Support Vector Machine J

Mengye Ren
NYU

September 24, 2024

CSCI-GA 2565 1/71

Maximum-Margin Separating Hyperplane

For separable data, there are infinitely many zero-error classifiers.

Which one do we pick?

(Perceptron does not return a unique solution.)

e — e B N

Maximum-Margin Separating Hyperplane

We prefer the classifier that is farthest from both classes of points

e Geometric margin: smallest distance between the hyperplane and the points

@ Maximum margin: /argest distance to the closest points

e — e B YN

Geometric Margin

We want to maximize the distance between the separating hyperplane and the closest points.
Let's formalize the problem.

Definition (separating hyperplane)

We say (x;,y;) for i=1,...,n are linearly separable if there is a w € RY and b € R such that
yi(wTxj+b) >0 for all i. The set {v € R?|w”v+b=0}is called a separating hyperplane.

Definition (geometric margin)

Let H be a hyperplane that separates the data (x;,y;) for i=1,...,n. The geometric margin
of this hyperplane is
mind(x;, H),
1

the distance from the hyperplane to the closest data point.

e — B B i

Distance between a Point and a Hyperplane

w

*

w' = —
l[wl]l

fl@)=b+w'z=0

e — e B 57

Maximize the Margin

We want to maximize the geometric margin:
maximize mind(x;, H).
1
Given separating hyperplane H = {v| wliv+b= O}, we have
. _ YilwTx +b)
maximize min ———
i [wl|2
Let's remove the inner minimization problem by

maximize M

subject to yilw?x+b) >M foralli

Twil2
Note that the solution is not unique (why?).

e — e B EyEn

Maximize the Margin

Let's fix the norm ||jw||2 to 1/M to obtain:

maximize —L—
Iwll2

subject to yj(w'xj+b)>1 forall i
It's equivalent to solving the minimization problem
. . . 1 2
minimize 5 |lwl|5

subject to yj(w'xj+b) =1 forall i

Note that y;(w T x; + b) is the (functional) margin. The optimization finds the minimum norm
solution which has a margin of at least 1 on all examples.

e — e B i

Not linearly separable

What if the data is not linearly separable?

For any w, there will be points with a negative margin.

e — e B 57

Soft Margin SVM

Introduce slack variables &'s to penalize small margin:

minimize {|w|3+ <37 &
subject to yj(wTxi+b)>1—E&; forall i
£, >0 foralli

o If £ =0Vi, it's reduced to hard SVM.
@ What does &; > 0 mean?
@ What does C control?

e — e B Sy

Slack Variables

d(x;, H) = yilwTx+b) 1-¢&;

lwll2 = llwll2

margin:

@ &; =1: x; lies on the hyperplane

, thus &; measures the violation by multiples of the geometric

e &; =3: x; is past 2 margin width beyond the decision hyperplane

+
/
/
/ &=15
/ /
/ /
7
/ /
CSCI-GA 2565

10 /71

Minimize the Hinge Loss J

CSCI-GA 2565 11/71

Perceptron Loss
7x)

U(x,y,w) =max(0,—yw ' x

4%

—
m< \AWT’X

If we do ERM with this loss function, what happens?
] CSCI-GA 2565 12/71

Hinge Loss

e SVM/Hinge loss: £Hinge = max{l1—m,0} = (1—m)_

e Margin m = yf(x); “Positive part” (x)+ =x1[x > 0].

Loss
=== Zero_One

== Hinge

Loss(m)

0
Margin m=yf(x)

Hinge is a convex, upper bound on 0—1 loss. Not differentiable at m = 1.
We have a “margin error” when m < 1.

e — e B

13 /71

SVM as an Optimization Problem
@ The SVM optimization problem is equivalent to
minimize MwiP+SY &
1M1z —||W — i
2 n 4 !
i=1
subject to &
which is equivalent to
1 ¢ w
. 2
minimize = = - ;
inimiz 2||W|| +n;£
. T .
subjectto & =max(0,1—y; [w'x+b]) fori=1,..., n.

e — e B YN

SVM as an Optimization Problem

. 1, > €
minimize §||W|| +nzlii
=
. T .
subject to &;2max(0,1—y; [W X,-—i—b]) fori=1,...,n.

