Support Vector Machine

Mengye Ren

(Slides credit to David Rosenberg, He He, et al.)

NYU

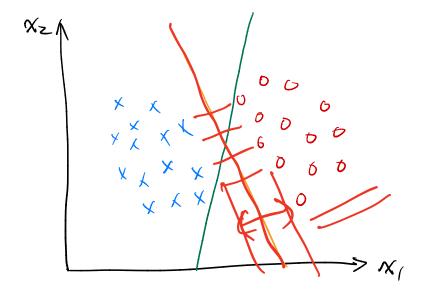
September 24, 2024

Slides

Maximum-Margin Separating Hyperplane

For separable data, there are infinitely many zero-error classifiers.

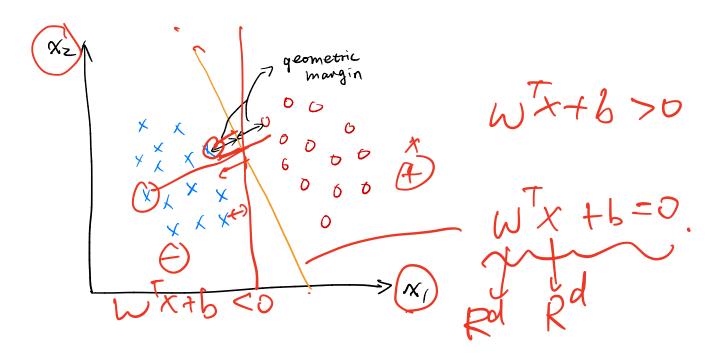
Which one do we pick?



(Perceptron does not return a unique solution.)

Maximum-Margin Separating Hyperplane

We prefer the classifier that is farthest from both classes of points



- Geometric margin: smallest distance between the hyperplane and the points
- Maximum margin: *largest* distance to the closest points

Geometric Margin

We want to maximize the distance between the separating hyperplane and the closest points.

Let's formalize the problem.

Definition (separating hyperplane)

We say (x_i, y_i) for i = 1, ..., n are linearly separable if there is a $w \in \mathbb{R}^d$ and $b \in \mathbb{R}$ such that $y_i(w^Tx_i + b) > 0$ for all i. The set $\{v \in \mathbb{R}^d \mid w^Tv\} + b = 0\}$ is called a separating hyperplane.

margin pred

Geometric Margin

We want to maximize the distance between the separating hyperplane and the closest points.

Let's formalize the problem.

Definition (separating hyperplane)

We say (x_i, y_i) for i = 1, ..., n are **linearly separable** if there is a $w \in \mathbb{R}^d$ and $b \in \mathbb{R}$ such that $y_i(w^Tx_i + b) > 0$ for all i. The set $\{v \in \mathbb{R}^d \mid w^Tv + b = 0\}$ is called a **separating hyperplane**.

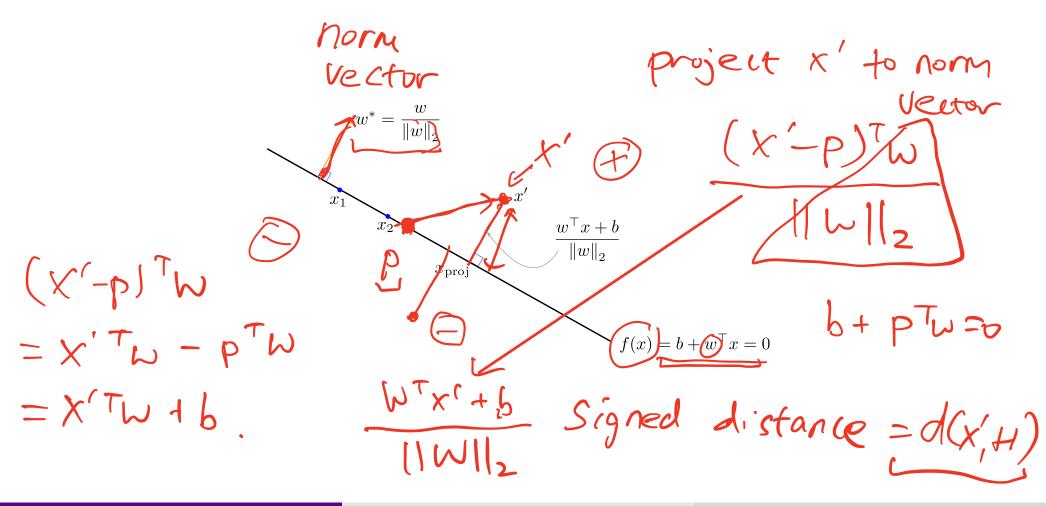
Definition (geometric margin)

Let H be a hyperplane that separates the data (x_i, y_i) for i = 1, ..., n. The **geometric margin** of this hyperplane is

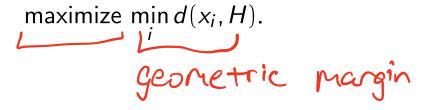
$$\min_{i} d(x_i, H)$$

the distance from the hyperplane to the closest data point.

Distance between a Point and a Hyperplane



We want to maximize the geometric margin:



We want to maximize the geometric margin:

maximize
$$\min_{i} d(x_i, H)$$
.

Given separating hyperplane $H = \{v \mid w^T v + b = 0\}$, we have

maximize min
$$\frac{y_i(w^Tx_i+b)}{\|w\|_2}$$
.

We want to maximize the geometric margin:

maximize
$$\min_{i} d(x_i, H)$$
.

Given separating hyperplane $H = \{v \mid w^T v + b = 0\}$, we have

maximize
$$\min_{i} \frac{y_i(w^T x_i + b)}{\|w\|_2}$$
.

Let's remove the inner minimization problem by
$$\max_{\text{maximize}} \underbrace{M}_{\text{subject to}} \underbrace{M}_{||w||_2} \geqslant M \quad \text{for all } i$$

We want to maximize the geometric margin:

maximize
$$\min_{i} d(x_i, H)$$
.

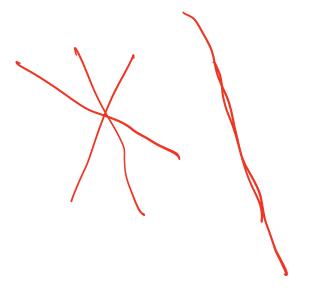
Given separating hyperplane $H = \{v \mid w^T v + b = 0\}$, we have

maximize
$$\min_{i} \frac{y_i(w^T x_i + b)}{\|w\|_2}$$
.

Let's remove the inner minimization problem by

maximize
$$\frac{M}{\sup_{i \in W^T x_i + b}} \ge M$$
 for all i

Note that the solution is not unique (why?).

