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Maximum-Margin Separating Hyperplane

For separable data, there are infinitely many zero-error classifiers.

Which one do we pick?

Xz N

(Perceptron does not return a unique solution.)



Maximum-Margin Separating Hyperplane

We prefer the classifier that is farthest from both classes of points
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@ Geometric margin: smallest distance between the hyperplane and the points

@ Maximum margin: largest distance to the closest points

—




Geometric Margin

We want to maximize the distance between the separating hyperplane and the closest points.
—_— —— _

Let's formalize the problem.

Definition (separating hyperplane)

We say @fer i=1,...,nare linearly separable if there is an@ such that

yilwTx; £b)> 0 for all /. The set {v € ]Rd | W @b 0} is called a separating hyperplane.
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Geometric Margin

We want to maximize the distance between the separating hyperplane and the closest points.

Let's formalize the problem.

Definition (separating hyperplane)

.vi) for i=1,...,n are linearly separable if there is a w € R? and b € R such that
vi(wTx;+b)>0 for all i. The set {veRY|w'v+b=0}is called a separating hyperplane.

P

Definition (geometric margin)

Let H be a hyperplane that separates the data (x;,y;) for i =1,...,n. The geometric margin

of this hyperplane is
@1 d(x;, H),

the distance from the hyperplane to the closest data point.




Distance between a Point and a Hyperplane
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Maximize the Margin

We want to maximize the geometric margin:

maximize mind(x;, H).
L’_/’ )I/\_J
Georetric yv\anjfn
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Maximize the Margin

We want to maximize the geometric margin:

maximize mind(x;, H).

Given separating hyperplane H = {vl wliv+b= 0}, we have

\

. yi(w x4 b)
maximize min

iy wllz
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Maximize the Margin

We want to maximize the geometric margin:

maximize mind(x;, H).

Given separating hyperplane H = {vl wliv+b= 0}, we have

o CyilwTx; +b)
maximize m_ln .
[ j (w2

Let's remove the inner minimization problem by

maximize @

. . Tt p .
subject to y’('/ﬁW)ﬂ’j ) > M forall i
—_— o —
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Maximize the Margin

We want to maximize the geometric margin:

maximize mind(x;, H).

Given separating hyperplane H = {vl wliv+b= 0}, we have

o CyilwTx; +b)
maximize min .
i w2

Let's remove the inner minimization problem by

rp‘a%i{n'bze ‘,"/.L »

—_— . T,.

subjelt to y'(jvlwﬁjb) > %for all
[\

Note that the solution is not unique (why?).
—_— —
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Maximize the Margin

Let's fix the norm [|w||> to@to obtain: M . ”L\\ ” ~

maximize
subject to y;(w'x;+b)>1 foralli
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Maximize the Margin

Let’s fix the norm ||w|]> to 1/M to obtain:

1
[[wll2

subject to  yi(w xi+b)>1 for all i

maximize

It's equivalent to solving the minimization problem Z‘) ﬂzj"‘ (0"*

N

xi+b) =1 foralli | Nevg
~Y1

\/\__

e

Note that y;(w ' x; + b) is the (functional) margin. The optimization finds the minimum norm
solution which has a margin of at least 1 on all examples.

minimize
subject to
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Not linearly separable

What if the data is not linearly separable?

For any w, there will be points with a negative margin.
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Soft Margin SVM /X,

minimize
subject to

| L
o If &; :OV_/', it's reduced to hard SVM.TWM 2_ ”Cd “ %
= T

o What does &; > 0 mean? faé)\_ 'y((l") Xq+5)>/’

@ What does C control?

(ch doc{-q ('S /{'/\ecn/(y J’CPsz\’L&_ "—:) 2;(. =0 {-/?“.

