
Kernels & Probabilistic Modeling

Mengye Ren

(Slides credit to David Rosenberg, He He, et al.)

NYU

October 1, 2024

CSCI-GA 2565 1 / 101



Slides

CSCI-GA 2565 2 / 101



Logistics

Today (Oct 1): Kernels and Probabilistic Modeling
Oct 8: Guest Lecture
Oct 15: Homework 2 Due
Oct 15: Legislative Day No Class
Oct 22: Midterm, in class, closed-book, covers everything including Oct 8
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Expressivity of Hypothesis Space

For linear models, to grow the hypothesis spaces, we must add features.
Sometimes we say a larger hypothesis is more expressive.

(can fit more relationships between input and action)
Many ways to create new features.

CSCI-GA 2565 4 / 101



Handling Nonlinearity with Linear Methods
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Example Task: Predicting Health

General Philosophy: Extract every feature that might be relevant
Features for medical diagnosis

height
weight
body temperature
blood pressure
etc...

From Percy Liang’s "Lecture 3" slides from Stanford’s CS221, Autumn 2014.
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Feature Issues for Linear Predictors

For linear predictors, it’s important how features are added
The relation between a feature and the label may not be linear
There may be complex dependence among features

Three types of nonlinearities can cause problems:
Non-monotonicity
Saturation
Interactions between features

From Percy Liang’s "Lecture 3" slides from Stanford’s CS221, Autumn 2014.
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Non-monotonicity: The Issue

Feature Map: ϕ(x) = [1, temperature(x)]
Action: Predict health score y ∈ R (positive is good)
Hypothesis Space F= {affine functions of temperature}
Issue:

Health is not an affine function of temperature.
Affine function can either say

Very high is bad and very low is good, or
Very low is bad and very high is good,
But here, both extremes are bad.

From Percy Liang’s "Lecture 3" slides from Stanford’s CS221, Autumn 2014.
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Non-monotonicity: Solution 1

Transform the input:
ϕ(x) =

[
1, {temperature(x)-37}2

]
,

where 37 is “normal” temperature in Celsius.
Ok, but requires manually-specified domain knowledge

Do we really need that?
What does wTϕ(x) look like?

From Percy Liang’s "Lecture 3" slides from Stanford’s CS221, Autumn 2014.
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Non-monotonicity: Solution 2

Think less, put in more:

ϕ(x) =
[
1, temperature(x), {temperature(x)}2

]
.

More expressive than Solution 1.

General Rule
Features should be simple building blocks that can be pieced together.

From Percy Liang’s "Lecture 3" slides from Stanford’s CS221, Autumn 2014.
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Saturation: The Issue

Setting: Find products relevant to user’s query
Input: Product x
Output: Score the relevance of x to user’s query
Feature Map:

ϕ(x) = [1,N(x)] ,

where N(x) = number of people who bought x .
We expect a monotonic relationship between N(x) and relevance, but also expect
diminishing return.

From Percy Liang’s "Lecture 3" slides from Stanford’s CS221, Autumn 2014.
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Saturation: Solve with nonlinear transform

Smooth nonlinear transformation:

ϕ(x) = [1, log {1+N(x)}]

log (·) good for values with large dynamic ranges
Discretization (a discontinuous transformation):

ϕ(x) = (1[0 ⩽ N(x)< 10],1[10 ⩽ N(x)< 100], . . .)

Small buckets allow quite flexible relationship

From Percy Liang’s "Lecture 3" slides from Stanford’s CS221, Autumn 2014.
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Interactions: The Issue

Input: Patient information x

Action: Health score y ∈ R (higher is better)
Feature Map

ϕ(x) = [height(x),weight(x)]

Issue: It’s the weight relative to the height that’s important.
Impossible to get with these features and a linear classifier.
Need some interaction between height and weight.

From Percy Liang’s "Lecture 3" slides from Stanford’s CS221, Autumn 2014.
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Interactions: Approach 1

Google “ideal weight from height”
J. D. Robinson’s “ideal weight” formula:

weight(kg) = 52+1.9 [height(in)−60]

Make score square deviation between height(h) and ideal weight(w)

f (x) = (52+1.9 [h(x)−60]−w(x))2

WolframAlpha for complicated Mathematics:

f (x) = 3.61h(x)2−3.8h(x)w(x)−235.6h(x)+w(x)2+124w(x)+3844

From Percy Liang’s "Lecture 3" slides from Stanford’s CS221, Autumn 2014.
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Interactions: Approach 2

Just include all second order features:

ϕ(x) =

1,h(x),w(x),h(x)2,w(x)2, h(x)w(x)︸ ︷︷ ︸
cross term


More flexible, no Google, no WolframAlpha.

General Principle
Simpler building blocks replace a single “smart” feature.

From Percy Liang’s "Lecture 3" slides from Stanford’s CS221, Autumn 2014.
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Monomial Interaction Terms

Interaction terms are useful building blocks to model non-linearities in features.

Suppose we start with x = (1,x1, . . . ,xd) ∈ Rd+1 = X.
Consider adding all monomials of degree M: xp1

1 · · ·xpdd , with p1+ · · ·+pd =M.
Monomials with degree 2 in 2D space: x2

1 , x2
2 , x1x2

How many features will we end up with?

(
M+d−1

M
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Big Feature Spaces

This leads to extremely large data matrices

For d = 40 and M = 8, we get 314457495 features.

