guest Lecture
Oct 15: Homework 2 Due
Oct 15: Legislative Day No Class
Oct 22: Midterm, in class, closed-book, covers everything including Oct 8

CSCI-GA 2565 3 / 99

HW HW Z

Expressivity of Hypothesis Space

For linear models, to grow the hypothesis spaces, we must add features.
Sometimes we say a larger hypothesis is more expressive.

(can fit more relationships between input and action)
Many ways to create new features.

CSCI-GA 2565 4 / 99

I W f x

Handling Nonlinearity with Linear Methods

CSCI-GA 2565 5 / 99

Example Task: Predicting Health

General Philosophy: Extract every feature that might be relevant
Features for medical diagnosis

height
weight
body temperature
blood pressure
etc...

From Percy Liang’s "Lecture 3" slides from Stanford’s CS221, Autumn 2014.
CSCI-GA 2565 6 / 99

Feature Issues for Linear Predictors

For linear predictors, it’s important how features are added
The relation between a feature and the label may not be linear
There may be complex dependence among features

Three types of nonlinearities can cause problems:
Non-monotonicity
Saturation
Interactions between features

From Percy Liang’s "Lecture 3" slides from Stanford’s CS221, Autumn 2014.
CSCI-GA 2565 7 / 99

Feature Issues for Linear Predictors

For linear predictors, it’s important how features are added
The relation between a feature and the label may not be linear
There may be complex dependence among features

Three types of nonlinearities can cause problems:
Non-monotonicity
Saturation
Interactions between features

From Percy Liang’s "Lecture 3" slides from Stanford’s CS221, Autumn 2014.
CSCI-GA 2565 7 / 99

A

Non-monotonicity: The Issue

Feature Map: �(x) = [1, temperature(x)]
Action: Predict health score y 2 R (positive is good)
Hypothesis Space F= {affine functions of temperature}

Issue:
Health is not an affine function of temperature.
Affine function can either say

Very high is bad and very low is good, or
Very low is bad and very high is good,
But here, both extremes are bad.

From Percy Liang’s "Lecture 3" slides from Stanford’s CS221, Autumn 2014.
CSCI-GA 2565 8 / 99

WE
WTCX I

Non-monotonicity: The Issue

Feature Map: �(x) = [1, temperature(x)]
Action: Predict health score y 2 R (positive is good)
Hypothesis Space F= {affine functions of temperature}
Issue:

Health is not an affine function of temperature.

Affine function can either say
Very high is bad and very low is good, or
Very low is bad and very high is good,
But here, both extremes are bad.

From Percy Liang’s "Lecture 3" slides from Stanford’s CS221, Autumn 2014.
CSCI-GA 2565 8 / 99

Non-monotonicity: The Issue

Feature Map: �(x) = [1, temperature(x)]
Action: Predict health score y 2 R (positive is good)
Hypothesis Space F= {affine functions of temperature}
Issue:

Health is not an affine function of temperature.
Affine function can either say

Very high is bad and very low is good, or
Very low is bad and very high is good,
But here, both extremes are bad.

From Percy Liang’s "Lecture 3" slides from Stanford’s CS221, Autumn 2014.
CSCI-GA 2565 8 / 99

Non-monotonicity: Solution 1

Transform the input:
�(x) =

h
1, {temperature(x)-37}2

i
,

where 37 is “normal” temperature in Celsius.

Ok, but requires manually-specified domain knowledge
Do we really need that?
What does w

T�(x) look like?

From Percy Liang’s "Lecture 3" slides from Stanford’s CS221, Autumn 2014.
CSCI-GA 2565 9 / 99

Non-monotonicity: Solution 1

Transform the input:
�(x) =

h
1, {temperature(x)-37}2

i
,

where 37 is “normal” temperature in Celsius.
Ok, but requires manually-specified domain knowledge

Do we really need that?
What does w

T�(x) look like?

From Percy Liang’s "Lecture 3" slides from Stanford’s CS221, Autumn 2014.
CSCI-GA 2565 9 / 99

Non-monotonicity: Solution 2

Think less, put in more:

�(x) =
h
1, temperature(x), {temperature(x)}2

i
.

More expressive than Solution 1.

General Rule
Features should be simple building blocks that can be pieced together.

From Percy Liang’s "Lecture 3" slides from Stanford’s CS221, Autumn 2014.
CSCI-GA 2565 10 / 99

V
1

Saturation: The Issue

Setting: Find products relevant to user’s query

Input: Product x
Output: Score the relevance of x to user’s query
Feature Map:

�(x) = [1,N(x)] ,

where N(x) = number of people who bought x .
We expect a monotonic relationship between N(x) and relevance, but also expect
diminishing return.

From Percy Liang’s "Lecture 3" slides from Stanford’s CS221, Autumn 2014.
CSCI-GA 2565 11 / 99

Saturation: The Issue

Setting: Find products relevant to user’s query
Input: Product x
Output: Score the relevance of x to user’s query

Feature Map:
�(x) = [1,N(x)] ,

where N(x) = number of people who bought x .
We expect a monotonic relationship between N(x) and relevance, but also expect
diminishing return.

From Percy Liang’s "Lecture 3" slides from Stanford’s CS221, Autumn 2014.
CSCI-GA 2565 11 / 99

Saturation: The Issue

Setting: Find products relevant to user’s query
Input: Product x
Output: Score the relevance of x to user’s query
Feature Map:

�(x) = [1,N(x)] ,

where N(x) = number of people who bought x .

We expect a monotonic relationship between N(x) and relevance, but also expect
diminishing return.

From Percy Liang’s "Lecture 3" slides from Stanford’s CS221, Autumn 2014.
CSCI-GA 2565 11 / 99

0

Saturation: The Issue

Setting: Find products relevant to user’s query
Input: Product x
Output: Score the relevance of x to user’s query
Feature Map:

�(x) = [1,N(x)] ,

where N(x) = number of people who bought x .
We expect a monotonic relationship between N(x) and relevance, but also expect
diminishing return.

From Percy Liang’s "Lecture 3" slides from Stanford’s CS221, Autumn 2014.
CSCI-GA 2565 11 / 99

logic

Saturation: Solve with nonlinear transform

Smooth nonlinear transformation:

�(x) = [1, log {1+N(x)}]

log (·) good for values with large dynamic ranges

Discretization (a discontinuous transformation):

�(x) = ([0 6 N(x)< 10], [10 6 N(x)< 100], . . .)

Small buckets allow quite flexible relationship

From Percy Liang’s "Lecture 3" slides from Stanford’s CS221, Autumn 2014.
CSCI-GA 2565 12 / 99

Saturation: Solve with nonlinear transform

Smooth nonlinear transformation:

�(x) = [1, log {1+N(x)}]

log (·) good for values with large dynamic ranges
Discretization (a discontinuous transformation):

�(x) = ([0 6 N(x)< 10], [10 6 N(x)< 100], . . .)

Small buckets allow quite flexible relationship

From Percy Liang’s "Lecture 3" slides from Stanford’s CS221, Autumn 2014.
CSCI-GA 2565 12 / 99

Interactions: The Issue

Input: Patient information x

Action: Health score y 2 R (higher is better)
Feature Map

�(x) = [height(x),weight(x)]

Issue: It’s the weight relative to the height that’s important.
Impossible to get with these features and a linear classifier.
Need some interaction between height and weight.

From Percy Liang’s "Lecture 3" slides from Stanford’s CS221, Autumn 2014.
CSCI-GA 2565 13 / 99

Interactions: The Issue

Input: Patient information x

Action: Health score y 2 R (higher is better)
Feature Map

�(x) = [height(x),weight(x)]

Issue: It’s the weight relative to the height that’s important.

Impossible to get with these features and a linear classifier.
Need some interaction between height and weight.

From Percy Liang’s "Lecture 3" slides from Stanford’s CS221, Autumn 2014.
CSCI-GA 2565 13 / 99

Interactions: The Issue

Input: Patient information x

Action: Health score y 2 R (higher is better)
Feature Map

�(x) = [height(x),weight(x)]

Issue: It’s the weight relative to the height that’s important.
Impossible to get with these features and a linear classifier.
Need some interaction between height and weight.