/
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Slack Variables
(T
d(xi, H) = y’(v@gb) >hus &; measures the violation by multiples of the geometric

margin:

o & =1: x; lies on the hyperplane

e & =3: x; is past 2 margin width beyond the decision hyperplane

—
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Minimize the Hinge Loss J
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Perceptron Loss

Ux,y,w)= max(O,

—

;ﬁ&ﬁ‘/&

N

O l Mﬁ‘é;WTX

If we do ERM with this loss function, what happens?
e CSCI-GA 2565 13 /72



Hinge Loss pax (77 o)

e SVM/Hinge loss: {Hinge = max{1—m,0} = (1—m)_

—

@ Margin m = yf(x); “Positive part’ (x). = x1[x > 0].

== Zero_One
=== Hinge

0 2
Margin m=yf(x)

Hinge is a convex, upper bound on 0—1 loss. Not differentiable at m =1.
We have a “margin error’” when m < 1.

CSCI-GA 2565
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SVM as an Optimization Problem

@ The SVM optimization problem is equivalent to

.. 1, » Cw
minimize —|lwl|*+ — E
2 n =

| —

subject to & >
=
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SVM as an Optimization Problem

@ The SVM optimization problem is equivalent to
1 C —
C. . 2 '
minimize EHWH +;Zl<§:
|=

fori=1,...,n

subjectto § & = (1—y; [WTX,'—I—b]) fori=1,...,n
&i =0

which is equivalent to

o 1 € —
minimize Zlw|?+ = E E;

2 n<—

| =

subject to > max (0, 1—y; [WTX,'—I— b}) fori=1,..., n.
— 5



SVM as an Optimization Problem

L. 1 C —
minimize —HW||2—|——E &

2 n 4 -

| =

subjectto & = max(0,1—y; [waier]) fori=1,...,n.
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SVM as an Optimization Problem = CasNCe N
1 C — 4
minimize §||W||2 +— Z &i Sym
n 121: ——° LR

bie &= max(0,1—y; WTX,'—I—b fori=1,..., n.
(o) 2 porlor w79

. . | O
Move the constraint into the objective: _

CSCI-GA 2565 16 /72



SVM as an Optimization Problem

L 1, » Cw
minimize EHWH +; ;—1 &
. T .
subjectto & =max(0,1—y; [w'x+b]) fori=1,...,n.

Move the constraint into the objective:

_ 1 5 C ? T
wegy,rl]aeREHWH +E;max(0,1—y, (w'xi+b]).

@ The first term is the L2 regularizer.

@ The second term is the Hinge loss.

~—




Support Vector Machine

Using ERM:
@ Hypothesis space F = {f(x) =w/x+b|lweRd be R}.
@ {5 regularization (Tikhonov style)

@ Hinge loss {(m) =max{l1—m,0}=(1—m)

@ The SVM prediction function is the solution to
_solution |

—

, 1 C —
weg]dl,rl]aeREHWHZ + ~ I_Zl max (0, 1—y; [WTX,' - bD .

PSS
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Summary

Two ways to derive the SVM optimization problem:

@ Maximize the margin

— 2
e )
@ Minimize the hinge loss with £ regularizatiﬂl/— L
(——— ~—

Both leads to the minimum norm solutio‘{atisfying certain margin constraints.

@ Hard-margin SVM: all points must be correctly classified with the margin constraints

e Soft-margin SVM: allow for margin constraint violation with some penalty

e
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SVM Optimization Problem

@ SVM obijective function:

J(w) = %Zmax (O, 1—y,'WTX,') +A|w| .
i=1
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SVM Optimization Problem

@ SVM obijective function:

J(w) = %Zmax (O, 1—y,'WTX,') +A|w| .

=1 &—

@ Not differentiable... but let's think about gradient descent anyway.

—
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SVM Optimization Problem

@ SVM obijective function:

1 n
J(W):; E ;;ax(o,l—y;WTx;)@(

> ]

@ Not differentiable... but let's think about gradient descent anyway.

@ Hinge loss: £(m) = max(0,1—m)

Vuldlw) = V, (nZK(YiWTXi)-SlAMF)

CSCI-GA 2565 19 /72



“Gradient” of SVM Objective ED

@ Derivative of hinge loss £(m) = max(0,1—m):
‘ D

(0 m>1 | O r\’\.