Very large feature spaces have two potential issues:
Overfitting
Memory and computational costs

Solutions:
Overfitting we handle with regularization.
Kernel methods can help with memory and computational costs when we go to high (or
infinite) dimensional spaces. »»»> 2fb8a69 (05)

CSCI-GA 2565 17 / 101



The Kernel Trick
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SVM with Explicit Feature Map

Let ψ : X→ Rd be a feature map.
The SVM objective (with explicit feature map):

min
w∈Rd

1
2
||w ||2+

c

n

n∑
i=1

max
(
0,1− yiw

Tψ(xi )
)
.

Computation is costly if d is large (e.g. with high-degree monomials)
Last time we mentioned an equivalent optimization problem from Lagrangian duality.
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SVM Dual Problem

By Lagrangian duality, it is equivalent to solve the following dual problem:

maximize
n∑

i=1

αi −
1
2

n∑
i ,j=1

αiαjyiyjψ(xj)
T ψ(xi )

s.t.
n∑

i=1

αiyi = 0 and αi ∈
[
0,
c

n

]
∀i .

If α∗ is an optimal value, then

w∗ =

n∑
i=1

α∗
i yiψ(xi ) and f̂ (x) =

n∑
i=1

α∗
i yiψ(xi )

Tψ(x).

Key observation: ψ(x) only shows up in inner products with another ψ(x ′) for both
training and inference.
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Compute the Inner Products

Consider 2D data. Let’s introduce degree-2 monomials using ψ : R2 → R3.

(x1,x2) 7→ (x2
1 ,
√

2x1x2,x
2
2 ).

The inner product is

ψ(x)Tψ(x ′) = x2
1x

′
1
2
+(

√
2x1x2)(

√
2x ′

1x
′
2)+ x2

2x
′
2
2

= (x1x
′
1)

2+2(x1x
′
1)(x2x

′
2)+(x2x

′
2)

2

= (x1x
′
1 + x2x

′
2)

2

= (xT x ′)2

We can calculate the inner product ψ(x)Tψ(x ′) in the original input space without accessing
the features ψ(x)!
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Compute the Inner Products

Now, consider monomials up to degree-2:

(x1,x2) 7→ (1,
√

2x1,
√

2x2,x
2
1 ,
√

2x1x2,x
2
2 ).

The inner product can be computed by

ψ(x)Tψ(x ′) = (1+ xT x ′)2 (check).

More generally, for features maps producing monomials up to degree-p, we have

ψ(x)Tψ(x ′) = (1+ xT x ′)p.

(Note that the coefficients of each monomial in ψ may not be 1)

Kernel trick: we do not need explicit features to calculate inner products.

Using explicit features: O(dp)

Using implicit computation: O(d)
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Kernel Function
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The Kernel Function

Input space: X

Feature space: H

Feature map: ψ : X→H

The kernel function corresponding to ψ is

k(x ,x ′) =
〈
ψ(x),ψ(x ′)

〉
,

where ⟨·, ·⟩ is the inner product associated with H.

Why introduce this new notation k(x ,x ′)?

We can often evaluate k(x ,x ′) without explicitly computing ψ(x) and ψ(x ′).

When can we use the kernel trick?
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Some Methods Can Be “Kernelized”

Definition
A method is kernelized if every feature vector ψ(x) only appears inside an inner product with
another feature vector ψ(x ′). This applies to both the optimization problem and the prediction
function.

The SVM Dual is a kernelization of the original SVM formulation.

Optimization:

maximize
n∑

i=1

αi −
1
2

n∑
i ,j=1

αiαjyiyjψ(xj)
T ψ(xi )

s.t.
n∑

i=1

αiyi = 0 and αi ∈
[
0,
c

n

]
∀i .

Prediction:
f̂ (x) =

n∑
i=1

α∗
i yiψ(xi )

Tψ(x).
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The Kernel Matrix

Definition
The kernel matrix for a kernel k on x1, . . . ,xn ∈ X is

K =
(
k(xi ,xj)

)
i ,j

=

k(x1,x1) · · · k(x1,xn)
...

. . . · · ·
k(xn,x1) · · · k(xn,xn)

 ∈ Rn×n.

In ML this is also called a Gram matrix, but traditionally (in linear algebra), Gram
matrices are defined without reference to a kernel or feature map.
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The Kernel Matrix

The kernel matrix summarizes all the information we need about the training inputs
x1, . . . ,xn to solve a kernelized optimization problem.
In the kernelized SVM, we can replace ψ(xi )Tψ(xj) with Kij :

maximizeα
n∑

i=1

αi −
1
2

n∑
i ,j=1

αiαjyiyjKij

s.t.
n∑

i=1

αiyi = 0 and αi ∈
[
0,
c

n

]
i = 1, . . . ,n.
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Kernel Methods

Given a kernelized ML algorithm (i.e. all ψ(x)’s show up as ⟨ψ(x),ψ(x ′)⟩),

Can swap out the inner product for a new kernel function.
New kernel may correspond to a very high-dimensional feature space.
Once the kernel matrix is computed, the computational cost depends on number of data
points n, rather than the dimension of feature space d .
Useful when d >> n.
Computing the kernel matrix may still depend on d and the essence of the trick is getting
around this O(d) dependence.