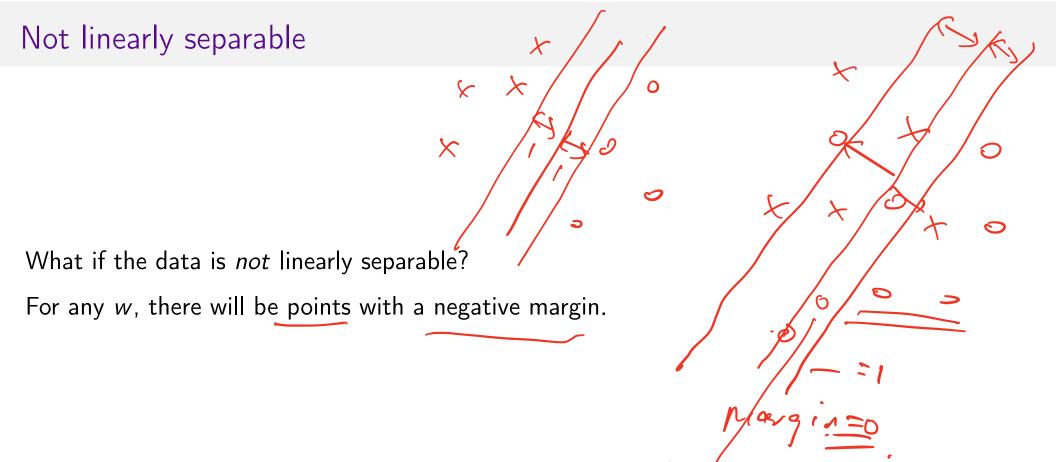


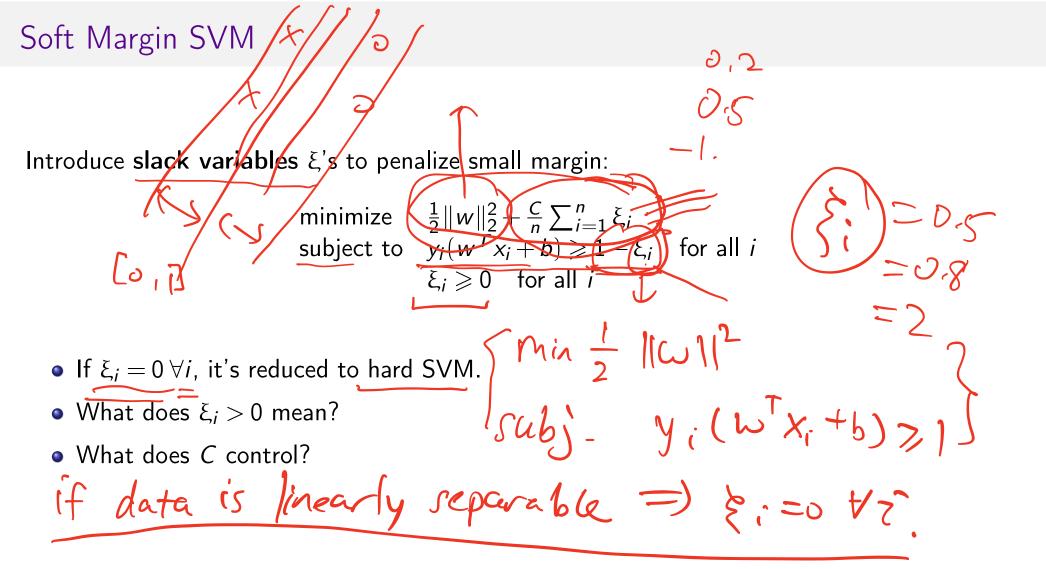
Let's fix the norm $||w||_2$ to (1/M) to obtain:

maximize
$$\frac{1}{\|w\|_2}$$
 subject to $y_i(w^Tx_i + b) \geqslant 1$ for all i

Let's fix the norm $||w||_2$ to 1/M to obtain:

Note that $y_i(w^Tx_i+b)$ is the (functional) margin. The optimization finds the minimum norm solution which has a margin of at least 1 on all examples.

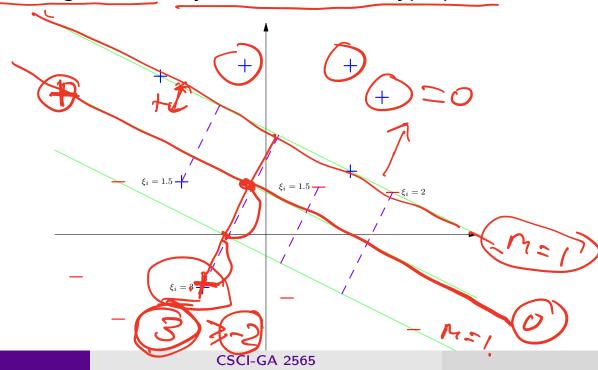




Slack Variables

 $d(x_i, H) = \frac{y_i(w^Tx_i+b)}{\|w\|_2} \geqslant \frac{1-\xi_i}{\|w\|_2}$, thus ξ_i measures the violation by multiples of the geometric margin:

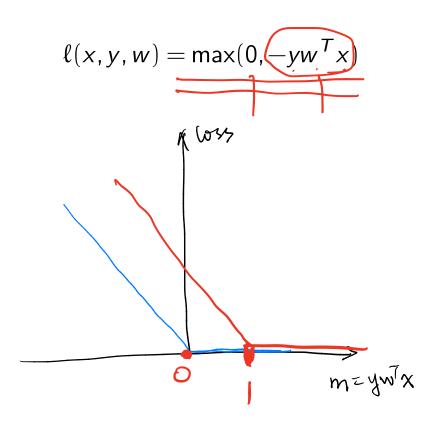
- $\xi_i = 1$: x_i lies on the hyperplane
- $\xi_i = 3$: x_i is past 2 margin width beyond the decision hyperplane



11 / 72

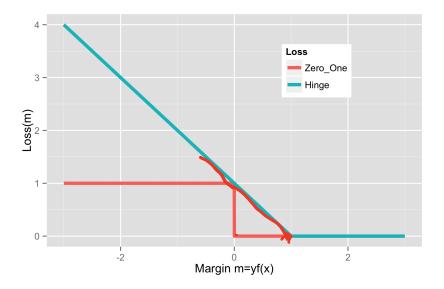
Minimize the Hinge Loss

Perceptron Loss



If we do ERM with this loss function, what happens?

- SVM/Hinge loss: $\ell_{\text{Hinge}} = \max\{1-m, 0\} = (1-m)_+$
- Margin m = yf(x); "Positive part" $(x)_+ = x\mathbb{1}[x \ge 0]$.



Hinge is a **convex**, **upper bound** on 0-1 loss. Not differentiable at m=1. We have a "margin error" when m<1.

The SVM optimization problem is equivalent to

minimize
$$\frac{1}{2}||w||^2 + \frac{c}{n}\sum_{i=1}^n \xi_i$$
subject to
$$\xi_i \geqslant \left(1 - y_i \left[w^T x_i + b\right]\right) \text{ for } i = 1, \dots, n$$
$$\xi_i \geqslant 0 \text{ for } i = 1, \dots, n$$

CSCI-GA 2565 15 / 72

• The SVM optimization problem is equivalent to

minimize
$$\frac{1}{2}||w||^2 + \frac{c}{n}\sum_{i=1}^n \xi_i$$
subject to
$$\begin{cases} \xi_i \geqslant \left(1 - y_i \left[w^T x_i + b\right]\right) \text{ for } i = 1, \dots, n \\ \xi_i \geqslant 0 \text{ for } i = 1, \dots, n \end{cases}$$