¢(m) = 1 @

 undefined m=1

CSCI-GA 2565 20/ 72



“Gradient” of SVM Objective

@ Derivative of hinge loss £(m) = max(0,1—m):

(0 m>1
'(m) =< —1 m< 1
 undefined m=1

@ By chain rule, we have

(0 y,'WTX,' > 1
= VX inTXi <1
| undefined y;w " x; =1

CSCI-GA 2565 20/ 72



“Gradient” of SVM Objective

(0 y,'WTX,' >1
VL (y,'WTX,') = < —ViX y,'WTX,' <1
| undefined yiwlxi=1

—

——

So

Vuwllw) = V, <,::Ze(inTXi)+7\||W2>

=1

n
— % Z Vil (y,'WTX,') + 2Aw
i=1

{1Zi:inTxi<1 (—yixi)+2Aw  all yiw " x; #1

n
undefined ’ otherwise

N ——————
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Gradient Descent on SVM Objective?

@ The gradient of the SVM objective is
1
Vadw)==" 5  (—yixi)+ 2w
iyiwTxi<1
when y;w T x; # 1 for all i, and otherwise is undefined.

Potential arguments for why we shouldn't care about the points of nondifferentiability:

o If we start with a random w, will we ever hit exactly y;w " x; =17

—

@ If we did, could we perturb the step size b@to miss such a point?

T

@ Does it even make sense to check y;w ' x; =1 with floating point numbers?



Subgradient J
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First-Order Condition for Convex, Differentiable Function

@ Suppose f :R? — R is convex and differentiable Then for any x,y € R?

v /Lcy)
> f(x)+VF(x)"(y—x) . 33
\ 8 -— —— {(K‘») \7'_'F/'X)

@ The linear approximation to f at x is a global underestimator of 7:
fy)

flz) + Vi) (y —z)

@ This implies that if Vf(x) =0 then x is a global minimizer of f.
— S

Figure from Boyd & Vandenberghe Fig. 3.2; Proof in Section 3.1.3



Subgradients

Definition

A vector g € R? is a subgradient of a convex function f:RY — R at x if for all z,

Blue is a graph of f(x).
Each red line x — f(xg)+g" (x—xp) is a global lower bound on f(x).

T e
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Properties

Definitions

@ The set of all subgradients at x is called the subdifferegt’i_al:@'(x) 3

—

e f is subdifferentiable at x if 3 at least one subgradient at x.

For convex functions:

e

e f is differentiable at x iff 0f (x) ={Vf(x)}.

e Subdifferential is always non-empty (af x)=0 — f is not convex

@ x is the global optimum |fF 0 ’ : :
For non-convex functions:
@ The subdifferential may be an empty set (no global underestimator).
uDairerentiat | ‘




Subdifferential of Absolute Value

@ Consider f(x) = |x|

£(@) =(ja) 2f(z)

@ Plot on right shows {(x,g) | x € R, g € 0f (x)}

Boyd EE364b: Subgradients Slides
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@ Move along the negative subgradient:

—

Subgradient Descent
4
Lo, x)

xttl :xt—n@ where g € 0f(x*) and 1 >0

@ This can increase the objective but gets us closer to the minimizer if f is convex and 1 is
small enough: S
L2 < K|

@ Subgradients don't necessarily converge to zero as we get closer to x*, so we need
decreasing step sizes.

e

@ Subgradient methods are slower than gradient descent.

CSCI-GA 2565 28 /72



Subgradient descent for SVM

SVM objective function: 7[
Uz

[J( Zmax O 1—yiw X,)—|—7\||W||2

,]_t

Pegasos: stochastic subgradient descent with ste sme@
"egasos: g p sizem: =1/ cteps Aaen

Input: A > 0. Choose w; =0,t=0

While termination condition not met
For j =1,...,n (assumes data is randomly permuted)
t=t+ 1 0 :

+meysa; | S f()
Else / >
Wi41 | (1 — nt)\)'wt =




Summary

@ Subgradient: generalize gradient for non-differentiable convex functions

@ Subgradient “descent’:
e General method for non-smooth functions

o Simple to implement

o Slow to converge

—~ TS

CSCI-GA 2565 30/72



The Dual Problem

@ In addition to subgradient descent, we can directly solve the optimization problem using a
Quadratic Programming (QP) solver.