From Percy Liang’s "Lecture 3" slides from Stanford’s CS221, Autumn 2014.
CSCI-GA 2565 13 / 99

Interactions: Approach 1

Google “ideal weight from height”
J. D. Robinson’s “ideal weight” formula:

weight(kg) = 52+1.9 [height(in)-60]

Make score square deviation between height(h) and ideal weight(w)

f (x) = (52+1.9 [h(x)-60]-w(x))2

WolframAlpha for complicated Mathematics:

f (x) = 3.61h(x)2-3.8h(x)w(x)-235.6h(x)+w(x)2+124w(x)+3844

From Percy Liang’s "Lecture 3" slides from Stanford’s CS221, Autumn 2014.
CSCI-GA 2565 14 / 99

Interactions: Approach 1

Google “ideal weight from height”
J. D. Robinson’s “ideal weight” formula:

weight(kg) = 52+1.9 [height(in)-60]

Make score square deviation between height(h) and ideal weight(w)

f (x) = (52+1.9 [h(x)-60]-w(x))2

WolframAlpha for complicated Mathematics:

f (x) = 3.61h(x)2-3.8h(x)w(x)-235.6h(x)+w(x)2+124w(x)+3844

From Percy Liang’s "Lecture 3" slides from Stanford’s CS221, Autumn 2014.
CSCI-GA 2565 14 / 99

Interactions: Approach 1

Google “ideal weight from height”
J. D. Robinson’s “ideal weight” formula:

weight(kg) = 52+1.9 [height(in)-60]

Make score square deviation between height(h) and ideal weight(w)

f (x) = (52+1.9 [h(x)-60]-w(x))2

WolframAlpha for complicated Mathematics:

f (x) = 3.61h(x)2-3.8h(x)w(x)-235.6h(x)+w(x)2+124w(x)+3844

From Percy Liang’s "Lecture 3" slides from Stanford’s CS221, Autumn 2014.
CSCI-GA 2565 14 / 99

Interactions: Approach 2

Just include all second order features:

�(x) =

2

41,h(x),w(x),h(x)2,w(x)2, h(x)w(x)| {z }
cross term

3

5

More flexible, no Google, no WolframAlpha.

General Principle
Simpler building blocks replace a single “smart” feature.

From Percy Liang’s "Lecture 3" slides from Stanford’s CS221, Autumn 2014.
CSCI-GA 2565 15 / 99

C

Monomial Interaction Terms

Interaction terms are useful building blocks to model non-linearities in features.

Suppose we start with x = (1,x1, . . . ,xd) 2 Rd+1 = X.

Consider adding all monomials of degree M: x
p1
1 · · ·xpdd , with p1+ · · ·+pd =M.

Monomials with degree 2 in 2D space: x
2
1 , x2

2 , x1x2
How many features will we end up with?

�M+d-1
M

�

CSCI-GA 2565 16 / 99

Monomial Interaction Terms

Interaction terms are useful building blocks to model non-linearities in features.

Suppose we start with x = (1,x1, . . . ,xd) 2 Rd+1 = X.
Consider adding all monomials of degree M: x

p1
1 · · ·xpdd , with p1+ · · ·+pd =M.

Monomials with degree 2 in 2D space: x
2
1 , x2

2 , x1x2

How many features will we end up with?

�M+d-1
M

�

CSCI-GA 2565 16 / 99

Monomial Interaction Terms

Interaction terms are useful building blocks to model non-linearities in features.

Suppose we start with x = (1,x1, . . . ,xd) 2 Rd+1 = X.
Consider adding all monomials of degree M: x

p1
1 · · ·xpdd , with p1+ · · ·+pd =M.

Monomials with degree 2 in 2D space: x
2
1 , x2

2 , x1x2
How many features will we end up with?

�M+d-1
M

�

CSCI-GA 2565 16 / 99

o

d features to degree
5 feature 2 20

d
Xix XP X2 X X X X

Monomial Interaction Terms

Interaction terms are useful building blocks to model non-linearities in features.

Suppose we start with x = (1,x1, . . . ,xd) 2 Rd+1 = X.
Consider adding all monomials of degree M: x

p1
1 · · ·xpdd , with p1+ · · ·+pd =M.

Monomials with degree 2 in 2D space: x
2
1 , x2

2 , x1x2
How many features will we end up with?

�M+d-1
M

�

CSCI-GA 2565 16 / 99

f

Monomial Interaction Terms

Interaction terms are useful building blocks to model non-linearities in features.

Suppose we start with x = (1,x1, . . . ,xd) 2 Rd+1 = X.
Consider adding all monomials of degree M: x

p1
1 · · ·xpdd , with p1+ · · ·+pd =M.

Monomials with degree 2 in 2D space: x
2
1 , x2

2 , x1x2
How many features will we end up with?

�M+d-1
M

� CSCI-GA 2565 16 / 99

Big Feature Spaces

This leads to extremely large data matrices

For d = 40 and M = 8, we get 314457495 features.

Very large feature spaces have two potential issues:
Overfitting
Memory and computational costs

Solutions:
Overfitting we handle with regularization.
Kernel methods can help with memory and computational costs when we go to high (or
infinite) dimensional spaces. »»»> 2fb8a69 (05)

CSCI-GA 2565 17 / 99

Big Feature Spaces

This leads to extremely large data matrices

For d = 40 and M = 8, we get 314457495 features.

Very large feature spaces have two potential issues:
Overfitting
Memory and computational costs

Solutions:
Overfitting we handle with regularization.
Kernel methods can help with memory and computational costs when we go to high (or
infinite) dimensional spaces. »»»> 2fb8a69 (05)

CSCI-GA 2565 17 / 99

Big Feature Spaces

This leads to extremely large data matrices

For d = 40 and M = 8, we get 314457495 features.

Very large feature spaces have two potential issues:
Overfitting
Memory and computational costs

Solutions:
Overfitting we handle with regularization.
Kernel methods can help with memory and computational costs when we go to high (or
infinite) dimensional spaces. »»»> 2fb8a69 (05)

CSCI-GA 2565 17 / 99

parameter features

The Kernel Trick

CSCI-GA 2565 18 / 99

SVM with Explicit Feature Map

Let : X! Rd be a feature map.
The SVM objective (with explicit feature map):

min
w2Rd

1
2
||w ||2+

c

n

nX

i=1

max
�
0,1- yiw

T (xi)
�
.

Computation is costly if d is large (e.g. with high-degree monomials)
Last time we mentioned an equivalent optimization problem from Lagrangian duality.

CSCI-GA 2565 19 / 99

Trey thinks

SVM with Explicit Feature Map

Let : X! Rd be a feature map.
The SVM objective (with explicit feature map):

min
w2Rd

1
2
||w ||2+

c

n

nX

i=1

max
�
0,1- yiw

T (xi)
�
.

Computation is costly if d is large (e.g. with high-degree monomials)

Last time we mentioned an equivalent optimization problem from Lagrangian duality.

CSCI-GA 2565 19 / 99

l Xiak

SVM with Explicit Feature Map

Let : X! Rd be a feature map.
The SVM objective (with explicit feature map):

min
w2Rd

1
2
||w ||2+

c

n

nX

i=1

max
�
0,1- yiw

T (xi)
�
.

Computation is costly if d is large (e.g. with high-degree monomials)
Last time we mentioned an equivalent optimization problem from Lagrangian duality.

CSCI-GA 2565 19 / 99

SVM Dual Problem

By Lagrangian duality, it is equivalent to solve the following dual problem:

If ↵⇤ is an optimal value, then

Key observation: (x) only shows up in inner products with another (x 0) for both
training and inference.

CSCI-GA 2565 20 / 99

E fa
I

t
4K5 balancing

SVM Dual Problem

By Lagrangian duality, it is equivalent to solve the following dual problem:

If ↵⇤ is an optimal value, then

Key observation: (x) only shows up in inner products with another (x 0) for both
training and inference.

CSCI-GA 2565 20 / 99

Tearing max Ʃ

III Y Y_E
d

pret yÑ
inference

ex

Compute the Inner Products

Consider 2D data. Let’s introduce degree-2 monomials using : R2 ! R3.

(x1,x2) 7! (x2
1 ,
p

2x1x2,x
2
2).

The inner product is

We can calculate the inner product (x)T (x 0) in the original input space without accessing
the features (x)!

CSCI-GA 2565 21 / 99

4 x

d

x x
xi Xi

41 1 41 x E X X A Xixi Xix

xixiztzx.xixzx.at Xix
x x X 2

n

Compute the Inner Products

Now, consider monomials up to degree-2:

(x1,x2) 7! (1,
p

2x1,
p

2x2,x
2
1 ,
p

2x1x2,x
2
2).