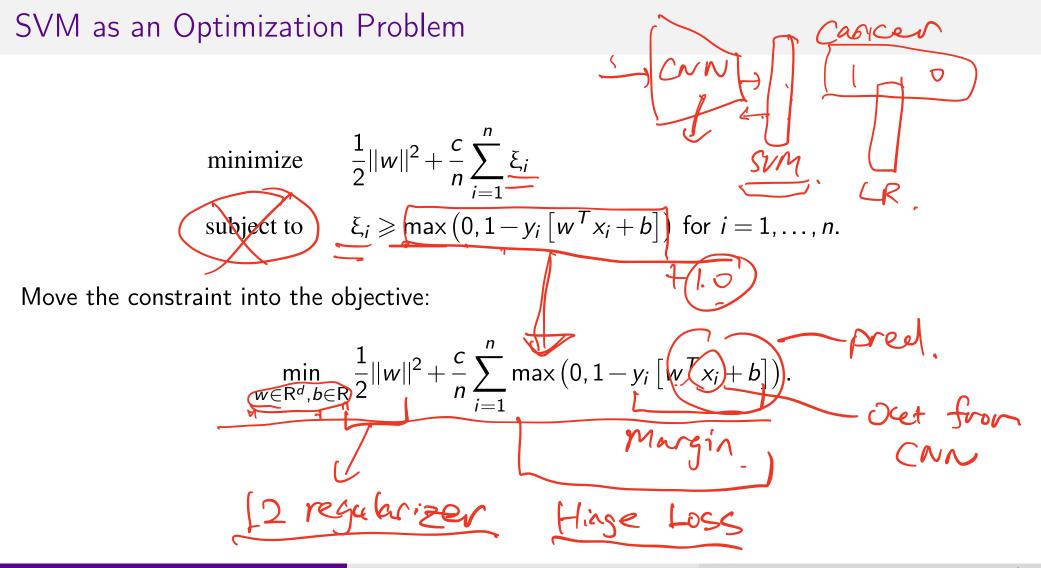
which is equivalent to

minimize
$$\frac{1}{2}||w||^2 + \frac{c}{n}\sum_{i=1}^n \xi_i$$

subject to
$$\xi_i \geqslant \max\left(0, 1 - y_i \left[w^T x_i + b\right]\right) \text{ for } i = 1, \dots, n.$$

minimize
$$\frac{1}{2}||w||^2 + \frac{c}{n}\sum_{i=1}^n \xi_i$$

subject to
$$\xi_i \geqslant \max\left(0, 1 - y_i \left[w^T x_i + b\right]\right) \text{ for } i = 1, \dots, n.$$



minimize
$$\frac{1}{2}||w||^2 + \frac{c}{n}\sum_{i=1}^n \xi_i$$

subject to
$$\xi_i \geqslant \max\left(0, 1 - y_i \left[w^T x_i + b\right]\right) \text{ for } i = 1, \dots, n.$$

Move the constraint into the objective:

$$\min_{w \in \mathbb{R}^d, b \in \mathbb{R}} \frac{1}{2} ||w||^2 + \frac{c}{n} \sum_{i=1}^n \max (0, 1 - y_i [w^T x_i + b]).$$

- The first term is the L2 regularizer.
- The second term is the Hinge loss.

CSCI-GA 2565 16 / 72

Support Vector Machine

Using ERM:

- Hypothesis space $\mathcal{F} = \{ f(x) = w^T x + b \mid w \in \mathbb{R}^d, b \in \mathbb{R} \}.$
- ℓ_2 regularization (Tikhonov style)
- Hinge loss $\ell(m) = \max\{1 m, 0\} = (1 m)_+$
- The SVM prediction function is the solution to

$$\min_{w \in \mathbb{R}^d, b \in \mathbb{R}} \frac{1}{2} ||w||^2 + \frac{c}{n} \sum_{i=1}^n \max (0, 1 - y_i [w^T x_i + b]).$$

Summary

Two ways to derive the SVM optimization problem:

- Maximize the margin
- Minimize the hinge loss with ℓ_2 regularization

$$\frac{1}{2} ||\omega||^2$$

Both leads to the minimum norm solution satisfying certain margin constraints.

- Hard-margin SVM: all points must be correctly classified with the margin constraints
- Soft-margin SVM: allow for margin constraint violation with some penalty

CSCI-GA 2565 18 / 72

SVM Optimization Problem

• SVM objective function:

$$J(w) = \frac{1}{n} \sum_{i=1}^{n} \max(0, 1 - y_i w^T x_i) + \lambda ||w||^2.$$

SVM Optimization Problem

SVM objective function:

$$J(w) = \frac{1}{n} \sum_{i=1}^{n} \max(0, 1 - y_i w^T x_i) + \lambda ||w||^2.$$

Not differentiable... but let's think about gradient descent anyway.

CSCI-GA 2565 19 / 72

SVM Optimization Problem

SVM objective function:

$$J(w) = \frac{1}{n} \sum_{i=1}^{n} \max(0, 1 - y_i w^T x_i) (\lambda |w||^2.$$

- Not differentiable... but let's think about gradient descent anyway.
- Hinge loss: $\ell(m) = \max(0, 1-m)$

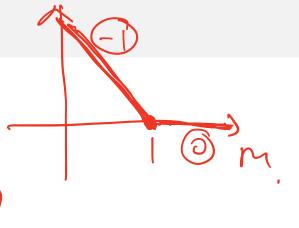
$$\nabla_{w}J(w) = \nabla_{w}\left(\frac{1}{n}\sum_{i=1}^{n}\ell\left(y_{i}w^{T}x_{i}\right) + \frac{1}{2}\lambda||w||^{2}\right)$$
$$= \frac{1}{n}\sum_{i=1}^{n}\nabla_{w}\ell\left(y_{i}w^{T}x_{i}\right) + 2\lambda w$$

CSCI-GA 2565 19 / 72

"Gradient" of SVM Objective

• Derivative of hinge loss $\ell(m) = \max(0, 1-m)$:

$$\ell'(m) = \begin{cases} 0 & m > 1 \\ -1 & m < 1 \\ \text{undefined} & m = 1 \end{cases}$$



"Gradient" of SVM Objective

• Derivative of hinge loss $\ell(m) = \max(0, 1-m)$:

$$\ell'(m) = egin{cases} 0 & m>1 \ -1 & m<1 \ ext{undefined} & m=1 \end{cases}$$

By chain rule, we have

$$\nabla_{w} \ell \left(y_{i} w^{T} x_{i} \right) = \ell' \left(y_{i} w^{T} x_{i} \right) \underbrace{y_{i} x_{i}}_{y_{i} w^{T} x_{i} > 1}$$

$$= \begin{cases} 0 & y_{i} w^{T} x_{i} > 1 \\ -y_{i} x_{i} & y_{i} w^{T} x_{i} < 1 \\ \text{undefined} & y_{i} w^{T} x_{i} = 1 \end{cases}$$

"Gradient" of SVM Objective

$$\nabla_{w}\ell\left(y_{i}w^{T}x_{i}\right) = \begin{cases} 0 & y_{i}w^{T}x_{i} > 1\\ -y_{i}x_{i} & y_{i}w^{T}x_{i} < 1\\ \text{undefined} & y_{i}w^{T}x_{i} = 1 \end{cases}$$

So

$$\nabla_{w}J(w) = \nabla_{w}\left(\frac{1}{n}\sum_{i=1}^{n}\ell\left(y_{i}w^{T}x_{i}\right) + \lambda||w||^{2}\right)$$

$$= \frac{1}{n}\sum_{i=1}^{n}\nabla_{w}\ell\left(y_{i}w^{T}x_{i}\right) + 2\lambda w$$

$$= \begin{cases} \frac{1}{n}\sum_{i:y_{i}w^{T}x_{i}<1}(-y_{i}x_{i}) + 2\lambda w & \text{all } y_{i}w^{T}x_{i} \neq 1 \\ \text{undefined} & \text{otherwise} \end{cases}$$

CSCI-GA 2565 21 / 72

Gradient Descent on SVM Objective?