@ For convex optimization problem, we can also look into its dual problem.

CSCI-GA 2565 31/72



SVM as a Quadratic Program

@ The SVM optimization problem is equivalent to

minimize

subject to —&; <0 fori=1,...,n
(1—y,- WTX,-—|—bD—E,,-<0 fori=1,..., n

e Differentiable objective function
@ n+d-+1 unknowns and 2n affine constraints.
@ A quadratic program that can be solved by any off-the-shelf QP solver.

@ Let's get more insights by examining the dual.



The Lagrangian

The general [inequality-constrained]| optimization problem is:

minimize fo(x)

subject to fi(x) <0, i=1,....m

CSCI-GA 2565 33/72



The Lagrangian

The general [inequality-constrained]| optimization problem is:

minimize fo(x)

subject to fi(x) <0, i=1,....m

Definition

The Lagrangian for this optimization problem is

<

m

L(x,A) =fo(x)+ D Aifi(x).
e "Zlyj

e ——
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The Lagrangian

The general [inequality-constrained]| optimization problem is:

minimize fo(x)

subject to fi(x) <0, i=1,....m

Definition
The Lagrangian for this optimization problem is

m

L(x,A) =fo(x)+ D Aifi(x).

—

i=1 —

@ A;'s are called Lagrange multipliers (also called the dual variables).

X pro=d v rial, le

CSCI-GA 2565 33/72



The Lagrangian

The general [inequality-constrained]| optimization problem is:
minimize fo(x)

subject to fi(x) <0, i=1,....m

Definition
The Lagrangian for this optimization problem is

@ A;’s are called Lagrange multipliers (also called the dual variables).

@ Weighted sum of the objective and constraint functions



The Lagrangian

The general [inequality-constrained]| optimization problem is:

minimize fo(x)

subject to fi(x) <0, i=1,....m

Definition
The Lagrangian for this optimization problem is

@ A;’s are called Lagrange multipliers (also called the dual variables).
@ Weighted sum of the objective and constraint functions

@ Hard constraints — soft penalty (objective function)



Lagrange Dual Function

Definition f\/\(‘r\
The Lagrange dual function is /

InflL(x,\) =inf | fo(x ifi(x
ng( 2 =n <o( + 3 i ))J
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Lagrange Dual Function

Definition
The Lagrange dual function is

g(\) =infL(x,A) = inf { folx +Z7\f()
X @ = 1h

o IS concave

S

(oniav e
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Lagrange Dual Function

Definition
The Lagrange dual function is

g\ (x,x) —inf (fo(X) +ZA,-f,-(x)>
P =1

C———

@ g(A) is concave

@ Lower bound property: if A = p* where p* is the optimal value of the
optimization problem. = S—

CSCI-GA 2565 34 /72



Lagrange Dual Function

Definition
The Lagrange dual function is

g\ @(x,m —inf (fo(X) +ZA,-f,-(x)>
=1

@ Lower bound property: if A =0, g(A) < p* where p* is the optimal value of the
optimization problem.

@ g(A) is concave

@ g(A) can be —oo (uninformative lower bound)

—_—
T



The Primal and the Dual

@ For any primal form optimization problem,

minimize

subject to f;(x) <0, i=1,...,m,

there is a recipe for constructing a corresponding Lagrangian dual problem:

s ConcAye
maximize g(A)

subject to Ai=0,i=1,...,m,

@ The dual problem is always a convex optimization problem.

—

CSCI-GA 2565
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Weak Duality

We always have weak duality: p* > d*.

foh 94

_\,,/_______________E
_. _____________

Plot courtesy of Brett Bernstein.
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Strong Duality

For some problems, we have strong duality: p* = d*.

fol g
Jo(z)

For convex problems, strong duality is fairly typical.

Plot courtesy of Brett Bernstein.