The inner product can be computed by

 (x)T (x 0) = (1+ x
T
x
0)2 (check).

More generally, for features maps producing monomials up to degree-p, we have

 (x)T (x 0) = (1+ x
T
x
0)p.

(Note that the coefficients of each monomial in may not be 1)

CSCI-GA 2565 22 / 99

e

KEY

Compute the Inner Products

Now, consider monomials up to degree-2:

(x1,x2) 7! (1,
p

2x1,
p

2x2,x
2
1 ,
p

2x1x2,x
2
2).

The inner product can be computed by

 (x)T (x 0) = (1+ x
T
x
0)2 (check).

More generally, for features maps producing monomials up to degree-p, we have

 (x)T (x 0) = (1+ x
T
x
0)p.

(Note that the coefficients of each monomial in may not be 1)

CSCI-GA 2565 22 / 99

001

Kernel Trick

Kernel trick: we do not need explicit features to calculate inner products.

Using explicit features: O(dp)

Using implicit computation: O(d)

CSCI-GA 2565 23 / 99

41 1 41 7 4 1

LH F
ed

Kernel Function

CSCI-GA 2565 24 / 99

The Kernel Function

Input space: X

Feature space: H

Feature map: : X!H

The kernel function corresponding to is

k(x ,x 0) =
⌦
 (x), (x 0)

↵
,

where h·, ·i is the inner product associated with H.

Why introduce this new notation k(x ,x 0)?

We can often evaluate k(x ,x 0) without explicitly computing (x) and (x 0).

When can we use the kernel trick?

CSCI-GA 2565 25 / 99

if I

The Kernel Function

Input space: X

Feature space: H

Feature map: : X!H

The kernel function corresponding to is

k(x ,x 0) =
⌦
 (x), (x 0)

↵
,

where h·, ·i is the inner product associated with H.

Why introduce this new notation k(x ,x 0)?

We can often evaluate k(x ,x 0) without explicitly computing (x) and (x 0).

When can we use the kernel trick?

CSCI-GA 2565 25 / 99

The Kernel Function

Input space: X

Feature space: H

Feature map: : X!H

The kernel function corresponding to is

k(x ,x 0) =
⌦
 (x), (x 0)

↵
,

where h·, ·i is the inner product associated with H.

Why introduce this new notation k(x ,x 0)?

We can often evaluate k(x ,x 0) without explicitly computing (x) and (x 0).

When can we use the kernel trick?

CSCI-GA 2565 25 / 99

1

The Kernel Function

Input space: X

Feature space: H

Feature map: : X!H

The kernel function corresponding to is

k(x ,x 0) =
⌦
 (x), (x 0)

↵
,

where h·, ·i is the inner product associated with H.

Why introduce this new notation k(x ,x 0)?

We can often evaluate k(x ,x 0) without explicitly computing (x) and (x 0).

When can we use the kernel trick?

CSCI-GA 2565 25 / 99

0

Some Methods Can Be “Kernelized”

Definition
A method is kernelized if every feature vector (x) only appears inside an inner product with
another feature vector (x 0). This applies to both the optimization problem and the prediction
function.

The SVM Dual is a kernelization of the original SVM formulation.

Optimization:

maximize
nX

i=1

↵i -
1
2

nX

i ,j=1

↵i↵jyiyj (xj)
T (xi)

s.t.
nX

i=1

↵iyi = 0 and ↵i 2
h
0,
c

n

i
8i .

Prediction:
f̂ (x) =

nX

i=1

↵⇤
i yi (xi)

T (x).

CSCI-GA 2565 26 / 99

Turning Fence

Some Methods Can Be “Kernelized”

Definition
A method is kernelized if every feature vector (x) only appears inside an inner product with
another feature vector (x 0). This applies to both the optimization problem and the prediction
function.

The SVM Dual is a kernelization of the original SVM formulation.

Optimization:

maximize
nX

i=1

↵i -
1
2

nX

i ,j=1

↵i↵jyiyj (xj)
T (xi)

s.t.
nX

i=1

↵iyi = 0 and ↵i 2
h
0,
c

n

i
8i .

Prediction:
f̂ (x) =

nX

i=1

↵⇤
i yi (xi)

T (x).

CSCI-GA 2565 26 / 99

The Kernel Matrix

Definition
The kernel matrix for a kernel k on x1, . . . ,xn 2 X is

K =
�
k(xi ,xj)

�
i ,j

=

0

B@
k(x1,x1) · · · k(x1,xn)

... . . . · · ·
k(xn,x1) · · · k(xn,xn)

1

CA 2 Rn⇥n.

In ML this is also called a Gram matrix, but traditionally (in linear algebra), Gram
matrices are defined without reference to a kernel or feature map.

CSCI-GA 2565 27 / 99

a
gY i

The Kernel Matrix

The kernel matrix summarizes all the information we need about the training inputs
x1, . . . ,xn to solve a kernelized optimization problem.
In the kernelized SVM, we can replace (xi)T (xj) with Kij :

maximize↵
nX

i=1

↵i -
1
2

nX

i ,j=1

↵i↵jyiyjKij

s.t.
nX

i=1

↵iyi = 0 and ↵i 2
h
0,
c

n

i
i = 1, . . . ,n.

CSCI-GA 2565 28 / 99

4n

Y

IF

I an

Kernel Methods

Given a kernelized ML algorithm (i.e. all (x)’s show up as h (x), (x 0)i),

Can swap out the inner product for a new kernel function.
New kernel may correspond to a very high-dimensional feature space.

Once the kernel matrix is computed, the computational cost depends on number of data
points n, rather than the dimension of feature space d .
Useful when d >> n.
Computing the kernel matrix may still depend on d and the essence of the trick is getting
around this O(d) dependence.

CSCI-GA 2565 29 / 99

Kernel Methods

Given a kernelized ML algorithm (i.e. all (x)’s show up as h (x), (x 0)i),

Can swap out the inner product for a new kernel function.
New kernel may correspond to a very high-dimensional feature space.
Once the kernel matrix is computed, the computational cost depends on number of data
points n, rather than the dimension of feature space d .
Useful when d >> n.

Computing the kernel matrix may still depend on d and the essence of the trick is getting
around this O(d) dependence.

CSCI-GA 2565 29 / 99

Kernel Methods

Given a kernelized ML algorithm (i.e. all (x)’s show up as h (x), (x 0)i),

Can swap out the inner product for a new kernel function.
New kernel may correspond to a very high-dimensional feature space.
Once the kernel matrix is computed, the computational cost depends on number of data
points n, rather than the dimension of feature space d .
Useful when d >> n.
Computing the kernel matrix may still depend on d and the essence of the trick is getting
around this O(d) dependence.

CSCI-GA 2565 29 / 99

Example Kernels

CSCI-GA 2565 30 / 99

Kernels as Similarity Scores

Often useful to think of the k(x ,x 0) as a similarity score for x and x
0.

We can design similarity functions without thinking about the explicit feature map, e.g.
“string kernels”, “graph kernels”.
How do we know that our kernel functions actually correspond to inner products in some
feature space?

CSCI-GA 2565 31 / 99

How to Get Kernels?

Explicitly construct (x) : X! Rd (e.g. monomials) and define k(x ,x 0) = (x)T (x 0).
Directly define the kernel function k(x ,x 0) (“similarity score”), and verify it corresponds to
h (x), (x 0)i for some .

There are many theorems to help us with the second approach.

CSCI-GA 2565 32 / 99

Linear Algebra Review: Positive Semidefinite Matrices

Definition
A real, symmetric matrix M 2 Rn⇥n is positive semidefinite (psd) if for any x 2 Rn,

x
T
Mx > 0.

Theorem
The following conditions are each necessary and sufficient for a symmetric matrix M to be
positive semidefinite:

M can be factorized as M = R
T
R , for some matrix R .

All eigenvalues of M are greater than or equal to 0.

CSCI-GA 2565 33 / 99

Q

000

Positive Definite Kernel

Definition
A symmetric function k :X⇥X! R is a positive definite (pd) kernel on X if for any finite set
{x1, . . . ,xn} 2 X (n 2 N), the kernel matrix on this set

K =
�
k(xi ,xj)

�
i ,j

=

0

B@
k(x1,x1) · · · k(x1,xn)

... . . . · · ·
k(xn,x1) · · · k(xn,xn)

1

CA

is a positive semidefinite matrix.