The gradient of the SVM objective is

$$\nabla_{w}J(w) = \frac{1}{n} \sum_{i:y_{i}w^{T}x_{i}<1} (-y_{i}x_{i}) + 2\lambda w$$

when $y_i w^T x_i \neq 1$ for all i, and otherwise is undefined.

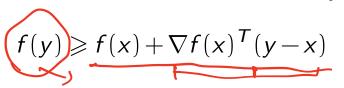
Potential arguments for why we shouldn't care about the points of nondifferentiability:

- If we start with a random w, will we ever hit exactly $y_i w^T x_i = 1$?
- If we did, could we perturb the step size by ε to miss such a point?
- Does it even make sense to check $y_i w^T x_i = 1$ with floating point numbers?

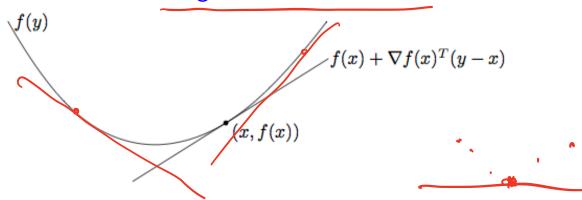
Subgradient

First-Order Condition for Convex, Differentiable Function

• Suppose $f: \mathbb{R}^d \to \mathbb{R}$ is convex and differentiable Then for any $x, y \in \mathbb{R}^d$



• The linear approximation to f at x is a global underestimator of f:



• This implies that if $\nabla f(x) = 0$ then x is a global minimizer of f.

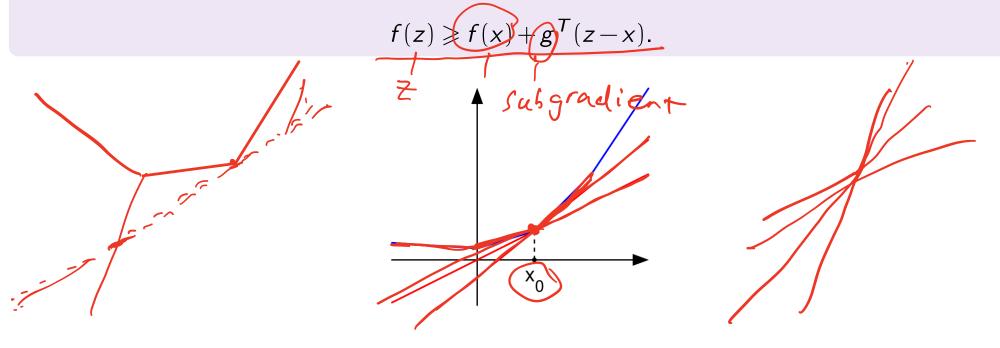
Figure from Boyd & Vandenberghe Fig. 3.2; Proof in Section 3.1.3

CSCI-GA 2565 24 / 72

Subgradients

Definition

A vector $g \in \mathbb{R}^d$ is a **subgradient** of a *convex* function $f : \mathbb{R}^d \to \mathbb{R}$ at x if for all z,



Blue is a graph of f(x).

Each red line $x \mapsto f(x_0) + g^T(x - x_0)$ is a global lower bound on f(x).

Properties

Definitions

- The set of all subgradients at x is called the **subdifferential**: (x)
- f is subdifferentiable at x if \exists at least one subgradient at x.

For convex functions:

- f is differentiable at x iff $\partial f(x) = {\nabla f(x)}.$
- Subdifferential is always non-empty $(\partial f(x) = \emptyset \implies f$ is not convex)
- x is the global optimum iff $0 \notin \partial f(x)$.

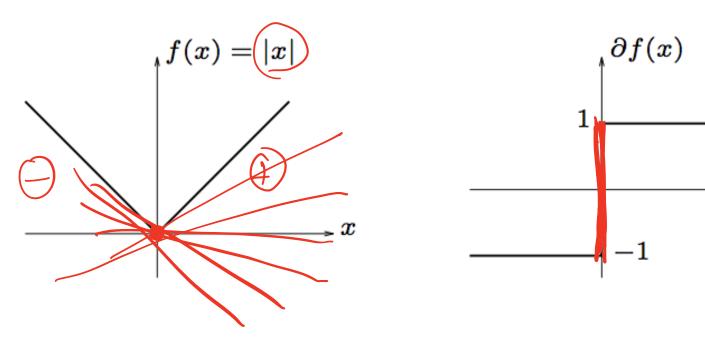
For non-convex functions:

• The subdifferential may be an empty set (no global underestimator).

CSCI-GA 2565 26 / 72

Subdifferential of Absolute Value

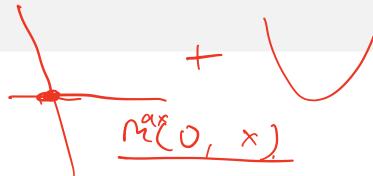
• Consider f(x) = |x|



• Plot on right shows $\{(x,g) \mid x \in \mathbb{R}, g \in \partial f(x)\}$

Boyd EE364b: Subgradients Slides

Subgradient Descent



Move along the negative subgradient:

$$x^{t+1} = x^t - \eta g$$
 where $g \in \partial f(x^t)$ and $\eta > 0$

- This can increase the objective but gets us closer to the minimizer if f is convex and η is small enough: $\|x^{t+1}(x^*)\| < \|x^{t}(x^*)\|$
- Subgradients don't necessarily converge to zero as we get closer to x^* , so we need decreasing step sizes.
- Subgradient methods are slower than gradient descent.

CSCI-GA 2565 28 / 72

Subgradient descent for SVM

SVM objective function:

$$\int J(w) = \frac{1}{n} \sum_{i=1}^{n} \max(0, 1 - y_i w^T x_i) + \lambda ||w||^2.$$

Pegasos: stochastic subgradient descent with step size $\eta_t = 1/(t\lambda)$

Input: $\lambda > 0$. Choose $w_1 = 0, t = 0$ While termination condition not met

For $j = 1, \dots, n$ (assumes data is randomly permuted) t = t + 1 $\eta_t = 1/(t\lambda);$ If $y_j w_t^T x_j < 1$ $w_{t+1} = (1 - \eta_t \lambda) w_t + \eta_t y_j x_j$ Else $w_{t+1} = (1 - \eta_t \lambda) w_t$

CSCI-GA 2565 29 / 72

Summary

- Subgradient: generalize gradient for non-differentiable convex functions
- Subgradient "descent":
 - General method for non-smooth functions
 - Simple to implement
 - Slow to converge

The Dual Problem

- In addition to subgradient descent, we can directly solve the optimization problem using a Quadratic Programming (QP) solver.
- For convex optimization problem, we can also look into its dual problem.