CSCI-GA 2565 28 / 101



Example Kernels
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Kernels as Similarity Scores

Often useful to think of the k(x ,x ′) as a similarity score for x and x ′.
We can design similarity functions without thinking about the explicit feature map, e.g.
“string kernels”, “graph kernels”.
How do we know that our kernel functions actually correspond to inner products in some
feature space?
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How to Get Kernels?

Explicitly construct ψ(x) : X→ Rd (e.g. monomials) and define k(x ,x ′) =ψ(x)Tψ(x ′).
Directly define the kernel function k(x ,x ′) (“similarity score”), and verify it corresponds to
⟨ψ(x),ψ(x ′)⟩ for some ψ.

There are many theorems to help us with the second approach.
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Linear Algebra Review: Positive Semidefinite Matrices

Definition

A real, symmetric matrix M ∈ Rn×n is positive semidefinite (psd) if for any x ∈ Rn,

xTMx ⩾ 0.

Theorem
The following conditions are each necessary and sufficient for a symmetric matrix M to be
positive semidefinite:

M can be factorized as M = RTR , for some matrix R .
All eigenvalues of M are greater than or equal to 0.
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Positive Definite Kernel

Definition
A symmetric function k :X×X→ R is a positive definite (pd) kernel on X if for any finite set
{x1, . . . ,xn} ∈ X (n ∈ N), the kernel matrix on this set

K =
(
k(xi ,xj)

)
i ,j

=

k(x1,x1) · · · k(x1,xn)
...

. . . · · ·
k(xn,x1) · · · k(xn,xn)


is a positive semidefinite matrix.

Symmetric: k(x ,x ′) = k(x ′,x)

The kernel matrix needs to be positive semidefinite for any finite set of points.
Equivalent definition:

∑n
i=1

∑n
j=1αiαjk(xi ,xj)⩾ 0 given αi ∈ R ∀i .
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Mercer’s Theorem

Theorem
A symmetric function k(x ,x ′) can be expressed as an inner product

k(x ,x ′) =
〈
ψ(x),ψ(x ′)

〉
for some ψ if and only if k(x ,x ′) is positive definite.

Proving a kernel function is positive definite is typically not easy.
But we can construct new kernels from valid kernels.
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Generating New Kernels from Old

Suppose k ,k1,k2 : X×X→ R are pd kernels. Then so are the following:

knew(x ,x ′) = αk(x ,x ′) for α⩾ 0 (non-negative scaling)
knew(x ,x ′) = k1(x ,x

′)+k2(x ,x
′) (sum)

knew(x ,x ′) = k1(x ,x
′)k2(x ,x

′) (product)
knew(x ,x ′) = k(ψ(x),ψ(x ′)) for any function ψ(·) (recursion)
knew(x ,x ′) = f (x)f (x ′) for any function f (·) (f as 1D feature map)

Lots more theorems to help you construct new kernels from old.

Based on Mark Schmidt’s slides:https://www.cs.ubc.ca/~schmidtm/Courses/540-W19/L12.5.pdf

CSCI-GA 2565 35 / 101

https://www.cs.ubc.ca/~schmidtm/Courses/540-W19/L12.5.pdf


Linear Kernel

Input space: X= Rd

Feature space: H = Rd , with standard inner product
Feature map

ψ(x) = x

Kernel:
k(x ,x ′) = xT x ′
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Quadratic Kernel in Rd

Input space X= Rd

Feature space: H = RD , where D = d +
(
d
2

)
≈ d2/2.

Feature map:

ψ(x) = (x1, . . . ,xd ,x
2
1 , . . . ,x

2
d ,
√

2x1x2, . . . ,
√

2xixj , . . .
√

2xd−1xd)
T

Then for ∀x ,x ′ ∈ Rd

k(x ,x ′) =
〈
ψ(x),ψ(x ′)

〉
=

〈
x ,x ′〉+〈x ,x ′〉2

Computation for inner product with explicit mapping: O(d2)

Computation for implicit kernel calculation: O(d).
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Quadratic Kernel

k(x ,x ′) =
〈
ψ(x),ψ(x ′)

〉
=

∑
ij

xix
′
j +

∑
ij

x2
i x

′2
j +2

∑
ijkl

xixjx
′
kx

′
l

=
∑
ij

xix
′
j +

∑
ij

xix
′
j

2

=
〈
x ,x ′〉+〈x ,x ′〉2
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Polynomial Kernel in Rd

Input space X= Rd

Kernel function:
k(x ,x ′) =

(
1+
〈
x ,x ′〉)M

Corresponds to a feature map with all monomials up to degree M.
For any M, computing the kernel has same computational cost
Cost of explicit inner product computation grows rapidly in M.
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Radial Basis Function (RBF) / Gaussian Kernel

Input space X= Rd

k(x ,x ′) = exp

(
−
∥x − x ′∥2

2σ2

)
,

where σ2 is known as the bandwidth parameter.

Probably the most common nonlinear kernel.
Does it act like a similarity score?
Have we departed from our “inner product of feature vector” recipe?

Yes and no: corresponds to an infinite dimensional feature vector
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Remaining Questions

Our current recipe:
Recognize kernelized problem: ψ(x) only occur in inner products ψ(x)Tψ(x ′)

Pick a kernel function (“similarity score”)
Compute the kernel matrix (n by n where n is the dataset size)
Optimize the model and make predictions by accessing the kernel matrix

Next: When can we apply kernelization?
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SVM solution is in the “span of the data”

We found the SVM dual problem can be written as:

sup
α∈Rn

n∑
i=1

αi −
1
2

n∑
i ,j=1

αiαjyiyjx
T
j xi

s.t.
n∑

i=1

αiyi = 0

αi ∈
[
0,
c

n

]
i = 1, . . . ,n.