Complementary Slackness

O
@ Assume strong duality. Let x* be primal optimal and A* be dual optimal. Then:

g(A") =inf L(x,A\*) (strong duality and definition)v_‘
o S

p= hx)

Each term in sum|}_._; AYf;

@— fi(x*) =0 and f£f(x") <0 :>Vi

This condition is known as complementary slackness.
e ‘/_-




The SVM Dual Problem J
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SVM Lagrange Multipliers

. 1 2 C A
minimize | §||W|| +;;g,
subjecttg\' & <Q fori=1,...,n ‘f‘( Condtraints
O{C (1—YI[WTXi-I-b])— i <0 fori=1,..., n

Lagrange Multiplier Constraint
A 5 <0
o (1—y,~[WTX,-—|—b_)—Ei<O

-

—

1 c n n
Liw,b, &, o, N) 2 llw|P+=) &+ I1—y; [w'x;+b] — &)+
C, [ 2 n; -

prime plua|



Strong Duality by Slater's Constraint Qualification S

0 X

The SVM optimization problem: Se

mimize | LwlP+ S
minimizce —||W —
2 n ><

I R

subject to i&,- <0 for.i =1..., n
(1—y,-[WTX,-—|—bD—£,-<Ofori:1 ..... n

Slater’s constraint qualification:
(’A — ——

@ Convex problem + affine constraints = strong duality iff problem is feasible

L

@ Do we have @point?

N~—

@ For SVM, we have strong duality.

c —




SVM Dual Function: First Order Conditions

Lagrange dual function is the inf over primal variables of L:

3L =0 — T y; =0, > X, ye =0
ds. L =0 C
\"E;/L — - - T D O<C*'>&f=%
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SVM Dual Function

@ Substituting these conditions back into L, the second term disappears.

@ First and third terms become

- ! T
G——'IA)T‘/\) — S5 )_‘ O<'* OS"‘ y(\ X),X“ X,\

AR
)
E o (1= Y O = 5 s = Sotiot: 44T
) Puttlng it together, the dual function is [) J N
! - E K¢ qn
5 (o A \ ([0(. Z X D\(fﬂ' I5 Jele a-Fg

- .Zm(‘yt :Cé
O(['f- A= 7
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SVM Dual Problem

@ The dual function is

n
n 1 n T Z,‘:1 o;yi=0
. a. - = .. “.“. . .X. X. i
g(OC,}\) _ Zl—l l 2 Z’J—l ! Jy’yJ ! OC,'—|—7\,':,—C7, a” ]
—00 otherwise.

@ The dual problem is sup, y-og(cx,A):

n n
1 T
E Xi—5 E Xi&jYiyjX; Xi
i=1 ij=1
I _J

n
S.t. { Z x;iyi =0
i=1

O(;—I—?\,':% x;,A\j =0,1=1,...,n
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Insights from the Dual Problem J
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KKT Conditions

For convex problems, if Slater’s condition is satisfied, then KKT conditions provide necessary

and sufficient conditions for the optimal solution.

@ Primal feasibility: f;(x) <0 Vi

@ Dual feasibility@
@ Complementary slackness ,-f,-(;) =0
L

@ First-order condition:

0
—L(x,A) =

CSCI-GA 2565

46 / 72



The SVM Dual Solution

@ We found the SVM dual problem can be written as:

n
1 § T
sup — OC,'OCJ'y,'ijj Xj
x 2 ~
Ij=1

S.t. oc,-y,- =0
=1 )
[E), C} i=1,..., n. :—O

@ Given solution «* to dual, primal solution i

i_1~a@D ig 4er C

@ The solution is in the space spanned by the inputs. [@QC (2 szw(q,&
_ oo .

e Note o € [0, 7]. Sc@:ontrols max weight on each example. (Robustness!)

o What's the relation between ¢ and regularization?



Complementary Slackness Conditions

@ Recall our primal constraints and Lagrange multipliers:

Lagrange Multiplier Constraint
(A (-£)<0
& (1—yif(xi)) =& <

*

@ Recall first order condition V¢, L =0 gave us A} = = — .

e By strong duality, we must have complementary slackness:

o (1—yif"(xi)) — &) =0
A& = <%—oc )E -

CSCI-GA 2565 48 /72



Consequences of Complementary Slackness
0

/

By strong duality, we must have complementaly slackness.