SVM as a Quadratic Program

The SVM optimization problem is equivalent to

minimize
$$\frac{1}{2}||w||^2 + \frac{c}{n}\sum_{i=1}^n \xi_i$$
subject to
$$-\xi_i \leqslant 0 \quad \text{for } i = 1, \dots, n$$

$$(1 - y_i [w^T x_i + b]) - \xi_i \leqslant 0 \quad \text{for } i = 1, \dots, n$$

- Differentiable objective function
- n+d+1 unknowns and 2n affine constraints.
- A quadratic program that can be solved by any off-the-shelf QP solver.
- Let's get more insights by examining the dual.

The general [inequality-constrained] optimization problem is:

minimize
$$f_0(x)$$

subject to $f_i(x) \le 0$, $i = 1, ..., m$

The general [inequality-constrained] optimization problem is:

minimize
$$f_0(x)$$

subject to $f_i(x) \le 0$, $i = 1, ..., m$

Definition

The Lagrangian for this optimization problem is

$$L(x,\lambda) = f_0(x) + \sum_{i=1}^m \lambda_i f_i(x).$$

The general [inequality-constrained] optimization problem is:

minimize
$$f_0(x)$$

subject to $f_i(x) \le 0$, $i = 1, ..., m$

Definition

The Lagrangian for this optimization problem is

$$L(x,\lambda) = f_0(x) + \sum_{i=1}^m \frac{\lambda_i}{\epsilon} f_i(x).$$

• λ_i 's are called Lagrange multipliers (also called the dual variables).

x prinal variable

The general [inequality-constrained] optimization problem is:

minimize
$$f_0(x)$$

subject to $f_i(x) \le 0, i = 1, ..., m$

Definition

The Lagrangian for this optimization problem is

$$L(x,\lambda) = f_0(x) + \sum_{i=1}^m \lambda_i f_i(x).$$

- λ_i 's are called **Lagrange multipliers** (also called the dual variables).
- Weighted sum of the objective and constraint functions

The general [inequality-constrained] optimization problem is:

minimize
$$f_0(x)$$

subject to $f_i(x) \le 0, i = 1, ..., m$

Definition

The Lagrangian for this optimization problem is

$$L(x,\lambda) = f_0(x) + \sum_{i=1}^m \lambda_i f_i(x).$$

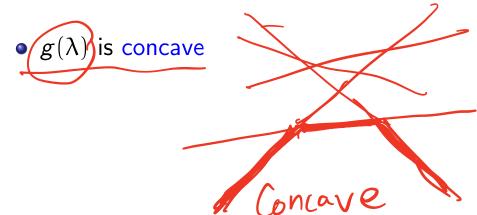
- λ_i 's are called Lagrange multipliers (also called the dual variables).
- Weighted sum of the objective and constraint functions
- Hard constraints → soft penalty (objective function)

The Lagrange dual function is $g(\lambda) = \inf_{x} L(x,\lambda) = \inf_{x} \left(f_0(x) + \sum_{i=1}^{m} \lambda_i f_i(x) \right)$

Definition

The Lagrange dual function is

$$g(\lambda) = \inf_{x} L(x, \lambda) = \inf_{x} \left(f_0(x) + \sum_{i=1}^{m} \lambda_i f_i(x) \right)$$



Definition

The Lagrange dual function is

$$g(\lambda) = \inf_{x} (x, \lambda) = \inf_{x} \left(f_0(x) + \sum_{i=1}^{m} \lambda_i f_i(x) \right)$$

- $g(\lambda)$ is concave
- Lower bound property: if $\lambda \succeq 0$, $g(\lambda) \succeq p^*$ where p^* is the optimal value of the optimization problem.

Definition

The Lagrange dual function is

$$g(\lambda) = \inf_{x} (x, \lambda) = \inf_{x} \left(f_0(x) + \sum_{i=1}^{m} \lambda_i f_i(x) \right)$$

- $g(\lambda)$ is concave
- Lower bound property: if $\lambda \succeq 0$, $g(\lambda) \leqslant p^*$ where p^* is the optimal value of the optimization problem.
- $g(\lambda)$ can be $-\infty$ (uninformative lower bound)

The Primal and the Dual

• For any **primal form** optimization problem,

minimize
$$f_0(x)$$

subject to $f_i(x) \le 0, i = 1, ..., m,$

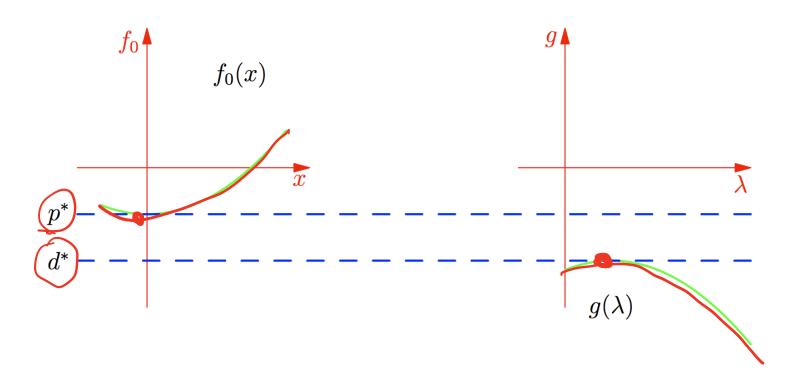
there is a recipe for constructing a corresponding Lagrangian dual problem:

$$\underbrace{\frac{\text{maximize}}{\text{subject to}}}_{\text{subject to}}\underbrace{\frac{g(\lambda)}{\lambda_i \geqslant 0, i = 1, \dots, m,}}_{\text{conclude}}$$

• The dual problem is always a convex optimization problem.

Weak Duality

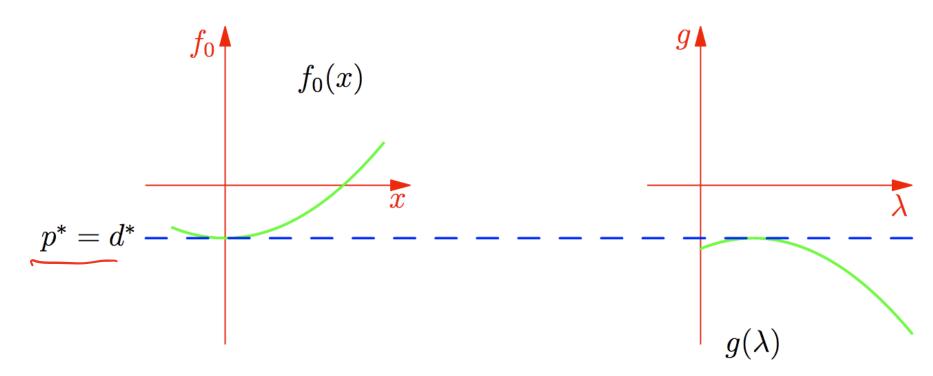
We always have **weak duality**: $p^* \ge d^*$.



Plot courtesy of Brett Bernstein.

Strong Duality

For some problems, we have **strong duality**: $p^* = d^*$.



For convex problems, strong duality is fairly typical.

Plot courtesy of Brett Bernstein.

Complementary Slackness

• Assume strong duality. Let x^* be primal optimal and λ^* be dual optimal. Then:

$$f_0(x^*) = g(\lambda^*) = \inf L(x, \lambda^*) \quad \text{(strong duality and definition)}^e$$

$$= f_0(x^*) + \sum_{i=1}^m \lambda_i^* f_i(x^*)$$

$$\leq f_0(x^*).$$

Each term in sum $\sum_{i=1}^{\infty} \lambda_i^* f_i(x^*)$ must actually be 0. That is

$$\lambda_i > 0 \Longrightarrow f_i(x^*) = 0$$
 and $f_i(x^*) < 0 \Longrightarrow \lambda_i = 0$

This condition is known as complementary slackness.