Move the constraint into the objective:

. 1 2 C . T
min —|lw||*+— max (0,1 —y; |w' x;+b]|).
i I+ 5 2 max (01— [+)
@ The first term is the L2 regularizer.

@ The second term is the Hinge loss.

e — e B 5L

Support Vector Machine

Using ERM:
o Hypothesis space = {f(x) =w'x+b|weR? beR}.
e {5 regularization (Tikhonov style)
@ Hinge loss £(m) =max{1—m,0}=(1—m)

@ The SVM prediction function is the solution to

) 1 5 C - T
Weg]dlerEREHWII —i—n;max(o,l—y; [w'xi+b]).

e — e B 5, 7L

Summary

Two ways to derive the SVM optimization problem:
@ Maximize the margin
@ Minimize the hinge loss with £, regularization
Both leads to the minimum norm solution satisfying certain margin constraints.
e Hard-margin SVM: all points must be correctly classified with the margin constraints

@ Soft-margin SVM: allow for margin constraint violation with some penalty

e — e B L

SVM Optimization Problem

@ SVM objective function:
J(w) = 1 i max (0 1 —y'WTX') + Allwl?
n — 1 1 1 -
=
o Not differentiable... but let's think about gradient descent anyway.

@ Hinge loss: {(m) =max(0,1—m)

Vwllw) = V, (iZf(y,-WTx,')—i-?\HWw)

i=1

= EZVWB (y,-WTX,') +2Aw
n i=1

e — B B ;)7L

“Gradient” of SVM Objective

@ Derivative of hinge loss £(m) = max(0,1—m):

0 m>1
U(m=<-1 m<1
undefined m=1

@ By chain rule, we have

Val (yiwTxi) = U (yiw”x) yixi
0 yiwTx;>1
= VX yiwTx <1

undefined yjw'x =1

e — e B YN

“Gradient” of SVM Objective

Vil (yiwx) = < —yixi

So

0 y,-WTx,- >1
y,-WTx,- <1
undefined yiw'x; =1

1N (owTs 2
vw([]ée()/lw X/)+)\||W||>

1 n

=) Vil (yiw'x) +2Aw

n i=1

{iZI:y,'waKl (—yixi) +2Aw all yiwTx; #1

undefined otherwise

CSCI-GA 2565

20/71

Gradient Descent on SVM Objective?

@ The gradient of the SVM objective is

Vadw) =1 3 (—yix)+ 20w

iryiwT x;<1
when y;w T x; # 1 for all i, and otherwise is undefined.

Potential arguments for why we shouldn’t care about the points of nondifferentiability:

o If we start with a random w, will we ever hit exactly yjw T x; =17
e If we did, could we perturb the step size by € to miss such a point?

@ Does it even make sense to check y;w ' x; =1 with floating point numbers?

e — e B B

Subgradient J

CSCI-GA 2565 22/71

First-Order Condition for Convex, Differentiable Function

@ Suppose f :R? — R is convex and differentiable Then for any x,y € RY

Fly) = f(x)+VF(x) (y—x)

@ The linear approximation to f at x is a global underestimator of f:
(W)
fl@) + Vf(z)"(y—2)

@ This implies that if Vf(x) =0 then x is a global minimizer of f.

Figure from Boyd & Vandenberghe Fig. 3.2; Proof in Section 3.1.3

e — o N B B

Subgradients

Definition

A vector g € RY is a subgradient of a convex function f : R? — R at x if for all z,
flz) > f(x)+g" (z—x).

A

\/

Blue is a graph of f(x).
Each red line x — f(xg) +g " (x—xp) is a global lower bound on f(x).
e CSCI-GA 2565 24 /71

Properties

Definitions

@ The set of all subgradients at x is called the subdifferential: 9f(x)
o f is subdifferentiable at x if 3 at least one subgradient at x.

For convex functions:

o f is differentiable at x iff 0f (x) ={Vf(x)}.

e Subdifferential is always non-empty (0f(x) =0 = f is not convex)

@ x is the global optimum iff 0 € 9f(x).