<——/
o If af =0, then £ =0, which implies no loss, so y;f*(x) > 1.

c__ :
o If a¥ E@ then £ =0, which implies 1 —y;f*(x;) =0.

[ S
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Complementary Slackness Results: Summary

If o* is a solution to the dual problem, then primal solution is <

n
w* = Y( o ViX > wherea; € [0, E]- \
— =1 "

Relation between margin and example weights («;'s):

J

o =0 | = |yif"(x;) >

CSCI-GA 2565 50 /72



Support Vectors

@ If o* is a solution to the dual problem, then primal solution is

—
n
L =1 —
with o € [0, =].

@ The x;'s corresponding tare called support vectors.

@ Few margin errors or “on the margin” examples = sparsity in input examples.

CSCI-GA 2565 51/72




Dual Problem: Dependence on x through inner products

@ SVM Dual Problem:

n n o
1
| —

ij=1

n
s.t. Zoc,-y,- =0
=1

xj € {O,E} I=1,...,n.
n

o Note that all dependence on inputs x; and x; is through their inner product: (x;, x;) = x;” x;.

J
@ We can replace @by other products... S/MI /Qny .

@ This is a "kernelized” objective function.
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Feature Maps }
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The Input Space X

@ Our general learning theory setup: no assumptions about X

e But X =R for the specific methods we've developed:

T
o Lasso regression hNoX + (C)

o Support Vector Machines

o Ridge regression

CSCI-GA 2565 54 /72



The Input Space X

@ Our general learning theory setup: no assumptions about X

e But X =R for the specific methods we've developed:
o Ridge regression

o Lasso regression

o Support Vector Machines

@ Our hypothesis space for these was all affine functions on R¥:

F={x—w'x+blweR’ beR}.
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The Input Space X

@ Our general learning theory setup: no assumptions about X

e But X =R for the specific methods we've developed:
o Ridge regression

o Lasso regression

o Support Vector Machines

@ Our hypothesis space for these was all affine functions on

F= {XHW@L[HWGRC] beR}.

e What if we want to do prediction on inputs not natively in R9?



The Input Space X

o Often want to use inputs not natively in RY:
o Text documents

o Image files

o Sound recordings

o DNA sequences

CSCI-GA 2565 55 /72



The Input Space X

o Often want to use inputs not natively in RY:

o Text documents
o Image files
o Sound recordings

o DNA sequences
@ They may be represented in numbers, but...
@ The ith entry of each sequence should have the same “meaning”

@ All the sequences should have the same length

e




Feature Extraction

Definition

Mapping an input from X to a vector in RY is called feature extraction or featurization.

Raw Input Feature Vector

@ L _ Feature ¢ (33 Rd

Extraction

— =
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Linear Models with Explicit Feature Map

@ Input space: X (no assumptions)

@ Introduce feature map@: X — R

] —_—

S

@ The feature map maps into the feature space RY.

-
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Linear Models with Explicit Feature Map

@ Input space: X (no assumptions)
o Introduce feature map ¢ : X — R
@ The feature map maps into the feature space RY.

@ Hypothesis space of affine functions on feature space:

F={x—w'd(x)+blweR? beR}.

——
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Geometric Example: Two class problem, nonlinear boundary

®: R — R®
($1v$2)*_+(21322323):::(x%a\/TQ)xIIQ:xg)
X A Z3
X * A X X X X
x X
— X X
o
) //j i 5 o) Y . X
0 - -
X \ ? J Z]
X o )%
X == « X -
X X x X

e With identity feature map ¢(x) = (x1,x2) and linear models, can’t separate regions

@ With appropriate featurization ¢(x) = (xl,xQ,x12+x22), becomes linearly separable .

@ Video: http://youtu.be/31iCbRZPrZA
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Expressivity of Hypothesis Space

@ For linear models, to grow the hypothesis spaces, we must add features.