The SVM Dual Problem

SVM Lagrange Multipliers

minimize
$$\frac{1}{2}||w||^2 + \frac{c}{n}\sum_{i=1}^n \xi_i$$
subject to
$$\frac{-\xi_i \leqslant 0}{-\xi_i \leqslant 0} \text{ for } i = 1, \dots, n$$
$$(1 - y_i \left[w^T x_i + b \right]) - \xi_i \leqslant 0 \text{ for } i = 1, \dots, n$$

Lagrange Multiplier	Constraint
λ_i	$-\underline{\xi_i} \leqslant 0$
α_i	$(1-y_i[w^Tx_i+b])-\xi_i\leqslant 0$

$$L(w,b,\xi,\alpha,\lambda) = \frac{1}{2}||w||^2 + \frac{c}{n}\sum_{i=1}^n \xi_i + \sum_{i=1}^n \alpha_i (1-y_i [w^Tx_i+b]-\xi_i) + \sum_{i=1}^n \lambda_i (-\xi_i)$$
Primal dual

CSCI-GA 2565 40 / 72

Strong Duality by Slater's Constraint Qualification

The SVM optimization problem:

minimize
$$\frac{1}{2}||w||^2 + \frac{c}{n}\sum_{i=1}^n \xi_i$$
subject to
$$-\xi_i \leqslant 0 \text{ for } i = 1, \dots, n$$
$$\left(1 - y_i \left[w^T x_i + b\right]\right) - \xi_i \leqslant 0 \text{ for } i = 1, \dots, n$$

Slater's constraint qualification:

- Convex problem + affine constraints \Longrightarrow strong duality iff problem is feasible
- Do we have a feasible point?
- For SVM, we have strong duality.

CSCI-GA 2565 41 / 72

SVM Dual Function: First Order Conditions

Lagrange dual function is the inf over primal variables of *L*:

$$g(\alpha,\lambda) = \inf_{w,b,\xi} \frac{1}{2} (w,b,\xi,\alpha,\lambda) \qquad \text{No Constraints}$$

$$= \inf_{w,b,\xi} \left[\frac{1}{2} w^T w + \sum_{i=1}^n \xi_i (\frac{c}{n} - \alpha_i - \lambda_i) + \sum_{i=1}^n \alpha_i (1 - y_i [w^T x_i + b]) \right]$$

$$\partial_w L = 0 \qquad \qquad \mathcal{N} - \sum_i \alpha_i y_i \chi_i = 0 \qquad \Rightarrow \qquad \mathcal{N} = \sum_i \alpha_i y_i \chi_i$$

$$\partial_b L = 0 \qquad \qquad \mathcal{N} - \sum_i \alpha_i y_i \chi_i = 0 \qquad \Rightarrow \qquad \mathcal{N} = \sum_i \alpha_i y_i \chi_i$$

$$\partial_b L = 0 \qquad \qquad \mathcal{N} = \sum_i \alpha_i y_i \chi_i = 0 \qquad \Rightarrow \qquad \mathcal{N} = \sum_i \alpha_i y_i \chi_i$$

$$\partial_{\xi_i} L = 0 \qquad \qquad \mathcal{N} = \sum_i \alpha_i y_i \chi_i = 0 \qquad \Rightarrow \qquad \mathcal{N} = \sum_i \alpha_i y_i \chi_i$$

CSCI-GA 2565 42 / 72

SVM Dual Function

- Substituting these conditions back into L, the second term disappears.
- First and third terms become

SVM Dual Problem

The dual function is

$$g(\alpha, \lambda) = \begin{cases} \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{n} \alpha_i \alpha_j y_i y_j x_j^T x_i & \sum_{i=1}^{n} \alpha_i y_i = 0 \\ -\infty & \text{otherwise.} \end{cases}$$

• The dual problem is $\sup_{\alpha,\lambda \succeq 0} g(\alpha,\lambda)$:

$$\sup_{\alpha,\lambda} \sum_{i=1}^{n} \alpha_{i} - \frac{1}{2} \sum_{i,j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} x_{j}^{T} x_{i}$$
s.t.
$$\sum_{i=1}^{n} \alpha_{i} y_{i} = 0$$

$$\alpha_{i} + \lambda_{i} = \frac{c}{n} \quad \alpha_{i}, \lambda_{i} \geqslant 0, i = 1, ..., n$$

CSCI-GA 2565 44 / 72

Insights from the Dual Problem

CSCI-GA 2565 45 / 72

KKT Conditions

For convex problems, if Slater's condition is satisfied, then KKT conditions provide necessary and sufficient conditions for the optimal solution.

- Primal feasibility: $f_i(x) \leq 0 \quad \forall i$
- Dual feasibility: $\lambda \succeq 0$
- Complementary slackness: $\lambda_i f_i(x) = 0$
- First-order condition:

$$\frac{\partial}{\partial x}L(x,\lambda)=0$$

CSCI-GA 2565 46 / 72

The SVM Dual Solution

• We found the SVM dual problem can be written as:

$$\sup_{\alpha} \sum_{i=1}^{n} \alpha_{i} - \frac{1}{2} \sum_{i,j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} x_{j}^{T} x_{i}$$
s.t.
$$\sum_{i=1}^{n} \alpha_{i} y_{i} = 0$$

$$\alpha_{i} \in \left[0, \frac{c}{n}\right] i = 1, \dots, n.$$

- Given solution α^* to dual, primal solution is $w^* = \sum_{i=1}^n \alpha_i^* y_i x_i$
- The solution is in the space spanned by the inputs.
- Note $\alpha_i^* \in [0, \frac{c}{n}]$. So c controls max weight on each example. (Robustness!)
 - What's the relation between c and regularization?

CSCI-GA 2565 47 / 72

Complementary Slackness Conditions

• Recall our primal constraints and Lagrange multipliers:

Lagrange Multiplier	Constraint
λ_i ,	(-£;) ≤ 0
α_i	$(1-y_if(x_i))-\xi_i\leqslant 0$

- Recall first order condition $\nabla_{\xi_i} L = 0$ gave us $\lambda_i^* = \frac{c}{n} \alpha_i^*$.
- By strong duality, we must have **complementary slackness**:

$$\alpha_i^* \left(1 - y_i f^*(x_i) - \xi_i^* \right) = 0$$
$$\lambda_i^* \xi_i^* = \left(\frac{c}{n} - \alpha_i^* \right) \xi_i^* = 0$$

CSCI-GA 2565 48 / 72

Consequences of Complementary Slackness

By strong duality, we must have complementary slackness.

$$(\alpha_i^*)\underbrace{(1-y_i f^*(x_i) - \xi_i^*)}_{\left(\frac{c}{n} - \alpha_i^*\right) \xi_i^* = 0$$

Recall "slack variable" $\xi_i^* = \max(0, 1 - y_i f^*(x_i))$ is the hinge loss on (x_i, y_i) .