Given dual solution α∗, primal solution is w∗=
∑n

i=1α
∗
i yixi .

Notice: w∗ is a linear combination of training inputs x1, . . . ,xn.
We refer to this phenomenon by saying “w∗ is in the span of the data.”

Or in math, w∗ ∈ span(x1, . . . ,xn).
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Ridge regression solution is in the “span of the data”

The ridge regression solution for regularization parameter λ > 0 is

w∗ = argmin
w∈Rd

1
n

n∑
i=1

{
wT xi − yi

}2
+λ∥w∥2

2.

This has a closed form solution:

w∗ =
(
XTX +λI

)−1
XT y ,

where X is the design matrix, with x1, . . . ,xn as rows.
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Ridge regression solution is in the “span of the data”

Rearranging w∗ =
(
XTX +λI

)−1
XT y , we can show that:

w∗ = XT

(
1
λ
y −

1
λ
Xw∗

)
︸ ︷︷ ︸

α∗

= XTα∗ =

n∑
i=1

α∗
i xi .

So w∗ is in the span of the data.
i.e. w∗ ∈ span(x1, . . . ,xn)
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Derivation

Ridge regression solution: w∗ =
(
XTX +λI

)−1
XT y .

Lemma: If A and A+B are non-singular, then (A+B)−1 = A−1−A−1B(A+B)−1.

Let λI = A, XTX = B ,

w∗ =
(
XTX +λI

)−1
XT y

= (λ−1−λ−1XTX (XTX +λI )−1)XT y

= XTλ−1y −λ−1XTX (XTX +λI )−1XT y

= XTλ−1y −λ−1XTXw∗

= XT

(
1
λ
y −

1
λ
Xw∗

)
︸ ︷︷ ︸

α∗

= XTα∗ =

n∑
i=1

α∗
i xi .
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Matrix Sum Inverse Lemma Derivation

Woodbury identity: (A+UCV )−1 = A−1−A−1U(C−1+VA−1U)−1VA−1

Let C ,V = I , U = B ,

(A+B)−1 = A−1−A−1B(I +A−1B)−1A−1

= A−1−A−1B(A(I +A−1B))−1

= A−1−A−1B(A+B)−1.

CSCI-GA 2565 46 / 101



If solution is in the span of the data, we can reparameterize

The ridge regression solution for regularization parameter λ > 0 is

w∗ = argmin
w∈Rd

1
n

n∑
i=1

{
wT xi − yi

}2
+λ∥w∥2

2.

We now know that w∗ ∈ span(x1, . . . ,xn)⊂ Rd .
So rather than minimizing over all of Rd , we can minimize over span(x1, . . . ,xn).

w∗ = argmin
w∈span(x1,...,xn)

1
n

n∑
i=1

{
wT xi − yi

}2
+λ∥w∥2

2.

Let’s reparameterize the objective by replacing w as a linear combination of the inputs.
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If solution is in the span of the data, we can reparameterize

Note that for any w ∈ span(x1, . . . ,xn), we have w = XTα, for some α ∈ Rn.
So let’s replace w with XTα in our optimization problem:

[original] w∗ = argmin
w∈Rd

1
n

n∑
i=1

{
wT xi − yi

}2
+λ∥w∥2

2

[reparameterized] α∗ = argmin
α∈Rn

1
n

n∑
i=1

{(
XTα

)T
xi − yi

}2
+λ∥XTα∥2

2.

To get w∗ from the reparameterized optimization problem, we just take w∗ = XTα∗.
We changed the dimension of our optimization variable from d to n. Is this useful?
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Consider very large feature spaces

Suppose we have a 300-million dimension feature space [very large]
(e.g. using high order monomial interaction terms as features, as described last
lecture)

Suppose we have a training set of 300,000 examples [fairly large]
In the original formulation, we solve a 300-million dimension optimization problem.
In the reparameterized formulation, we solve a 300,000-dimension optimization problem.
This is why we care about when the solution is in the span of the data.
This reparameterization is interesting when we have more features than data (d ≫ n).
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More General

For SVM and ridge regression, we found that the solution is in the span of the data.
The Representer Theorem shows that this “span of the data” result occurs far more
generally.
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The Representer Theorem (Optional)

Generalized objective:

w∗ = argmin
w∈H

R (∥w∥)+L(⟨w ,x1⟩ , . . . ,⟨w ,xn⟩)

Representer theorem tells us we can look for w∗ in the span of the data:

w∗ = argmin
w∈span(x1,...,xn)

R (∥w∥)+L(⟨w ,x1⟩ , . . . ,⟨w ,xn⟩) .

So we can reparameterize as before:

α∗ = argmin
α∈Rn

R

(∥∥∥∥∥
n∑

i=1

αixi

∥∥∥∥∥
)
+L

(〈
n∑

i=1

αixi ,x1

〉
, . . . ,

〈
n∑

i=1

αixi ,xn

〉)
.

Our reparameterization trick applies much more broadly than SVM and ridge.
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Summary

We formualte the kernelized verions of SVM and ridge regression.
Many other algorithms can be kernelized.
Our principled tool for kernelization is reparameterization by the representer theorem.
Representer theorem says that all norm-regularized linear models can be kernelized.
Once kernelized, we can apply the kernel trick: doesn’t need to represent ϕ(x) explicitly.
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Probabilistic Modeling: Overview
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Why probabilistic modeling?