Symmetric: k(x ,x 0) = k(x 0,x)

The kernel matrix needs to be positive semidefinite for any finite set of points.
Equivalent definition:

Pn
i=1

Pn
j=1↵i↵jk(xi ,xj)> 0 given ↵i 2 R 8i .

CSCI-GA 2565 34 / 99

I

Mercer’s Theorem

Theorem
A symmetric function k(x ,x 0) can be expressed as an inner product

k(x ,x 0) =
⌦
 (x), (x 0)

↵

for some if and only if k(x ,x 0) is positive definite.

Proving a kernel function is positive definite is typically not easy.
But we can construct new kernels from valid kernels.

CSCI-GA 2565 35 / 99

I

Generating New Kernels from Old

Suppose k ,k1,k2 : X⇥X! R are pd kernels. Then so are the following:

knew(x ,x 0) = ↵k(x ,x 0) for ↵> 0 (non-negative scaling)

knew(x ,x 0) = k1(x ,x
0)+k2(x ,x

0) (sum)
knew(x ,x 0) = k1(x ,x

0)k2(x ,x
0) (product)

knew(x ,x 0) = k((x), (x 0)) for any function (·) (recursion)
knew(x ,x 0) = f (x)f (x 0) for any function f (·) (f as 1D feature map)

Lots more theorems to help you construct new kernels from old.

Based on Mark Schmidt’s slides:https://www.cs.ubc.ca/~schmidtm/Courses/540-W19/L12.5.pdf
CSCI-GA 2565 36 / 99

0

https://www.cs.ubc.ca/~schmidtm/Courses/540-W19/L12.5.pdf

Generating New Kernels from Old

Suppose k ,k1,k2 : X⇥X! R are pd kernels. Then so are the following:

knew(x ,x 0) = ↵k(x ,x 0) for ↵> 0 (non-negative scaling)
knew(x ,x 0) = k1(x ,x

0)+k2(x ,x
0) (sum)

knew(x ,x 0) = k1(x ,x
0)k2(x ,x

0) (product)
knew(x ,x 0) = k((x), (x 0)) for any function (·) (recursion)
knew(x ,x 0) = f (x)f (x 0) for any function f (·) (f as 1D feature map)

Lots more theorems to help you construct new kernels from old.

Based on Mark Schmidt’s slides:https://www.cs.ubc.ca/~schmidtm/Courses/540-W19/L12.5.pdf
CSCI-GA 2565 36 / 99

https://www.cs.ubc.ca/~schmidtm/Courses/540-W19/L12.5.pdf

Generating New Kernels from Old

Suppose k ,k1,k2 : X⇥X! R are pd kernels. Then so are the following:

knew(x ,x 0) = ↵k(x ,x 0) for ↵> 0 (non-negative scaling)
knew(x ,x 0) = k1(x ,x

0)+k2(x ,x
0) (sum)

knew(x ,x 0) = k1(x ,x
0)k2(x ,x

0) (product)

knew(x ,x 0) = k((x), (x 0)) for any function (·) (recursion)
knew(x ,x 0) = f (x)f (x 0) for any function f (·) (f as 1D feature map)

Lots more theorems to help you construct new kernels from old.

Based on Mark Schmidt’s slides:https://www.cs.ubc.ca/~schmidtm/Courses/540-W19/L12.5.pdf
CSCI-GA 2565 36 / 99

https://www.cs.ubc.ca/~schmidtm/Courses/540-W19/L12.5.pdf

Generating New Kernels from Old

Suppose k ,k1,k2 : X⇥X! R are pd kernels. Then so are the following:

knew(x ,x 0) = ↵k(x ,x 0) for ↵> 0 (non-negative scaling)
knew(x ,x 0) = k1(x ,x

0)+k2(x ,x
0) (sum)

knew(x ,x 0) = k1(x ,x
0)k2(x ,x

0) (product)
knew(x ,x 0) = k((x), (x 0)) for any function (·) (recursion)

knew(x ,x 0) = f (x)f (x 0) for any function f (·) (f as 1D feature map)

Lots more theorems to help you construct new kernels from old.

Based on Mark Schmidt’s slides:https://www.cs.ubc.ca/~schmidtm/Courses/540-W19/L12.5.pdf
CSCI-GA 2565 36 / 99

we

https://www.cs.ubc.ca/~schmidtm/Courses/540-W19/L12.5.pdf

Generating New Kernels from Old

Suppose k ,k1,k2 : X⇥X! R are pd kernels. Then so are the following:

knew(x ,x 0) = ↵k(x ,x 0) for ↵> 0 (non-negative scaling)
knew(x ,x 0) = k1(x ,x

0)+k2(x ,x
0) (sum)

knew(x ,x 0) = k1(x ,x
0)k2(x ,x

0) (product)
knew(x ,x 0) = k((x), (x 0)) for any function (·) (recursion)
knew(x ,x 0) = f (x)f (x 0) for any function f (·) (f as 1D feature map)

Lots more theorems to help you construct new kernels from old.

Based on Mark Schmidt’s slides:https://www.cs.ubc.ca/~schmidtm/Courses/540-W19/L12.5.pdf
CSCI-GA 2565 36 / 99

https://www.cs.ubc.ca/~schmidtm/Courses/540-W19/L12.5.pdf

Linear Kernel

Input space: X= Rd

Feature space: H = Rd , with standard inner product
Feature map

 (x) = x

Kernel:
k(x ,x 0) = x

T
x
0

CSCI-GA 2565 37 / 99

Quadratic Kernel in Rd

Input space X= Rd

Feature space: H = RD , where D = d +
�d
2
�
⇡ d

2/2.
Feature map:

 (x) = (x1, . . . ,xd ,x
2
1 , . . . ,x

2
d ,
p

2x1x2, . . . ,
p

2xixj , . . .
p

2xd-1xd)
T

Then for 8x ,x 0 2 Rd

k(x ,x 0) =
⌦
 (x), (x 0)

↵

=
⌦
x ,x 0↵+

⌦
x ,x 0↵2

Computation for inner product with explicit mapping: O(d2)

Computation for implicit kernel calculation: O(d).

CSCI-GA 2565 38 / 99

Polynomial Kernel in Rd

Input space X= Rd

Kernel function:
k(x ,x 0) =

�
1+
⌦
x ,x 0↵�M

Corresponds to a feature map with all monomials up to degree M.
For any M, computing the kernel has same computational cost
Cost of explicit inner product computation grows rapidly in M.

CSCI-GA 2565 39 / 99

Radial Basis Function (RBF) / Gaussian Kernel

Input space X= Rd

k(x ,x 0) = exp

✓
-
kx - x

0k2

2�2

◆
,

where �2 is known as the bandwidth parameter.

Probably the most common nonlinear kernel.

Does it act like a similarity score?
Have we departed from our “inner product of feature vector” recipe?

Yes and no: corresponds to an infinite dimensional feature vector

CSCI-GA 2565 40 / 99

O

y
rector

o Its
scalar

Radial Basis Function (RBF) / Gaussian Kernel

Input space X= Rd

k(x ,x 0) = exp

✓
-
kx - x

0k2

2�2

◆
,

where �2 is known as the bandwidth parameter.

Probably the most common nonlinear kernel.
Does it act like a similarity score?

Have we departed from our “inner product of feature vector” recipe?
Yes and no: corresponds to an infinite dimensional feature vector

CSCI-GA 2565 40 / 99

Radial Basis Function (RBF) / Gaussian Kernel

Input space X= Rd

k(x ,x 0) = exp

✓
-
kx - x

0k2

2�2

◆
,

where �2 is known as the bandwidth parameter.

Probably the most common nonlinear kernel.
Does it act like a similarity score?
Have we departed from our “inner product of feature vector” recipe?

Yes and no: corresponds to an infinite dimensional feature vector

CSCI-GA 2565 40 / 99

Remaining Questions

Our current recipe:
Recognize kernelized problem: (x) only occur in inner products (x)T (x 0)

Pick a kernel function (“similarity score”)
Compute the kernel matrix (n by n where n is the dataset size)
Optimize the model and make predictions by accessing the kernel matrix

Next: When can we apply kernelization?

CSCI-GA 2565 41 / 99

Remaining Questions

Our current recipe:
Recognize kernelized problem: (x) only occur in inner products (x)T (x 0)

Pick a kernel function (“similarity score”)

Compute the kernel matrix (n by n where n is the dataset size)
Optimize the model and make predictions by accessing the kernel matrix

Next: When can we apply kernelization?