- If $y_i f^*(x_i) > 1$ then the margin loss is $\xi_i^* = 0$, and we get $\alpha_i^* = 0$.
- If $y_i f^*(x_i) < 1$ then the margin loss is $\xi_i^* > 0$ so $\alpha_i^* = \frac{c}{n}$.
- If $\alpha_i^* = 0$, then $\xi_i^* = 0$, which implies no loss, so $y_i f^*(x) \geqslant 1$.
- If $\alpha_i^* \in (0, \frac{c}{n})$, then $\xi_i^* = 0$, which implies $1 y_i f^*(x_i) = 0$.

1. / / O

CSCI-GA 2565 49 / 72

Complementary Slackness Results: Summary

If α^* is a solution to the dual problem, then primal solution is

$$w^* = \sum_{i=1}^n \alpha_i^* y_i x_i$$
 where $\alpha_i^* \in [0, \frac{c}{n}]$.

Relation between margin and example weights (α_i 's):

$$egin{aligned} lpha_i^* &= 0 \ lpha_i^* &\in \left(0, rac{c}{n}
ight) \ lpha_i^* &= rac{c}{n} \ \end{pmatrix} \implies egin{aligned} y_i f^*(x_i) &\geqslant 1 \ y_i f^*(x_i) &= 1 \ \end{pmatrix} \ egin{aligned} lpha_i^* &= rac{c}{n} \ \end{pmatrix} \implies egin{aligned} y_i f^*(x_i) &\leqslant 1 \ \end{pmatrix} \ egin{aligned} y_i f^*(x_i) &< 1 \ \Rightarrow & lpha_i^* &= rac{c}{n} \ \end{pmatrix} \ egin{aligned} lpha_i^* &\in \left[0, rac{c}{n}
ight] \ \end{pmatrix} \end{aligned}$$

CSCI-GA 2565 50 / 72

Support Vectors

• If α^* is a solution to the dual problem, then primal solution is

$$w^* = \sum_{i=1}^n (\alpha_i^*)_{i \times i}$$

with $\alpha_i^* \in [0, \frac{c}{n}]$.

- The x_i 's corresponding to $\alpha_i^* > 0$ are called support vectors.
- Few margin errors or "on the margin" examples \implies sparsity in input examples.

CSCI-GA 2565 51 / 72

Dual Problem: Dependence on x through inner products

SVM Dual Problem:

$$\sup_{\alpha} \sum_{i=1}^{n} \alpha_{i} - \frac{1}{2} \sum_{i,j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} x_{j}^{T} x_{i}$$
s.t.
$$\sum_{i=1}^{n} \alpha_{i} y_{i} = 0$$

$$\alpha_{i} \in \left[0, \frac{c}{n}\right] \ i = 1, \dots, n.$$

- Note that all dependence on inputs x_i and x_j is through their inner product: $\langle x_j, x_i \rangle = x_i^T x_i$.
- We can replace $(x_j^T x_j^T)$ by other products...
- This is a "kernelized" objective function.

CSCI-GA 2565 52 / 72

Similarity

Feature Maps

The Input Space $\mathfrak X$

- ullet Our general learning theory setup: no assumptions about ${\mathfrak X}$
- But $\mathcal{X} = \mathbb{R}^d$ for the specific methods we've developed:
 - Ridge regression
 - Lasso regression
 - Support Vector Machines

CSCI-GA 2565 54 / 72

The Input Space \mathfrak{X}

- ullet Our general learning theory setup: no assumptions about ${\mathfrak X}$
- But $\mathcal{X} = \mathbb{R}^d$ for the specific methods we've developed:
 - Ridge regression
 - Lasso regression
 - Support Vector Machines
- Our hypothesis space for these was all affine functions on \mathbb{R}^d :

$$\mathcal{F} = \left\{ x \mapsto w^T x + b \mid w \in \mathbb{R}^d, b \in \mathbb{R} \right\}.$$

CSCI-GA 2565 54 / 72

The Input Space $\mathfrak X$

- ullet Our general learning theory setup: no assumptions about ${\mathfrak X}$
- But $\mathcal{X} = \mathbb{R}^d$ for the specific methods we've developed:
 - Ridge regression
 - Lasso regression
 - Support Vector Machines
- Our hypothesis space for these was all affine functions on \mathbb{R}^d :

$$\mathcal{F} = \left\{ x \mapsto w^{T} x + b \mid w \in \mathbb{R}^{d}, b \in \mathbb{R} \right\}.$$

• What if we want to do prediction on inputs not natively in R^d ?

CSCI-GA 2565 54 / 72

The Input Space $\mathfrak X$

- Often want to use inputs not natively in R^d :
 - Text documents
 - Image files
 - Sound recordings
 - DNA sequences

CSCI-GA 2565 55 / 72

The Input Space \mathfrak{X}

- Often want to use inputs not natively in \mathbb{R}^d :
 - Text documents
 - Image files
 - Sound recordings
 - DNA sequences
- They may be represented in numbers, but...
- The *i*th entry of each sequence should have the same "meaning"
- All the sequences should have the same length

CSCI-GA 2565 55 / 72

Feature Extraction

Definition

Mapping an input from \mathfrak{X} to a vector in \mathbb{R}^d is called **feature extraction** or **featurization**.

Raw Input

Feature Vector



CSCI-GA 2565 56 / 72

Linear Models with Explicit Feature Map

- Input space: X (no assumptions)
- Introduce feature map $\phi: \mathfrak{X} \to \mathbb{R}^d$
- The feature map maps into the feature space \mathbb{R}^d .

CSCI-GA 2565 57 / 72

Linear Models with Explicit Feature Map

- Input space: X (no assumptions)
- Introduce feature map $\phi: \mathcal{X} \to \mathbb{R}^d$
- The feature map maps into the **feature space** \mathbb{R}^d .
- Hypothesis space of affine functions on feature space:

$$\mathcal{F} = \left\{ x \mapsto w^T \phi(x) + b \mid w \in \mathbb{R}^d, b \in \mathbb{R} \right\}.$$

CSCI-GA 2565 57 / 72

Geometric Example: Two class problem, nonlinear boundary

- With identity feature map $\phi(x) = (x_1, x_2)$ and linear models, can't separate regions
- With appropriate featurization $\phi(x) = (x_1, x_2, x_1^2 + x_2^2)$, becomes linearly separable.
- Video: http://youtu.be/3liCbRZPrZA

CSCI-GA 2565 58 / 72

Expressivity of Hypothesis Space

- For linear models, to grow the hypothesis spaces, we must add features.
- Sometimes we say a larger hypothesis is more expressive.
 - (can fit more relationships between input and action)
- Many ways to create new features.

CSCI-GA 2565 59 / 72

Handling Nonlinearity with Linear Methods

CSCI-GA 2565 60 / 72

Example Task: Predicting Health

- General Philosophy: Extract every feature that might be relevant
- Features for medical diagnosis
 - height
 - weight
 - body temperature
 - blood pressure
 - etc...

Feature Issues for Linear Predictors

- For linear predictors, it's important how features are added
 - The relation between a feature and the label may not be linear
 - There may be complex dependence among features

From Percy Liang's "Lecture 3" slides from Stanford's CS221, Autumn 2014.