A unified framework that covers many models, e.g., linear regression, logistic regression
Learning as statistical inference
Principled ways to incorporate your belief on the data generating distribution (inductive
biases)

CSCI-GA 2565 54 / 101



Two ways of generating data

Two ways to model how the data is generated:
Conditional: p(y | x)
Generative: p(x ,y)

How to estimate the parameters of our model? Maximum likelihood estimation.
Compare and contrast conditional and generative models.
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Conditional models
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Linear regression

Linear regression is one of the most important methods in machine learning and statistics.

Goal: Predict a real-valued target y (also called response) from a vector of features x (also
called covariates).

Examples:

Predicting house price given location, condition, build year etc.
Predicting medical cost of a person given age, sex, region, BMI etc.
Predicting age of a person based on their photos.
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Problem setup

Data Training examples D= {(x(n),y (n))}Nn=1, where x ∈ Rd and y ∈ R.
Model A linear function h (parametrized by θ) to predict y from x :

h(x) =
d∑

i=0

θixi = θ
T x , (1)

where θ ∈ Rd are the parameters (also called weights).

Note that

We incorporate the bias term (also called the intercept term) into x (i.e. x0 = 1).
We use superscript to denote the example id and subscript to denote the dimension id.
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Parameter estimation

Loss function We estimate θ by minimizing the squared loss (the least square method):

J(θ) =
1
N

N∑
n=1

(
y (n)−θT x(n)

)2
. (empirical risk) (2)

Matrix form Let X ∈ RN×d be the design matrix whose rows are input features.
Let y ∈ RN be the vector of all targets.
We want to solve

θ̂= argmin
θ

(Xθ− y)T (Xθ− y). (3)

Solution Closed-form solution: θ̂= (XTX )−1XT y.

Review questions
Derive the solution for linear regression.
What if XTX is not invertible?
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Review

We’ve seen

Linear regression: response is a linear function of the inputs
Estimate parameters by minimize the squared loss

But...

Why squared loss is a reasonable choice for regression problems?
What assumptions are we making on the data? (inductive bias)

Next,

Derive linear regression from a probabilistic modeling perspective.
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Assumptions in linear regression

x and y are related through a linear function:

y = θT x +ϵ, (4)

where ϵ is the residual error capturing all unmodeled effects (e.g., noise).
The errors are distributed iid (independently and identically distributed):

ϵ ∼ N(0,σ2). (5)

What’s the distribution of Y | X = x?

p(y | x ;θ) =N(θT x ,σ2). (6)

Imagine putting a Gaussian bump around the output of the linear predictor.
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Maximum likelihood estimation (MLE)

Given a probabilistic model and a dataset D, how to estimate the model parameters θ?

The maximum likelihood principle says that we should maximize the (conditional) likelihood
of the data:

L(θ)
def
= p(D;θ) (7)

=

N∏
n=1

p(y (n) | x(n);θ). (examples are distributed iid) (8)

In practice, we maximize the log likelihood ℓ(θ), or equivalently, minimize the negative log
likelihood (NLL).
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MLE for linear regression

Let’s find the MLE solution for our model. Recall that Y | X = x ∼ N(θT x ,σ2).

ℓ(θ)
def
= logL(θ) (9)

= log
N∏

n=1

p(y (n) | x(n);θ) (10)

=

N∑
n=1

logp(y (n) | x(n);θ) (11)

=

N∑
n=1

log
1√
2πσ

exp

(
−

(
y (n)−θT x(n)

)2
2σ2

)
(12)

= N log
1√
2πσ

−
1

2σ2

N∑
n=1

(
y (n)−θT x(n)

)2
(13)
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Gradient of the likelihood

Recall that we obtained the normal equation by setting the derivative of the squared loss to
zero. Now let’s compute the derivative of the likelihood w.r.t. the parameters.

ℓ(θ) = N log
1√
2πσ

−
1

2σ2

N∑
n=1

(
y (n)−θT x(n)

)2
(14)

∂ℓ

∂θi
=−

1
σ2

N∑
n=1

(y (n)−θT x(n))x
(n)
i . (15)
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Review

We’ve seen

Linear regression assumes that Y | X = x follows a Gaussian distribution
MLE of linear regression is equivalent to the least square method

However,

Sometimes Gaussian distribution is not a reasonable assumption, e.g., classification
Can we use the same modeling approach for other prediction tasks?

Next,

Derive logistic regression for classification.
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Assumptions in logistic regression

Consider binary classification where Y ∈ {0,1}. What should be the distribution Y | X = x?

We model p(y | x) as a Bernoulli distribution:

p(y | x) = h(x)y (1−h(x))1−y . (16)

How should we parameterize h(x)?

What is p(y = 1 | x) and p(y = 0 | x)? h(x) ∈ (0,1).
What is the mean of Y | X = x? h(x). (Think how we parameterize the mean in linear
regression)
Need a function f to map the linear predictor θT x in R to (0,1):

f (η) =
1

1+ e−η
logistic function (17)
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Logistic regression

−10 −5 0 5 10

0

0.2

0.4

0.6

0.8

1

η

f
(η
)

f (η) = 1
1+e−η

p(y | x) = Bernoulli(f (θT x)).
When do we have p(y = 1 | x) = 1 and
p(y = 0 | x) = 1?
Exercise: show that the log odds is

log
p(y = 1 | x)

p(y = 0 | x)
= θT x . (18)

=⇒ linear decision boundary (19)

How do we extend it to multiclass
classification? (more on this later)
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MLE for logistic regression

Similar to linear regression, let’s estimate θ by maximizing the conditional log likelihood.