@ Sometimes we say a larger hypothesis is more expressive.
o (can fit more relationships between input and action)

@ Many ways to create new features.
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Handling Nonlinearity with Linear Methods J
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Example Task: Predicting Health

@ General Philosophy: Extract every feature that might be relevant

@ Features for medical diagnosis
o height

o weight
o body temperature

blood pressure

e etc...

From Percy Liang's "Lecture 3" slides from Stanford’'s CS221, Autumn 2014.



Feature Issues for Linear Predictors

@ For linear predictors, it's important how features are added

o The relation between a feature and the label may not be linear

o There may be complex dependence among features

From Percy Liang's "Lecture 3" slides from Stanford’'s CS221, Autumn 2014.



Feature Issues for Linear Predictors

@ For linear predictors, it's important how features are added

o The relation between a feature and the label may not be linear

o There may be complex dependence among features

@ Three types of nonlinearities can cause problems:
o Non-monotonicity

e Saturation

e Interactions between features

From Percy Liang's "Lecture 3" slides from Stanford’'s CS221, Autumn 2014.



Non-monotonicity: The Issue

@ Feature Map: ¢(x) = [1, temperature(x)]
@ Action: Predict health score y € R (positive is good)

@ Hypothesis Space F={affine functions of temperature}

From Percy Liang's "Lecture 3" slides from Stanford’'s CS221, Autumn 2014.
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Non-monotonicity: The Issue

@ Feature Map: ¢(x) = [1, temperature(x)]
@ Action: Predict health score y € R (positive is good)
@ Hypothesis Space F={affine functions of temperature}

@ Issue:
o Health is not an affine function of temperature.

o Affine function can either say
o Very high is bad and very low is good, or
o Very low is bad and very high is good,
o But here, both extremes are bad.

From Percy Liang's "Lecture 3" slides from Stanford’'s CS221, Autumn 2014.



Non-monotonicity: Solution 1

@ Transform the input:
b(x) = [1,{temperature(x)—37}2} ,

where 37 is “normal” temperature in Celsius.

From Percy Liang's "Lecture 3" slides from Stanford’'s CS221, Autumn 2014.



Non-monotonicity: Solution 1

@ Transform the input:
b(x) = [1,{temperature(x)—37}2} ,

where 37 is “normal” temperature in Celsius.

@ Ok, but requires manually-specified domain knowledge
o Do we really need that?

o What does w' d(x) look like?

From Percy Liang's "Lecture 3" slides from Stanford’'s CS221, Autumn 2014.



Non-monotonicity: Solution 2

@ Think less, put in more:
d(x) = {1,temperature(x),{temperature(x)}z} .

@ More expressive than Solution 1.

General Rule

Features should be simple building blocks that can be pieced together.

From Percy Liang's "Lecture 3" slides from Stanford’'s CS221, Autumn 2014.



Saturation: The lssue

@ Setting: Find products relevant to user’s query

From Percy Liang's "Lecture 3" slides from Stanford’'s CS221, Autumn 2014.



Saturation: The lssue

@ Setting: Find products relevant to user’s query
@ Input: Product x

@ Output: Score the relevance of x to user’s query
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Saturation: The lssue

@ Setting: Find products relevant to user’s query
@ Input: Product x
@ Output: Score the relevance of x to user’s query

@ Feature Map:
$(x) =11, N(x]],

where N(x) = number of people who bought x.
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Saturation: The lssue

@ Setting: Find products relevant to user’s query
@ Input: Product x
@ Output: Score the relevance of x to user’s query

@ Feature Map:
$(x) =11, N(x]],

where N(x) = number of people who bought x.

@ We expect a monotonic relationship between N(x) and relevance, but also expect
diminishing return.

From Percy Liang's "Lecture 3" slides from Stanford’'s CS221, Autumn 2014.



Saturation: Solve with nonlinear transform

@ Smooth nonlinear transformation:
$(x) = [1,log{1+ N(x)}]

o log(-) good for values with large dynamic ranges

From Percy Liang's "Lecture 3" slides from Stanford’'s CS221, Autumn 2014.