CSCI-GA 2565 41 / 99

Remaining Questions

Our current recipe:
Recognize kernelized problem: (x) only occur in inner products (x)T (x 0)

Pick a kernel function (“similarity score”)
Compute the kernel matrix (n by n where n is the dataset size)

Optimize the model and make predictions by accessing the kernel matrix

Next: When can we apply kernelization?

CSCI-GA 2565 41 / 99

Remaining Questions

Our current recipe:
Recognize kernelized problem: (x) only occur in inner products (x)T (x 0)

Pick a kernel function (“similarity score”)
Compute the kernel matrix (n by n where n is the dataset size)
Optimize the model and make predictions by accessing the kernel matrix

Next: When can we apply kernelization?

CSCI-GA 2565 41 / 99

SVM solution is in the “span of the data”

We found the SVM dual problem can be written as:

sup
↵2Rn

nX

i=1

↵i -
1
2

nX

i ,j=1

↵i↵jyiyjx
T
j xi

s.t.
nX

i=1

↵iyi = 0

↵i 2
h
0,
c

n

i
i = 1, . . . ,n.

Given dual solution ↵⇤, primal solution is w
⇤=

Pn
i=1↵

⇤
i yixi .

Notice: w
⇤ is a linear combination of training inputs x1, . . . ,xn.

We refer to this phenomenon by saying “w⇤ is in the span of the data.”
Or in math, w⇤ 2 span(x1, . . . ,xn).

CSCI-GA 2565 42 / 99

DID

SVM solution is in the “span of the data”

We found the SVM dual problem can be written as:

sup
↵2Rn

nX

i=1

↵i -
1
2

nX

i ,j=1

↵i↵jyiyjx
T
j xi

s.t.
nX

i=1

↵iyi = 0

↵i 2
h
0,
c

n

i
i = 1, . . . ,n.

Given dual solution ↵⇤, primal solution is w
⇤=

Pn
i=1↵

⇤
i yixi .

Notice: w
⇤ is a linear combination of training inputs x1, . . . ,xn.

We refer to this phenomenon by saying “w⇤ is in the span of the data.”
Or in math, w⇤ 2 span(x1, . . . ,xn).

CSCI-GA 2565 42 / 99

SVM solution is in the “span of the data”

We found the SVM dual problem can be written as:

sup
↵2Rn

nX

i=1

↵i -
1
2

nX

i ,j=1

↵i↵jyiyjx
T
j xi

s.t.
nX

i=1

↵iyi = 0

↵i 2
h
0,
c

n

i
i = 1, . . . ,n.

Given dual solution ↵⇤, primal solution is w
⇤=

Pn
i=1↵

⇤
i yixi .

Notice: w
⇤ is a linear combination of training inputs x1, . . . ,xn.

We refer to this phenomenon by saying “w⇤ is in the span of the data.”
Or in math, w⇤ 2 span(x1, . . . ,xn).

CSCI-GA 2565 42 / 99

o

Ridge regression solution is in the “span of the data”

The ridge regression solution for regularization parameter �> 0 is

w
⇤ = argmin

w2Rd

1
n

nX

i=1

�
w

T
xi - yi

 2
+�kwk2

2.

This has a closed form solution:

w
⇤ =

�
X

T
X +�I

�-1
X

T
y ,

where X is the design matrix, with x1, . . . ,xn as rows.

CSCI-GA 2565 43 / 99

00Yeah resularization

Ridge regression solution is in the “span of the data”

The ridge regression solution for regularization parameter �> 0 is

w
⇤ = argmin

w2Rd

1
n

nX

i=1

�
w

T
xi - yi

 2
+�kwk2

2.

This has a closed form solution:

w
⇤ =

�
X

T
X +�I

�-1
X

T
y ,

where X is the design matrix, with x1, . . . ,xn as rows.

CSCI-GA 2565 43 / 99

Ridge regression solution is in the “span of the data”

Rearranging w
⇤ =

�
X

T
X +�I

�-1
X

T
y , we can show that:

w
⇤ = X

T

✓
1
�
y -

1
�
Xw

⇤
◆

| {z }
↵⇤

= X
T↵⇤ =

nX

i=1

↵⇤
i xi .

So w
⇤ is in the span of the data.
i.e. w

⇤ 2 span(x1, . . . ,xn)

CSCI-GA 2565 44 / 99

Ridge regression solution is in the “span of the data”

Rearranging w
⇤ =

�
X

T
X +�I

�-1
X

T
y , we can show that:

w
⇤ = X

T

✓
1
�
y -

1
�
Xw

⇤
◆

| {z }
↵⇤

= X
T↵⇤ =

nX

i=1

↵⇤
i xi .

So w
⇤ is in the span of the data.
i.e. w

⇤ 2 span(x1, . . . ,xn)

CSCI-GA 2565 44 / 99

At

If solution is in the span of the data, we can reparameterize

The ridge regression solution for regularization parameter �> 0 is

w
⇤ = argmin

w2Rd

1
n

nX

i=1

�
w

T
xi - yi

 2
+�kwk2

2.

We now know that w⇤ 2 span(x1, . . . ,xn)⇢ Rd .
So rather than minimizing over all of Rd , we can minimize over span(x1, . . . ,xn).

w
⇤ = argmin

w2span(x1,...,xn)

1
n

nX

i=1

�
w

T
xi - yi

 2
+�kwk2

2.

Let’s reparameterize the objective by replacing w as a linear combination of the inputs.

CSCI-GA 2565 45 / 99

If solution is in the span of the data, we can reparameterize

The ridge regression solution for regularization parameter �> 0 is

w
⇤ = argmin

w2Rd

1
n

nX

i=1

�
w

T
xi - yi

 2
+�kwk2

2.

We now know that w⇤ 2 span(x1, . . . ,xn)⇢ Rd .
So rather than minimizing over all of Rd , we can minimize over span(x1, . . . ,xn).

w
⇤ = argmin

w2span(x1,...,xn)

1
n

nX

i=1

�
w

T
xi - yi

 2
+�kwk2

2.

Let’s reparameterize the objective by replacing w as a linear combination of the inputs.

CSCI-GA 2565 45 / 99

If solution is in the span of the data, we can reparameterize

The ridge regression solution for regularization parameter �> 0 is

w
⇤ = argmin

w2Rd

1
n

nX

i=1

�
w

T
xi - yi

 2
+�kwk2

2.

We now know that w⇤ 2 span(x1, . . . ,xn)⇢ Rd .
So rather than minimizing over all of Rd , we can minimize over span(x1, . . . ,xn).

w
⇤ = argmin

w2span(x1,...,xn)

1
n

nX

i=1

�
w

T
xi - yi

 2
+�kwk2

2.

Let’s reparameterize the objective by replacing w as a linear combination of the inputs.

CSCI-GA 2565 45 / 99

If solution is in the span of the data, we can reparameterize

Note that for any w 2 span(x1, . . . ,xn), we have w = X
T↵, for some ↵ 2 Rn.

So let’s replace w with X
T↵ in our optimization problem:

[original] w⇤ = argmin
w2Rd

1
n

nX

i=1

�
w

T
xi - yi

 2
+�kwk2

2

[reparameterized] ↵⇤ = argmin
↵2Rn

1
n

nX

i=1

⌦�
X

T↵
�T

xi - yi

↵2
+�kXT↵k2

2.

To get w⇤ from the reparameterized optimization problem, we just take w
⇤ = X

T↵⇤.
We changed the dimension of our optimization variable from d to n. Is this useful?

CSCI-GA 2565 46 / 99

If solution is in the span of the data, we can reparameterize

Note that for any w 2 span(x1, . . . ,xn), we have w = X
T↵, for some ↵ 2 Rn.

So let’s replace w with X
T↵ in our optimization problem:

[original] w⇤ = argmin
w2Rd

1
n

nX

i=1

�
w

T
xi - yi

 2
+�kwk2

2

[reparameterized] ↵⇤ = argmin
↵2Rn

1
n

nX

i=1

⌦�
X

T↵
�T

xi - yi

↵2
+�kXT↵k2

2.

To get w⇤ from the reparameterized optimization problem, we just take w
⇤ = X

T↵⇤.
We changed the dimension of our optimization variable from d to n. Is this useful?