For non-convex functions:

@ The subdifferential may be an empty set (no global underestimator).

e — e B 5 7

Subdifferential of Absolute Value

o Consider f(x) = x|

f(z) = |z| 0f(z)

@ Plot on right shows {(x,g) | x € R, g € 0f(x)}

Boyd EE364b: Subgradients Slides

e — B B 20,7

Subgradient Descent

@ Move along the negative subgradient:

xt =xt—ng where g € df(x?) and >0
@ This can increase the objective but gets us closer to the minimizer if f is convex and n is
small enough:

t+

I — x| < [lx" = x|

@ Subgradients don't necessarily converge to zero as we get closer to x*, so we need
decreasing step sizes.

@ Subgradient methods are slower than gradient descent.

e — e B B

Subgradient descent for SVM

SVM objective function:

J(w) = %Z max (0,1—y;w " x;) +Allw|?.
i—1

Pegasos: stochastic subgradient descent with step size 1 = 1/(tA)

Input: A > 0. Choose w; =0,t =0
While termination condition not met

For j =1,...,n (assumes data is randomly permuted)
t=t+1
ne =1/ (tA);

If yj’thCL‘j <1

Wip1 = (1 = meA)ws + ey
Else

wiy1 = (1 —neA)wy

e — e B 257

Summary

@ Subgradient: generalize gradient for non-differentiable convex functions
@ Subgradient “descent’:

o General method for non-smooth functions

o Simple to implement

o Slow to converge

e — e B = i

The Dual Problem

@ In addition to subgradient descent, we can directly solve the optimization problem using a
Quadratic Programming (QP) solver.

@ For convex optimization problem, we can also look into its dual problem.

e — e B S0

SVM as a Quadratic Program

@ The SVM optimization problem is equivalent to

n
minimize ;||W||2+E;E.i
subject to —&; <0 fo:i =1,..., n
(l—y,-[WTx,-+b])— ;<0 fori=1,..., n
@ Differentiable objective function
@ n+d+1 unknowns and 2n affine constraints.
e A quadratic program that can be solved by any off-the-shelf QP solver.

@ Let's get more insights by examining the dual.

e — e B SR

The Lagrangian

The general [inequality-constrained| optimization problem is:

minimize fo(x)
subject to fi(x)<0, i=1,....m

Definition

The Lagrangian for this optimization problem is

L(x,A) = fo(x +Z?\f

@ A;'s are called Lagrange multipliers (also called the dual variables).
@ Weighted sum of the objective and constraint functions

@ Hard constraints — soft penalty (objective function)
e CSCI-GA 2565 32/71

Lagrange Dual Function

Definition

The Lagrange dual function is

g(\) = infL(x,\) = inf <f0(x) —l—Z?x;f;(x))

i=1

@ g(A) is concave

e Lower bound property: if A =0, g(A) < p* where p* is the optimal value of the
optimization problem.

@ g(A) can be —oco (uninformative lower bound)

e — B B 25,7

The Primal and the Dual

@ For any primal form optimization problem,

minimize fo(x)
subject to fi(x)<0, i=1,....,m,

there is a recipe for constructing a corresponding Lagrangian dual problem:

maximize g(A)

subject to Ai=0, i=1,....m,

@ The dual problem is always a convex optimization problem.

e — e B

34/71

Weak Duality

We always have weak duality: p* > d*.

fo gh
fo(z)

Plot courtesy of Brett Bernstein.

e — B B 25 i

Strong Duality

For some problems, we have strong duality: p* = d*.

foll
fo(z)

p*:d*— —— — — — — — — — — — —

For convex problems, strong duality is fairly typical.

Plot courtesy of Brett Bernstein.

e — B B S0

Complementary Slackness

@ Assume strong duality. Let x* be primal optimal and A* be dual optimal. Then:

fo(x*) = g(A")=inf L(x,A*) (strong duality and definition)

< L(x*,A")

= flx*)+) AFfi(x)
i=1

< folx®).