62 / 72

Feature Issues for Linear Predictors

- For linear predictors, it's important how features are added
 - The relation between a feature and the label may not be linear
 - There may be complex dependence among features
- Three types of nonlinearities can cause problems:
 - Non-monotonicity
 - Saturation
 - Interactions between features

Non-monotonicity: The Issue

- Feature Map: $\phi(x) = [1, temperature(x)]$
- Action: Predict health score $y \in R$ (positive is good)
- Hypothesis Space $\mathcal{F}=\{\text{affine functions of temperature}\}$

Non-monotonicity: The Issue

- Feature Map: $\phi(x) = [1, temperature(x)]$
- Action: Predict health score $y \in R$ (positive is good)
- Hypothesis Space $\mathcal{F}=\{\text{affine functions of temperature}\}$
- Issue:
 - Health is not an affine function of temperature.

From Percy Liang's "Lecture 3" slides from Stanford's CS221, Autumn 2014.

CSCI-GA 2565 63 / 72

Non-monotonicity: The Issue

- Feature Map: $\phi(x) = [1, temperature(x)]$
- Action: Predict health score $y \in R$ (positive is good)
- Hypothesis Space $\mathcal{F}=\{\text{affine functions of temperature}\}$
- ssue:
 - Health is not an affine function of temperature.
 - Affine function can either say
 - Very high is bad and very low is good, or
 - Very low is bad and very high is good,
 - But here, both extremes are bad.

From Percy Liang's "Lecture 3" slides from Stanford's CS221, Autumn 2014.

CSCI-GA 2565 63 / 72

Non-monotonicity: Solution 1

• Transform the input:

$$\phi(x) = \left[1, \{\text{temperature}(x) - 37\}^2\right],$$

where 37 is "normal" temperature in Celsius.

2565 64 / 72

Non-monotonicity: Solution 1

• Transform the input:

$$\phi(x) = \left[1, \{\text{temperature}(x) - 37\}^2\right],$$

where 37 is "normal" temperature in Celsius.

- Ok, but requires manually-specified domain knowledge
 - Do we really need that?
 - What does $w^T \phi(x)$ look like?

Non-monotonicity: Solution 2

• Think less, put in more:

$$\phi(x) = \left[1, \text{temperature}(x), \left\{\text{temperature}(x)\right\}^2\right].$$

More expressive than Solution 1.

General Rule

Features should be simple building blocks that can be pieced together.

• Setting: Find products relevant to user's query

Setting: Find products relevant to user's query

• Input: Product *x*

• Output: Score the relevance of x to user's query

- Setting: Find products relevant to user's query
- Input: Product *x*
- Output: Score the relevance of x to user's query
- Feature Map:

$$\phi(x) = [1, N(x)],$$

where N(x) = number of people who bought x.

- Setting: Find products relevant to user's query
- Input: Product *x*
- Output: Score the relevance of x to user's query
- Feature Map:

$$\phi(x) = [1, N(x)],$$

where N(x) = number of people who bought x.

• We expect a monotonic relationship between N(x) and relevance, but also expect diminishing return.

Saturation: Solve with nonlinear transform

• Smooth nonlinear transformation:

$$\phi(x) = [1, \log\{1 + N(x)\}]$$

• $log(\cdot)$ good for values with large dynamic ranges

Saturation: Solve with nonlinear transform

• Smooth nonlinear transformation:

$$\phi(x) = [1, \log\{1 + \mathcal{N}(x)\}]$$

- \bullet log (\cdot) good for values with large dynamic ranges
- Discretization (a discontinuous transformation):

$$\phi(x) = (1[0 \le N(x) < 10], 1[10 \le N(x) < 100], \ldots)$$

Small buckets allow quite flexible relationship

Interactions: The Issue

- Input: Patient information x
- Action: Health score $y \in R$ (higher is better)
- Feature Map

$$\phi(x) = [\text{height}(x), \text{weight}(x)]$$

Interactions: The Issue

- Input: Patient information *x*
- Action: Health score $y \in R$ (higher is better)
- Feature Map

$$\phi(x) = [\text{height}(x), \text{weight}(x)]$$

• Issue: It's the weight *relative* to the height that's important.

Interactions: The Issue

- Input: Patient information x
- Action: Health score $y \in R$ (higher is better)
- Feature Map

$$\phi(x) = [\mathsf{height}(x), \mathsf{weight}(x)]$$

- Issue: It's the weight *relative* to the height that's important.
- Impossible to get with these features and a linear classifier.
- Need some interaction between height and weight.

- Google "ideal weight from height"
- J. D. Robinson's "ideal weight" formula:

$$weight(kg) = 52 + 1.9 [height(in) - 60]$$

From Percy Liang's "Lecture 3" slides from Stanford's CS221, Autumn 2014.

69 / 72

- Google "ideal weight from height"
- J. D. Robinson's "ideal weight" formula:

$$weight(kg) = 52 + 1.9 [height(in) - 60]$$

• Make score square deviation between height(h) and ideal weight(w)

$$f(x) = (52+1.9[h(x)-60]-w(x))^2$$

From Percy Liang's "Lecture 3" slides from Stanford's CS221, Autumn 2014.

CSCI-GA 2565 69 / 72

- Google "ideal weight from height"
- J. D. Robinson's "ideal weight" formula:

$$weight(kg) = 52 + 1.9 [height(in) - 60]$$

• Make score square deviation between height(h) and ideal weight(w)

$$f(x) = (52+1.9[h(x)-60]-w(x))^2$$

WolframAlpha for complicated Mathematics:

$$f(x) = 3.61h(x)^2 - 3.8h(x)w(x) - 235.6h(x) + w(x)^2 + 124w(x) + 3844$$

• Just include all second order features:

$$\phi(x) = \left[1, h(x), w(x), h(x)^2, w(x)^2, \underbrace{h(x)w(x)}_{\text{cross term}}\right]$$

More flexible, no Google, no WolframAlpha.

General Principle

Simpler building blocks replace a single "smart" feature.

From Percy Liang's "Lecture 3" slides from Stanford's CS221, Autumn 2014.

CSCI-GA 2565 70 / 72

Monomial Interaction Terms

Interaction terms are useful building blocks to model non-linearities in features.

• Suppose we start with $x = (1, x_1, \dots, x_d) \in \mathbb{R}^{d+1} = \mathcal{X}$.

CSCI-GA 2565 71 / 72

Monomial Interaction Terms

Interaction terms are useful building blocks to model non-linearities in features.

- Suppose we start with $x = (1, x_1, \dots, x_d) \in \mathbb{R}^{d+1} = \mathcal{X}$.
- Consider adding all monomials of degree $M: x_1^{p_1} \cdots x_d^{p_d}$, with $p_1 + \cdots + p_d = M$.
 - Monomials with degree 2 in 2D space: x_1^2 , x_2^2 , x_1x_2

71 / 72

Big Feature Spaces

This leads to extremely large data matrices

• For d = 40 and M = 8, we get 314457495 features.

CSCI-GA 2565 72 / 72

Big Feature Spaces

This leads to extremely large data matrices

• For d = 40 and M = 8, we get 314457495 features.

Very large feature spaces have two potential issues:

- Overfitting
- Memory and computational costs

CSCI-GA 2565 72 / 72

Big Feature Spaces

This leads to extremely large data matrices

 \bullet For d=40 and M=8, we get 314457495 features.

Very large feature spaces have two potential issues:

- Overfitting
- Memory and computational costs

Solutions:

- Overfitting we handle with regularization.
- Kernel methods can help with memory and computational costs when we go to high (or infinite) dimensional spaces.

72 / 72