CSCI-GA 2565 46 / 99

0

Consider very large feature spaces

Suppose we have a 300-million dimension feature space [very large]
(e.g. using high order monomial interaction terms as features, as described last
lecture)

Suppose we have a training set of 300,000 examples [fairly large]
In the original formulation, we solve a 300-million dimension optimization problem.
In the reparameterized formulation, we solve a 300,000-dimension optimization problem.
This is why we care about when the solution is in the span of the data.
This reparameterization is interesting when we have more features than data (d � n).

CSCI-GA 2565 47 / 99

More General

For SVM and ridge regression, we found that the solution is in the span of the data.
The Representer Theorem shows that this “span of the data” result occurs far more
generally.

CSCI-GA 2565 48 / 99

The Representer Theorem (Optional)

Generalized objective:

w
⇤ = argmin

w2H

R (kwk)+L(hw ,x1i , . . . ,hw ,xni)

Representer theorem tells us we can look for w⇤ in the span of the data:

w
⇤ = argmin

w2span(x1,...,xn)
R (kwk)+L(hw ,x1i , . . . ,hw ,xni) .

So we can reparameterize as before:

↵⇤ = argmin
↵2Rn

R

 �����

nX

i=1

↵ixi

�����

!

+L

 *
nX

i=1

↵ixi ,x1

+

, . . . ,

*
nX

i=1

↵ixi ,xn

+!

.

Our reparameterization trick applies much more broadly than SVM and ridge.

CSCI-GA 2565 49 / 99

IE

Summary

We formualte the kernelized verions of SVM and ridge regression.

Many other algorithms can be kernelized.
Our principled tool for kernelization is reparameterization by the representer theorem.
Representer theorem says that all norm-regularized linear models can be kernelized.
Once kernelized, we can apply the kernel trick: doesn’t need to represent �(x) explicitly.

CSCI-GA 2565 50 / 99

Summary

We formualte the kernelized verions of SVM and ridge regression.
Many other algorithms can be kernelized.

Our principled tool for kernelization is reparameterization by the representer theorem.
Representer theorem says that all norm-regularized linear models can be kernelized.
Once kernelized, we can apply the kernel trick: doesn’t need to represent �(x) explicitly.

CSCI-GA 2565 50 / 99

Summary

We formualte the kernelized verions of SVM and ridge regression.
Many other algorithms can be kernelized.
Our principled tool for kernelization is reparameterization by the representer theorem.

Representer theorem says that all norm-regularized linear models can be kernelized.
Once kernelized, we can apply the kernel trick: doesn’t need to represent �(x) explicitly.

CSCI-GA 2565 50 / 99

Summary

We formualte the kernelized verions of SVM and ridge regression.
Many other algorithms can be kernelized.
Our principled tool for kernelization is reparameterization by the representer theorem.
Representer theorem says that all norm-regularized linear models can be kernelized.

Once kernelized, we can apply the kernel trick: doesn’t need to represent �(x) explicitly.

CSCI-GA 2565 50 / 99

Summary

We formualte the kernelized verions of SVM and ridge regression.
Many other algorithms can be kernelized.
Our principled tool for kernelization is reparameterization by the representer theorem.
Representer theorem says that all norm-regularized linear models can be kernelized.
Once kernelized, we can apply the kernel trick: doesn’t need to represent �(x) explicitly.

CSCI-GA 2565 50 / 99

Probabilistic Modeling: Overview

CSCI-GA 2565 51 / 99

Why probabilistic modeling?

A unified framework that covers many models, e.g., linear regression, logistic regression
Learning as statistical inference
Principled ways to incorporate your belief on the data generating distribution (inductive
biases)

CSCI-GA 2565 52 / 99

Two ways of generating data

Two ways to model how the data is generated:

Conditional: p(y | x)
Generative: p(x ,y)

How to estimate the parameters of our model? Maximum likelihood estimation.
Compare and contrast conditional and generative models.

CSCI-GA 2565 53 / 99

Two ways of generating data

Two ways to model how the data is generated:
Conditional: p(y | x)
Generative: p(x ,y)

How to estimate the parameters of our model? Maximum likelihood estimation.
Compare and contrast conditional and generative models.

CSCI-GA 2565 53 / 99

classification

Two ways of generating data

Two ways to model how the data is generated:
Conditional: p(y | x)
Generative: p(x ,y)

How to estimate the parameters of our model? Maximum likelihood estimation.

Compare and contrast conditional and generative models.

CSCI-GA 2565 53 / 99

Taximizelikelined
through finding

the best parameters

Two ways of generating data

Two ways to model how the data is generated:
Conditional: p(y | x)
Generative: p(x ,y)

How to estimate the parameters of our model? Maximum likelihood estimation.
Compare and contrast conditional and generative models.

CSCI-GA 2565 53 / 99

Conditional models

CSCI-GA 2565 54 / 99

Linear regression

Linear regression is one of the most important methods in machine learning and statistics.

Goal: Predict a real-valued target y (also called response) from a vector of features x (also
called covariates).

Examples:

Predicting house price given location, condition, build year etc.
Predicting medical cost of a person given age, sex, region, BMI etc.
Predicting age of a person based on their photos.

CSCI-GA 2565 55 / 99

Linear regression

Linear regression is one of the most important methods in machine learning and statistics.

Goal: Predict a real-valued target y (also called response) from a vector of features x (also
called covariates).

Examples:

Predicting house price given location, condition, build year etc.
Predicting medical cost of a person given age, sex, region, BMI etc.
Predicting age of a person based on their photos.

CSCI-GA 2565 55 / 99

Problem setup

Data Training examples D= {(x(n),y (n))}Nn=1, where x 2 Rd and y 2 R.

Model A linear function h (parametrized by ✓) to predict y from x :

h(x) =
dX

i=0

✓ixi = ✓
T
x , (1)

where ✓ 2 Rd are the parameters (also called weights).

Note that

We incorporate the bias term (also called the intercept term) into x (i.e. x0 = 1).
We use superscript to denote the example id and subscript to denote the dimension id.

CSCI-GA 2565 56 / 99

Problem setup

Data Training examples D= {(x(n),y (n))}Nn=1, where x 2 Rd and y 2 R.
Model A linear function h (parametrized by ✓) to predict y from x :

h(x) =
dX

i=0

✓ixi = ✓
T
x , (1)

where ✓ 2 Rd are the parameters (also called weights).

Note that

We incorporate the bias term (also called the intercept term) into x (i.e. x0 = 1).
We use superscript to denote the example id and subscript to denote the dimension id.

CSCI-GA 2565 56 / 99

T

Problem setup

Data Training examples D= {(x(n),y (n))}Nn=1, where x 2 Rd and y 2 R.
Model A linear function h (parametrized by ✓) to predict y from x :

h(x) =
dX

i=0

✓ixi = ✓
T
x , (1)

where ✓ 2 Rd are the parameters (also called weights).

Note that

We incorporate the bias term (also called the intercept term) into x (i.e. x0 = 1).
We use superscript to denote the example id and subscript to denote the dimension id.

CSCI-GA 2565 56 / 99

Parameter estimation

Loss function We estimate ✓ by minimizing the squared loss (the least square method):

J(✓) =
1
N

NX

n=1

⇣
y
(n)-✓T x(n)

⌘2
. (empirical risk) (2)

Matrix form Let X 2 RN⇥d be the design matrix whose rows are input features.
Let y 2 RN be the vector of all targets.
We want to solve

✓̂= argmin
✓

(X✓- y)T (X✓- y). (3)

Solution Closed-form solution: ✓̂= (XT
X)-1

X
T y.

Review questions
Derive the solution for linear regression.
What if XT

X is not invertible?

CSCI-GA 2565 57 / 99

Parameter estimation

Loss function We estimate ✓ by minimizing the squared loss (the least square method):

J(✓) =
1
N

NX

n=1

⇣
y
(n)-✓T x(n)

⌘2
. (empirical risk) (2)

Matrix form Let X 2 RN⇥d be the design matrix whose rows are input features.
Let y 2 RN be the vector of all targets.

We want to solve

✓̂= argmin
✓

(X✓- y)T (X✓- y). (3)

Solution Closed-form solution: ✓̂= (XT
X)-1

X
T y.

Review questions
Derive the solution for linear regression.
What if XT

X is not invertible?