ℓ(θ) =

N∑
n=1

logp(y (n) | x(n);θ) (20)

=

N∑
n=1

y (n) log f (θT x(n))+(1− y (n)) log(1− f (θT x(n))) (21)

Closed-form solutions are not available.
But, the likelihood is concave—gradient ascent gives us the unique optimal solution.

θ := θ+α∇θℓ(θ). (22)
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Gradient descent for logistic regression

Math review: Chain rule

If z depends on y which itself depends on x , e.g., z = (y(x))2, then dz
dx = dz

dy
dy
dx .

Likelihood for a single example: ℓn = y (n) log f (θT x(n))+(1− y (n)) log(1− f (θT x(n))).

∂ℓn

∂θi
=
∂ℓn

∂f n
∂f n

∂θi
(23)

=

(
y (n)

f n
−

1− y (n)

1− f n

)
∂f n

∂θi

d

dx
lnx =

1
x

(24)

=

(
y (n)

f n
−

1− y (n)

1− f n

)(
f n(1− f n)x

(n)
i

)
Exercise: apply chain rule to

∂f n

∂θi
(25)

= (y (n)− f n)x
(n)
i simplify by algebra (26)

The full gradient is thus ∂ℓ
∂θi

=
∑N

n=1(y
(n)− f (θT x(n)))x

(n)
i .
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A closer look at the gradient

∂ℓ

∂θi
=

N∑
n=1

(y (n)− f (θT x(n)))x
(n)
i (27)

Does this look familiar?
Our derivation for linear regression and logistic regression are quite similar...
Next, a more general family of models.
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Compare linear regression and logistic regression

linear regression logistic regression

Combine the inputs θT x (linear) θT x (linear)
Output real categorical
Conditional distribution Gaussian Bernoulli
Transfer function f (θT x) identity logistic
Mean E(Y | X = x ;θ) f (θT x) f (θT x)

x enters through a linear function.
The main difference between the formulations is due to different conditional distributions.
Can we generalize the idea to handle other output types, e.g., positive integers?
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Construct a generalized regression model

Task: Given x , predict p(y | x)

Modeling:

Choose a parametric family of distributions p(y ;θ) with parameters θ ∈Θ
Choose a transfer function that maps a linear predictor in R to Θ

x︸︷︷︸
∈Rd

7→ wT x︸︷︷︸
∈R

7→ f (wT x)︸ ︷︷ ︸
∈Θ

= θ, (28)

Learning: MLE: θ̂ ∈ argmaxθ logp(D; θ̂)

Inference: For prediction, use x → f (wT x)
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Example: Construct Poisson regression

Say we want to predict the number of people entering a restaurant in New York during lunch
time.

What features would be useful?
What’s a good model for number of visitors (the output distribution)?

Math review: Poisson distribution
Given a random variable Y ∈ 0,1,2, . . . following Poisson(λ), we have

p(Y = k ;λ) =
λke−λ

k!
, (29)

where λ > 0 and E[Y ] = λ.

The Poisson distribution is usually used to model the number of events occurring during a fixed
period of time.
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Example: Construct Poisson regression

We’ve decided that Y | X = x ∼ Poisson(η), what should be the transfer function f ?

x enters linearly:
x 7→ wT x︸︷︷︸

R

7→ λ= f (wT x)︸ ︷︷ ︸
(0,∞)

Standard approach is to take
f (wT x) = exp

(
wT x

)
.

Likelihood of the full dataset D= {(x1,y1), . . . ,(xn,yn)}:

logp(yi ;λi ) = [yi logλi −λi − log (yi !)] (30)

logp(D;w) =

n∑
i=1

[
yi log

[
exp
(
wT xi

)]
− exp

(
wT xi

)
− log (yi !)

]
(31)

=

n∑
i=1

[
yiw

T xi − exp
(
wT xi

)
− log (yi !)

]
(32)
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Example: multinomial logistic regression

How to extend logistic regression to multiclass classification? Output: Bernoulli distribution →
categorical distribution

Parametrized by a probability vector θ= (θ1, . . . ,θk) ∈ Rk :∑k
i=1θi = 1 and θi ⩾ 0 for i = 1, . . . ,k

So ∀y ∈ {1, . . . ,k}, p(y) = θy .
From each x , we compute a linear score function for each class:

x 7→ (⟨w1,x⟩ , . . . ,⟨wk ,x⟩) ∈ Rk ,

What’s the transfer function that maps this Rk vector into a probability?
The softmax function:

(s1, . . . ,sk) 7→ θ=

(
es1∑k
i=1 e

si
, . . . ,

esk∑k
i=1 e

si

)
.
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Review

Recipe for contructing a conditional distribution for prediction:

1 Define input and output space (as for any other model).
2 Choose the output distribution p(y | x ;θ) based on the task
3 Choose the transfer function that maps wT x to a Θ.
4 (The formal family is called “generalized linear models”.)