Saturation: Solve with nonlinear transform

@ Smooth nonlinear transformation:
$(x) = [1,log{1+ N(x)}]

o log(-) good for values with large dynamic ranges

@ Discretization (a discontinuous transformation):
d(x) = (1[0 < N(x) < 10],1[10 < N(x) < 100],...)

o Small buckets allow quite flexible relationship

From Percy Liang's "Lecture 3" slides from Stanford’'s CS221, Autumn 2014.



Interactions: The lssue

@ Input: Patient information x
@ Action: Health score y € R (higher is better)

@ Feature Map
¢ (x) = [height(x), weight(x)]

From Percy Liang's "Lecture 3" slides from Stanford’'s CS221, Autumn 2014.



Interactions: The lssue

@ Input: Patient information x
@ Action: Health score y € R (higher is better)

@ Feature Map
¢ (x) = [height(x), weight(x)]

@ Issue: It's the weight relative to the height that's important.
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Interactions: The lssue

@ Input: Patient information x
@ Action: Health score y € R (higher is better)

@ Feature Map
¢ (x) = [height(x), weight(x)]

@ Issue: It's the weight relative to the height that's important.
@ Impossible to get with these features and a linear classifier.

@ Need some interaction between height and weight.

From Percy Liang's "Lecture 3" slides from Stanford’'s CS221, Autumn 2014.



Interactions: Approach 1

@ Google “ideal weight from height”

@ J. D. Robinson’s “ideal weight” formula:

weight(kg) =52+ 1.9 [height(in) — 60]

From Percy Liang's "Lecture 3" slides from Stanford’'s CS221, Autumn 2014.



Interactions: Approach 1

@ Google “ideal weight from height”

@ J. D. Robinson’s “ideal weight” formula:
weight(kg) =52+ 1.9 [height(in) — 60]
@ Make score square deviation between height(h) and ideal weight(w)

f(x) = (524 1.9[h(x) —60] — w(x))?

From Percy Liang's "Lecture 3" slides from Stanford’'s CS221, Autumn 2014.



Interactions: Approach 1

@ Google “ideal weight from height”

@ J. D. Robinson’s “ideal weight” formula:
weight(kg) = 52+ 1.9 [height(in) — 60]

@ Make score square deviation between height(h) and ideal weight(w)
f(x) = (52+1.9[h(x) —60] — w(x))?

@ WolframAlpha for complicated Mathematics:

f(x) =3.61h(x)*—3.8h(x)w(x) —235.6h(x) + w(x)? + 124w(x) + 3844

From Percy Liang's "Lecture 3" slides from Stanford’'s CS221, Autumn 2014.



Interactions: Approach 2

@ Just include all second order features:

b(x) = |1, h(x), w(x), h(x)?, w(x)?, h(x)w(x)
R/—/
cross term

@ More flexible, no Google, no WolframAlpha.

General Principle

Simpler building blocks replace a single “smart” feature.

From Percy Liang's "Lecture 3" slides from Stanford’'s CS221, Autumn 2014.



Monomial Interaction Terms

Interaction terms are useful building blocks to model non-linearities in features.

@ Suppose we start with x = (1,x,...,x4) € RIT1 =X
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Monomial Interaction Terms

Interaction terms are useful building blocks to model non-linearities in features.
@ Suppose we start with x = (1,x,...,x4) € RIT1 =X

o Consider adding all monomials of degree M: x{*---x%¢, with p1+---+pg =M.

o Monomials with degree 2 in 2D space: x12, X22, X1 X

CSCI-GA 2565 71/ 72



Big Feature Spaces

This leads to extremely large data matrices

@ For d =40 and M =8, we get 314457495 features.
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Big Feature Spaces

This leads to extremely large data matrices
@ For d =40 and M =8, we get 314457495 features.

Very large feature spaces have two potential issues:

@ Overfitting
@ Memory and computational costs

Solutions:

@ Overfitting we handle with regularization.

e Kernel methods can help with memory and computational costs when we go to high (or
infinite) dimensional spaces.