CSCI-GA 2565 57 / 99

000

Parameter estimation

Loss function We estimate ✓ by minimizing the squared loss (the least square method):

J(✓) =
1
N

NX

n=1

⇣
y
(n)-✓T x(n)

⌘2
. (empirical risk) (2)

Matrix form Let X 2 RN⇥d be the design matrix whose rows are input features.
Let y 2 RN be the vector of all targets.
We want to solve

✓̂= argmin
✓

(X✓- y)T (X✓- y). (3)

Solution Closed-form solution: ✓̂= (XT
X)-1

X
T y.

Review questions
Derive the solution for linear regression.
What if XT

X is not invertible?

CSCI-GA 2565 57 / 99

0

N'd xd

Parameter estimation

Loss function We estimate ✓ by minimizing the squared loss (the least square method):

J(✓) =
1
N

NX

n=1

⇣
y
(n)-✓T x(n)

⌘2
. (empirical risk) (2)

Matrix form Let X 2 RN⇥d be the design matrix whose rows are input features.
Let y 2 RN be the vector of all targets.
We want to solve

✓̂= argmin
✓

(X✓- y)T (X✓- y). (3)

Solution Closed-form solution: ✓̂= (XT
X)-1

X
T y.

Review questions
Derive the solution for linear regression.
What if XT

X is not invertible?

CSCI-GA 2565 57 / 99

Parameter estimation

Loss function We estimate ✓ by minimizing the squared loss (the least square method):

J(✓) =
1
N

NX

n=1

⇣
y
(n)-✓T x(n)

⌘2
. (empirical risk) (2)

Matrix form Let X 2 RN⇥d be the design matrix whose rows are input features.
Let y 2 RN be the vector of all targets.
We want to solve

✓̂= argmin
✓

(X✓- y)T (X✓- y). (3)

Solution Closed-form solution: ✓̂= (XT
X)-1

X
T y.

Review questions
Derive the solution for linear regression.
What if XT

X is not invertible?
CSCI-GA 2565 57 / 99

square

Review

We’ve seen

Linear regression: response is a linear function of the inputs
Estimate parameters by minimize the squared loss

But...

Why squared loss is a reasonable choice for regression problems?
What assumptions are we making on the data? (inductive bias)

Next,

Derive linear regression from a probabilistic modeling perspective.

CSCI-GA 2565 58 / 99

Review

We’ve seen

Linear regression: response is a linear function of the inputs
Estimate parameters by minimize the squared loss

But...

Why squared loss is a reasonable choice for regression problems?
What assumptions are we making on the data? (inductive bias)

Next,

Derive linear regression from a probabilistic modeling perspective.

CSCI-GA 2565 58 / 99

Review

We’ve seen

Linear regression: response is a linear function of the inputs
Estimate parameters by minimize the squared loss

But...

Why squared loss is a reasonable choice for regression problems?
What assumptions are we making on the data? (inductive bias)

Next,

Derive linear regression from a probabilistic modeling perspective.

CSCI-GA 2565 58 / 99

Assumptions in linear regression

x and y are related through a linear function:

y = ✓T x +✏, (4)

where ✏ is the residual error capturing all unmodeled effects (e.g., noise).
The errors are distributed iid (independently and identically distributed):

✏ ⇠N(0,�2). (5)

What’s the distribution of Y | X = x?

p(y | x ;✓) =N(✓T x ,�2). (6)

Imagine putting a Gaussian bump around the output of the linear predictor.

CSCI-GA 2565 59 / 99

Assumptions in linear regression

x and y are related through a linear function:

y = ✓T x +✏, (4)

where ✏ is the residual error capturing all unmodeled effects (e.g., noise).

The errors are distributed iid (independently and identically distributed):

✏ ⇠N(0,�2). (5)

What’s the distribution of Y | X = x?

p(y | x ;✓) =N(✓T x ,�2). (6)

Imagine putting a Gaussian bump around the output of the linear predictor.

CSCI-GA 2565 59 / 99

Assumptions in linear regression

x and y are related through a linear function:

y = ✓T x +✏, (4)

where ✏ is the residual error capturing all unmodeled effects (e.g., noise).
The errors are distributed iid (independently and identically distributed):

✏ ⇠N(0,�2). (5)

What’s the distribution of Y | X = x?

p(y | x ;✓) =N(✓T x ,�2). (6)

Imagine putting a Gaussian bump around the output of the linear predictor.

CSCI-GA 2565 59 / 99

0
residual error

f
mean variance

Assumptions in linear regression

x and y are related through a linear function:

y = ✓T x +✏, (4)

where ✏ is the residual error capturing all unmodeled effects (e.g., noise).
The errors are distributed iid (independently and identically distributed):

✏ ⇠N(0,�2). (5)

What’s the distribution of Y | X = x?

p(y | x ;✓) =N(✓T x ,�2). (6)

Imagine putting a Gaussian bump around the output of the linear predictor.

CSCI-GA 2565 59 / 99

0

FEET

Assumptions in linear regression

x and y are related through a linear function:

y = ✓T x +✏, (4)

where ✏ is the residual error capturing all unmodeled effects (e.g., noise).
The errors are distributed iid (independently and identically distributed):

✏ ⇠N(0,�2). (5)

What’s the distribution of Y | X = x?

p(y | x ;✓) =N(✓T x ,�2). (6)

Imagine putting a Gaussian bump around the output of the linear predictor.

CSCI-GA 2565 59 / 99

Yin

Assumptions in linear regression

x and y are related through a linear function:

y = ✓T x +✏, (4)

where ✏ is the residual error capturing all unmodeled effects (e.g., noise).
The errors are distributed iid (independently and identically distributed):

✏ ⇠N(0,�2). (5)

What’s the distribution of Y | X = x?

p(y | x ;✓) =N(✓T x ,�2). (6)

Imagine putting a Gaussian bump around the output of the linear predictor.

CSCI-GA 2565 59 / 99

Maximum likelihood estimation (MLE)

Given a probabilistic model and a dataset D, how to estimate the model parameters ✓?

The maximum likelihood principle says that we should maximize the (conditional) likelihood
of the data:

L(✓)
def
= p(D;✓) (7)

=
NY

n=1

p(y (n) | x(n);✓). (examples are distributed iid)

(8)

In practice, we maximize the log likelihood `(✓), or equivalently, minimize the negative log
likelihood (NLL).

CSCI-GA 2565 60 / 99

0

Maximum likelihood estimation (MLE)

Given a probabilistic model and a dataset D, how to estimate the model parameters ✓?

The maximum likelihood principle says that we should maximize the (conditional) likelihood
of the data:

L(✓)
def
= p(D;✓) (7)

=
NY

n=1

p(y (n) | x(n);✓). (examples are distributed iid)

(8)

In practice, we maximize the log likelihood `(✓), or equivalently, minimize the negative log
likelihood (NLL).

CSCI-GA 2565 60 / 99

Q

Maximum likelihood estimation (MLE)

Given a probabilistic model and a dataset D, how to estimate the model parameters ✓?

The maximum likelihood principle says that we should maximize the (conditional) likelihood
of the data:

L(✓)
def
= p(D;✓) (7)

=
NY

n=1

p(y (n) | x(n);✓). (examples are distributed iid) (8)

In practice, we maximize the log likelihood `(✓), or equivalently, minimize the negative log
likelihood (NLL).

CSCI-GA 2565 60 / 99

Id
is a function of a

Y YIX

Maximum likelihood estimation (MLE)

Given a probabilistic model and a dataset D, how to estimate the model parameters ✓?

The maximum likelihood principle says that we should maximize the (conditional) likelihood
of the data:

L(✓)
def
= p(D;✓) (7)

=
NY

n=1

p(y (n) | x(n);✓). (examples are distributed iid) (8)

In practice, we maximize the log likelihood `(✓), or equivalently, minimize the negative log
likelihood (NLL).

CSCI-GA 2565 60 / 99

1091
I logply

MLE for linear regression

Let’s find the MLE solution for our model. Recall that Y | X = x ⇠N(✓T x ,�2).

CSCI-GA 2565 61 / 99

4 jul 10 log 10

log II pry D

I log ply
n
0 N 01,0

N log T y 0 1412
divide by N c MSE

Gradient of the likelihood

Recall that we obtained the normal equation by setting the derivative of the squared loss to
zero. Now let’s compute the derivative of the likelihood w.r.t. the parameters.

CSCI-GA 2565 62 / 99

110 FY
E Cy 04

y jin
EreaiÉ

Review

We’ve seen

Linear regression assumes that Y | X = x follows a Gaussian distribution
MLE of linear regression is equivalent to the least square method

However,

Sometimes Gaussian distribution is not a reasonable assumption, e.g., classification
Can we use the same modeling approach for other prediction tasks?