Learning:
Fit the model by maximum likelihood estimation.
Closed solutions do not exist in general, so we use gradient ascent.
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Generative models

CSCI-GA 2565 77 / 101



Review

We’ve seen

Model the conditional distribution p(y | x ;θ) using generalized linear models.
(Previously) Directly map x to y , e.g., perceptron.

Next,

Model the joint distribution p(x ,y ;θ).
Predict the label for x as argmaxy∈Y p(x ,y ;θ).
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Generative modeling through the Bayes rule

Training:

p(x ,y) = p(x | y)p(y) (33)

Testing:

p(y | x) =
p(x | y)p(y)

p(x)
Bayes rule (34)

argmax
y

p(y | x) = argmax
y

p(x | y)p(y) (35)

CSCI-GA 2565 79 / 101



Naive Bayes (NB) models

Let’s consider binary text classification (e.g., fake vs genuine review) as a motivating example.

Bag-of-words representation of a document

[“machine”, “learning”, “is”, “fun”, “.”]
xi ∈ {0,1}: whether the i-th word in our vocabulary exists in the input

x = [x1,x2, . . . ,xd ] where d = vocabulary size (36)

What’s the probability of a document x?

p(x | y) = p(x1, . . . ,xd | y) (37)
= p(x1 | y)p(x2 | y ,x1)p(x3 | y ,x2,x1) . . .p(xd | y ,xd−1, . . . ,x1) chain rule (38)

=

d∏
i=1

p(xi | y ,x<i ) (39)
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Naive Bayes assumption

Challenge: p(xi | y ,x<i ) is hard to model (and estimate), especially for large i .

Solution:

Naive Bayes assumption
Features are conditionally independent given the label:

p(x | y) =
d∏

i=1

p(xi | y). (40)

A strong assumption in general, but works well in practice.
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Parametrize p(xi | y) and p(y)

For binary xi , assume p(xi | y) follows Bernoulli distributions.

p(xi = 1 | y = 1) = θi ,1, p(xi = 1 | y = 0) = θi ,0. (41)

Similarly,

p(y = 1) = θ0. (42)

Thus,

p(x ,y) = p(x | y)p(y) (43)

= p(y)
d∏

i=1

p(xi | y) NB assumption (44)

= p(y)
d∏

i=1

θi ,y I {xi = 1}+(1−θi ,y )I {xi = 0} (45)

Indicator function I {condition} evaluates to 1 if “condition” is true and 0 otherwise.
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MLE for our NB model

We maximize the likelihood of the data
∏N

n=1 pθ(x
(n),y (n)) (as opposed to the conditional

likelihood we’ve seen before).

∂

∂θj ,1
ℓ=

∂

∂θj ,1

N∑
n=1

d∑
i=1

log
(
θi ,y (n)I

{
x
(n)
i = 1

}
+
(
1−θi ,y (n)

)
I
{
x
(n)
i = 0

})
+ logpθ0(y

(n))

(46)

=
∂

∂θj ,1

N∑
n=1

log
(
θj ,y (n)I

{
x
(n)
j = 1

}
+
(
1−θj ,y (n)

)
I
{
x
(n)
j = 0

})
ignore i ̸= j (47)

=

N∑
n=1

I
{
y (n) = 1∧ x

(n)
j = 1

} 1
θj ,1

+ I
{
y (n) = 1∧ x

(n)
j = 0

} 1
1−θj ,1

ignore y (n) = 0

(48)

Set ∂
∂θj ,1

ℓ to zero:

θj ,1 =

∑N
n=1 I

{
y (n) = 1∧ x

(n)
j = 1

}
∑N

n=1 I
{
y (n) = 1

} (49)

In practice, count words:
number of fake reviews containing “absolutely”

number of fake reviews
Exercise: show that

θj ,0 =

∑N
n=1 I

{
y (n) = 0∧ x

(n)
j = 1

}
∑N

n=1 I
{
y (n) = 0

} ,θ0 =

∑N
n=1 I

{
y (n) = 1

}
N

(50)
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Review

NB assumption: conditionally independent features given the label

Recipe for learning a NB model:

1 Choose p(xi | y), e.g., Bernoulli distribution for binary xi .
2 Choose p(y), often a categorical distribution.
3 Estimate parameters by MLE (same as the strategy for conditional models) .

Next, NB with continuous features.
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NB with continuous inputs

Let’s consider a multiclass classification task with continuous inputs.

p(xi | y) ∼ N(µi ,y ,σ
2
i ,y ) (51)

p(y = k) = θk (52)

Likelihood of the data:

p(D) =

N∏
n=1

p(y (n))
d∏

i=1

p(x
(n)
i | y (n)) (53)

=

N∏
n=1

θy (n)

d∏
i=1

1√
2πσi ,y (n)

exp

(
−

1
2σ2

i ,y (n)

(
x
(n)
i −µi ,y (n)

)2
)

(54)
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MLE for Gaussian NB

Log likelihood:

ℓ=

N∑
n=1

logθy (n) +

N∑
n=1

d∑
i=1

log
1√

2πσi ,y (n)

−
1

2σ2
i ,y (n)

(
x
(n)
i −µi ,y (n)

)2
(55)

(56)

∂

∂µj ,k
ℓ=

∂

∂µj ,k

∑
n:y (n)=k

−
1

2σ2
j ,k

(
x
(n)
j −µj ,k

)2
ignore irrelevant terms (57)

=
∑

n:y (n)=k

1
σ2
j ,k

(
x
(n)
j −µj ,k

)
(58)