Each term in sum }_;_; A'fi(x*) must actually be 0. That is
Ai>0=— £(x*)=0 and fi(x")<0=— A, =0 Vi

This condition is known as complementary slackness.

e — e B Sy

The SVM Dual Problem J

CSCI-GA 2565 38/71

SVM Lagrange Multipliers

minimize

1, 5. Cw
w423

subject to —&, <0 fori=1,...,n

(1—yi[w'xi+b])—& <0 fori=1,..,n

Lagrange Multiplier \ Constraint

Aj

-£ <0

Ki

(1—y; [WTX,'+b])

—& <0

L(W,b,E,,O(,?\) 7” ||2+ ZE”—{_Z(X’ 1 .yl w Xl+b

i=1

CSCI-GA 2565

39/71

Strong Duality by Slater's Constraint Qualification

The SVM optimization problem:

o 1, 5 €
minimize §||W|| + - Zl &i
=
subject to —&; <0fori=1,...,n
(1—y,~ [WTX;+b])—£,- <0fori=1,...,n
Slater's constraint qualification:
@ Convex problem + affine constraints = strong duality iff problem is feasible
@ Do we have a feasible point?

@ For SVM, we have strong duality.

e — e B Ry

SVM Dual Function: First Order Conditions

Lagrange dual function is the inf over primal variables of L:

glo,A) = wi,T,CaL(W' b, &, o, A)

) 1 : c Z
= WI’YB’CE [2WTW+;£,' (;—Oci—7\i> +;0€; (1—yi [w'xi+b])
owL=0
dpL =0
d:,L=0
e EEEE— CSCI.GA 2565

41/71

SVM Dual Function

@ Substituting these conditions back into L, the second term disappears.

@ First and third terms become

o Putting it together, the dual function is

e — e B i

SVM Dual Problem

@ The dual function is

n
n 1 n T Z,’:1 o;yi=0
L — Y e KiOGYiViX; X)
g(o) = D i1 221,171 iGYYiX Xi i n=¢, all i
—00 otherwise.

e The dual problem is sup, -og(a,A):

n n
1 T
sup E Xi—3 E XiljyiyjXj Xi
oA .7 2 S

i=1 ij=1

n
s.t. Z oiyi=0
i=1

C .
x+Ai=— o« ,Ai=0,i=1,...,n
n

e — e B

43/71

Insights from the Dual Problem J

e — CSCI-GA 2565 a7

KKT Conditions

For convex problems, if Slater's condition is satisfied, then KKT conditions provide necessary
and sufficient conditions for the optimal solution.

@ Primal feasibility: f;(x) <0 Vi

@ Dual feasibility: A =0

o Complementary slackness: A;f;(x) =0
e First-order condition:

—L(x,A\)=0
0x ()

e — e B Ay

The SVM Dual Solution

o We found the SVM dual problem can be written as:

n n

2 1 § T

sup Xj— = oc,-ocjy,-ijj X

« , 2 &
i=1 ij=1

n
s.t. Z(X,'y,'zo
i—1
o € [o,f} i=1,....n
n

e Given solution o* to dual, primal solution is w* =Y 7 | ofyix;.
@ The solution is in the space spanned by the inputs.

e Note o € [0, ¢]. So ¢ controls max weight on each example. (Robustness!)
o What's the relation between ¢ and regularization?

e — e B RV

Complementary Slackness Conditions

@ Recall our primal constraints and Lagrange multipliers:

’ Lagrange Multiplier ‘ Constraint
)\i 'E»i X
Xi (1 Yi (I)) E»/ X

@ Recall first order condition V¢, L =0 gave us A7 = < — o}

@ By strong duality, we must have complementary slackness:
of (L=yif*(x)— &) =0
NEr=(S-ag) g =0
n

e — e B

47 /71

Consequences of Complementary Slackness

By strong duality, we must have complementary slackness.
of (L=yif*(x)—&) =0

c * *
(5-o)ei=0

Recall “slack variable” &F = max (0,1 —y;f*(x;)) is the hinge loss on (x;, ;).
o If y;f*(x;) > 1 then the margin loss is £ =0, and we get ocf =0.
o If y;f*(x;) <1 then the margin loss is £; >0, so of = 7.

o If af =0, then &F =0, which implies no loss, so y;f*(x) > 1.

o If af € (0,€), then £F =0, which implies 1—y;f*(x;) =0.

e — e B Ry

Complementary Slackness Results: Summary

If o* is a solution to the dual problem, then primal solution is

n
c
w = 'Zloc}ky,-x; wherea € [0, ;]
=

Relation between margin and example weights («;'s):

6 =0 = yf'(x)=1
o € (O,%) = yiff(x) =1

06?‘:% = yif" () <1
yif*(x) <1l = oc?‘:%
yif'(x)=1 = o € [0, %]
yiff(xj)>1 = «of =0

e — e B i

Support Vectors

o If o* is a solution to the dual problem, then primal solution is

n

* *

w :E X YiXi
i=1

with off € [0, £].
@ The x;'s corresponding to «} > 0 are called support vectors.