Next,

Derive logistic regression for classification.

CSCI-GA 2565 63 / 99

00

Review

We’ve seen

Linear regression assumes that Y | X = x follows a Gaussian distribution
MLE of linear regression is equivalent to the least square method

However,

Sometimes Gaussian distribution is not a reasonable assumption, e.g., classification
Can we use the same modeling approach for other prediction tasks?

Next,

Derive logistic regression for classification.

CSCI-GA 2565 63 / 99

P

Review

We’ve seen

Linear regression assumes that Y | X = x follows a Gaussian distribution
MLE of linear regression is equivalent to the least square method

However,

Sometimes Gaussian distribution is not a reasonable assumption, e.g., classification
Can we use the same modeling approach for other prediction tasks?

Next,

Derive logistic regression for classification.

CSCI-GA 2565 63 / 99

Assumptions in logistic regression

Consider binary classification where Y 2 {0,1}. What should be the distribution Y | X = x?

We model p(y | x) as a Bernoulli distribution:

p(y | x) = h(x)y (1-h(x))1-y . (9)

How should we parameterize h(x)?

What is p(y = 1 | x) and p(y = 0 | x)? h(x) 2 (0,1).
What is the mean of Y | X = x? h(x). (Think how we parameterize the mean in linear
regression)
Need a function f to map the linear predictor ✓T x in R to (0,1):

f (⌘) =
1

1+ e-⌘
logistic function (10)

CSCI-GA 2565 64 / 99

Assumptions in logistic regression

Consider binary classification where Y 2 {0,1}. What should be the distribution Y | X = x?

We model p(y | x) as a Bernoulli distribution:

p(y | x) = h(x)y (1-h(x))1-y . (9)

How should we parameterize h(x)?

What is p(y = 1 | x) and p(y = 0 | x)? h(x) 2 (0,1).
What is the mean of Y | X = x? h(x). (Think how we parameterize the mean in linear
regression)
Need a function f to map the linear predictor ✓T x in R to (0,1):

f (⌘) =
1

1+ e-⌘
logistic function (10)

CSCI-GA 2565 64 / 99

prob
fhead

prob of tail

hex if y
1 hex if y o

Assumptions in logistic regression

Consider binary classification where Y 2 {0,1}. What should be the distribution Y | X = x?

We model p(y | x) as a Bernoulli distribution:

p(y | x) = h(x)y (1-h(x))1-y . (9)

How should we parameterize h(x)?

What is p(y = 1 | x) and p(y = 0 | x)? h(x) 2 (0,1).
What is the mean of Y | X = x? h(x). (Think how we parameterize the mean in linear
regression)
Need a function f to map the linear predictor ✓T x in R to (0,1):

f (⌘) =
1

1+ e-⌘
logistic function (10)

CSCI-GA 2565 64 / 99

0

prob of 9 1

Assumptions in logistic regression

Consider binary classification where Y 2 {0,1}. What should be the distribution Y | X = x?

We model p(y | x) as a Bernoulli distribution:

p(y | x) = h(x)y (1-h(x))1-y . (9)

How should we parameterize h(x)?

What is p(y = 1 | x) and p(y = 0 | x)?

h(x) 2 (0,1).
What is the mean of Y | X = x? h(x). (Think how we parameterize the mean in linear
regression)
Need a function f to map the linear predictor ✓T x in R to (0,1):

f (⌘) =
1

1+ e-⌘
logistic function (10)

CSCI-GA 2565 64 / 99

I to

Assumptions in logistic regression

Consider binary classification where Y 2 {0,1}. What should be the distribution Y | X = x?

We model p(y | x) as a Bernoulli distribution:

p(y | x) = h(x)y (1-h(x))1-y . (9)

How should we parameterize h(x)?

What is p(y = 1 | x) and p(y = 0 | x)? h(x) 2 (0,1).

What is the mean of Y | X = x? h(x). (Think how we parameterize the mean in linear
regression)
Need a function f to map the linear predictor ✓T x in R to (0,1):

f (⌘) =
1

1+ e-⌘
logistic function (10)

CSCI-GA 2565 64 / 99

Assumptions in logistic regression

Consider binary classification where Y 2 {0,1}. What should be the distribution Y | X = x?

We model p(y | x) as a Bernoulli distribution:

p(y | x) = h(x)y (1-h(x))1-y . (9)

How should we parameterize h(x)?

What is p(y = 1 | x) and p(y = 0 | x)? h(x) 2 (0,1).
What is the mean of Y | X = x?

h(x). (Think how we parameterize the mean in linear
regression)
Need a function f to map the linear predictor ✓T x in R to (0,1):

f (⌘) =
1

1+ e-⌘
logistic function (10)

CSCI-GA 2565 64 / 99

Assumptions in logistic regression

Consider binary classification where Y 2 {0,1}. What should be the distribution Y | X = x?

We model p(y | x) as a Bernoulli distribution:

p(y | x) = h(x)y (1-h(x))1-y . (9)

How should we parameterize h(x)?

What is p(y = 1 | x) and p(y = 0 | x)? h(x) 2 (0,1).
What is the mean of Y | X = x? h(x). (Think how we parameterize the mean in linear
regression)

Need a function f to map the linear predictor ✓T x in R to (0,1):

f (⌘) =
1

1+ e-⌘
logistic function (10)

CSCI-GA 2565 64 / 99

Assumptions in logistic regression

Consider binary classification where Y 2 {0,1}. What should be the distribution Y | X = x?

We model p(y | x) as a Bernoulli distribution:

p(y | x) = h(x)y (1-h(x))1-y . (9)

How should we parameterize h(x)?

What is p(y = 1 | x) and p(y = 0 | x)? h(x) 2 (0,1).
What is the mean of Y | X = x? h(x). (Think how we parameterize the mean in linear
regression)
Need a function f to map the linear predictor ✓T x in R to (0,1):

f (⌘) =
1

1+ e-⌘
logistic function (10)

CSCI-GA 2565 64 / 99

0

Logistic regression

-10 -5 0 5 10

0

0.2

0.4

0.6

0.8

1

⌘

f
(⌘
)

f (⌘) = 1
1+e-⌘

p(y | x) = Bernoulli(f (✓T x)).

When do we have p(y = 1 | x) = 1 and
p(y = 0 | x) = 1?
Exercise: show that the log odds is

log
p(y = 1 | x)

p(y = 0 | x)
= ✓T x . (11)

=) linear decision boundary (12)

How do we extend it to multiclass
classification? (more on this later)

CSCI-GA 2565 65 / 99

Logistic regression

-10 -5 0 5 10

0

0.2

0.4

0.6

0.8

1

⌘

f
(⌘
)

f (⌘) = 1
1+e-⌘

p(y | x) = Bernoulli(f (✓T x)).
When do we have p(y = 1 | x) = 1 and
p(y = 0 | x) = 1?

Exercise: show that the log odds is

log
p(y = 1 | x)

p(y = 0 | x)
= ✓T x . (11)

=) linear decision boundary (12)

How do we extend it to multiclass
classification? (more on this later)

CSCI-GA 2565 65 / 99

Logistic regression

-10 -5 0 5 10

0

0.2

0.4

0.6

0.8

1

⌘

f
(⌘
)

f (⌘) = 1
1+e-⌘

p(y | x) = Bernoulli(f (✓T x)).
When do we have p(y = 1 | x) = 1 and
p(y = 0 | x) = 1?
Exercise: show that the log odds is

log
p(y = 1 | x)

p(y = 0 | x)
= ✓T x . (11)

=) linear decision boundary (12)

How do we extend it to multiclass
classification? (more on this later)

CSCI-GA 2565 65 / 99

Abig

0

ExittFoedecision boundary

Logistic regression

-10 -5 0 5 10

0

0.2

0.4

0.6

0.8

1

⌘

f
(⌘
)

f (⌘) = 1
1+e-⌘

p(y | x) = Bernoulli(f (✓T x)).
When do we have p(y = 1 | x) = 1 and
p(y = 0 | x) = 1?
Exercise: show that the log odds is

log
p(y = 1 | x)

p(y = 0 | x)
= ✓T x . (11)

=) linear decision boundary (12)

How do we extend it to multiclass
classification? (more on this later)

CSCI-GA 2565 65 / 99