Set ∂
∂µj ,k

ℓ to zero:

µj ,k =

∑
n:y (n)=k x

(n)
j∑

n:y (n)=k 1
= sample mean of xj in class k (59)
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MLE for Gaussian NB

Show that

σ2
j ,k =

∑
n:y (n)=k

(
x
(n)
j −µj ,k

)2∑
n:y (n)=k 1

= sample variance of xj in class k (60)

θk =

∑
n:y (n)=k 1
N

(class prior) (61)
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Decision boundary of the Gaussian NB model

Is the Gaussian NB model a linear classifier?

log
p(y = 1 | x)

p(y = 0 | x)
= log

p(x | y = 1)p(y = 1)
p(x | y = 0)p(y = 0)

(62)

= log
θ0

1−θ0
+

d∑
i=1

(
log

√
σ2
i ,0

σ2
i ,1

+

(
(xi −µi ,0)

2

2σ2
i ,0

−
(xi −µi ,1)

2

2σ2
i ,1

))
quadratic

(63)

assume that σi ,0 = σi ,1 = σi , (θ0 = 0.5) (64)

=

d∑
i=1

1
2σ2

i

(
(xi −µi ,0)

2−(xi −µi ,1)
2
)

(65)

=

d∑
i=1

µi ,1−µi ,0
σ2
i

xi +
µ2
i ,0−µ

2
i ,1

2σ2
i

linear

(66)
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Decision boundary of the Gaussian NB model

Assuming the variance of each feature is the same for both classes, we have

log
p(y = 1 | x)

p(y = 0 | x)
=

d∑
i=1

µi ,1−µi ,0
σ2
i

xi +
µ2
i ,0−µ

2
i ,1

2σ2
i

(67)

= θT x where else have we seen it? (68)
(69)

θi =
µi ,1−µi ,0

σ2
i

for i ∈ [1,d ] (70)

θ0 =

d∑
i=1

µ2
i ,0−µ

2
i ,1

2σ2
i

bias term (71)
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Naive Bayes vs logistic regression

logistic regression Gaussian naive Bayes

model type conditional/discriminative generative
parametrization p(y | x) p(x | y), p(y)
assumptions on Y Bernoulli Bernoulli
assumptions on X — Gaussian
decision boundary θTLRx θTGNBx

Given the same training data, is θLR = θGNB?
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Naive Bayes vs logistic regression

Logistic regression and Gaussian naive Bayes converge to the same classifier asymptotically,
assuming the GNB assumption holds.

Data points are generated from Gaussian distributions for each class
Each dimension is independently generated
Shared variance
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Generative vs discriminative classifiers

Ng, A. and Jordan, M. (2002). On discriminative versus generative classifiers: A comparison of
logistic regression and naive Bayes. In Advances in Neural Information Processing Systems 14.

faster convergence

higher asymptotic error

Solid line: naive Bayes; dashed line: logistic regression.
CSCI-GA 2565 92 / 101

https://ai.stanford.edu/~ang/papers/nips01-discriminativegenerative.pdf
https://ai.stanford.edu/~ang/papers/nips01-discriminativegenerative.pdf


Multivariate Gaussian Distribution

What if input dimensions are not independent?
x ∼ N(µ,Σ), a Gaussian (or normal) distribution defined as

p(x) =
1

(2π)d/2|Σ|1/2 exp

[
−

1
2
(x−µ)TΣ−1(x−µ)

]

Mahalanobis distance (x−µk)TΣ−1(x−µk) measures the distance from x to µ.
It normalizes for difference in variances and correlations
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Bivariate Normal

Σ=

(
1 0
0 1

)
Σ= 0.5

(
1 0
0 1

)
Σ= 2

(
1 0
0 1

)
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Bivariate Normal

var(x1) = var(x2) var(x1)> var(x2) var(x1)< var(x2)
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Bivariate Normal

Σ=

(
1 0
0 1

)
Σ=

(
1 0.5

0.5 1

)
Σ=

(
1 0.8

0.8 1

)
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Bivariate Normal

Cov(x1,x2) = 0 Cov(x1,x2)> 0 Cov(x1,x2)< 0
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Gaussian Bayes Classifier

Gaussian Bayes Classifier in its general form assumes that p(x|y) is distributed according
to a multivariate normal (Gaussian) distribution
Multivariate Gaussian distribution:

p(x|t = k) =
1

(2π)d/2|Σk |1/2 exp

[
−

1
2
(x−µk)

TΣ−1
k (x−µk)

]
where |Σk | denotes the determinant of the matrix, and d is dimension of x
Each class k has associated mean vector µk and covariance matrix Σk

Σk has O(d2) parameters - could be hard to estimate
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Example
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Gaussian Bayes Binary Classifier Cases

Different cases on the covariance matrix:

Full covariance: Quadratic decision boundary
Shared covariance: Linear decision boundary
Naive Bayes: Diagonal covariance matrix, quadratic decision boundary

GBC vs. Logistic Regression:

If data is truly Gaussian distributed, then shared covariance = logistic regression.
But logistic regression can learn other distributions.
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Summary

Probabilistic framework of using maximum likelihood as a more principled way to derive
loss functions.
Conditional vs. generative
Generative models the joint distribution, and may lead to more assumption on the data.
When there is very few data point, it may be hard to model the distribution.
Is there an equivalent “regularization” in a probabilistic framework?
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