@ Few margin errors or “on the margin” examples = sparsity in input examples.

e — e B EayEn

Dual Problem: Dependence on x through inner products

@ SVM Dual Problem:

n n
1
sup Z =5 Z OCiOCj}/iyJ'XjTXi
x i=1 ij=1
n
s.t. Z ojyi =0
i=1

X € [0,£:| i=1,...,n.
n

o Note that all dependence on inputs x; and x; is through their inner product: (x;, x;) :ijx,-.

@ We can replace ijx,- by other products...

@ This is a "kernelized" objective function.

e — e B ey

Feature Maps J

CSCI-GA 2565 52/71

The Input Space X

@ Our general learning theory setup: no assumptions about X

@ But X =R for the specific methods we've developed:
o Ridge regression

o Lasso regression

o Support Vector Machines
@ Our hypothesis space for these was all affine functions on R¢:

?:{Xi—)WTX+b|W€Rd,b€R}.

e What if we want to do prediction on inputs not natively in R9?

e — e B 55,7

The Input Space X

Often want to use inputs not natively in RY:

o Text documents
o Image files
e Sound recordings

o DNA sequences

They may be represented in numbers, but...

(]

The ith entry of each sequence should have the same “meaning”

All the sequences should have the same length

e — e B i

Feature Extraction

Definition

Mapping an input from X to a vector in R? is called feature extraction or featurization.

Raw Input Feature Vector

xT £r
Fe ature. Cb (
Extraction

X R?

e — e B 5 7

Linear Models with Explicit Feature Map

Input space: X (no assumptions)

Introduce feature map ¢ : X — RY

@ The feature map maps into the feature space RY.

Hypothesis space of affine functions on feature space:

?:{Xr—>Wch(X)+b|WERd,bER}.

e — e B ey

Geometric Example: Two class problem, nonlinear boundary

$:R? - R3

(z1,%2) = (21,22, 23) i= (2}, \/(2)71 2, 73)

X A"Z
x x %
« x
4o x
~ ~
X -] x
% 2 N ox /
i o o 2 1
T ™ y
\ ~) §
X o/ AY
x\\ 2 % Ay
- | _— « \
x x N
\
N
x x % x TN
o

o With identity feature map ¢(x) = (x1,x2) and linear models, can't separate regions
o With appropriate featurization ¢(x) = (xl,xz,xl2 —|—x22), becomes linearly separable .

@ Video: http://youtu.be/31iCbRZPrZA
e CSCI-GA 2565 57 /71

http://youtu.be/3liCbRZPrZA

Expressivity of Hypothesis Space

@ For linear models, to grow the hypothesis spaces, we must add features.

@ Sometimes we say a larger hypothesis is more expressive.
o (can fit more relationships between input and action)

@ Many ways to create new features.

e — e B 55,7

Handling Nonlinearity with Linear Methods J

e — e B ey

Example Task: Predicting Health

o General Philosophy: Extract every feature that might be relevant
o Features for medical diagnosis

o height

o weight

body temperature

blood pressure

e etc...

From Percy Liang's "Lecture 3" slides from Stanford’s CS221, Autumn 2014.

e — o o EayEn

Feature Issues for Linear Predictors

@ For linear predictors, it's important how features are added
o The relation between a feature and the label may not be linear

o There may be complex dependence among features

@ Three types of nonlinearities can cause problems:
o Non-monotonicity

e Saturation

o Interactions between features

From Percy Liang's "Lecture 3" slides from Stanford’s CS221, Autumn 2014.

e — o o R

Non-monotonicity: The Issue

@ Feature Map: ¢(x) =[1, temperature(x)]

@ Action: Predict health score y € R (positive is good)
e Hypothesis Space F={affine functions of temperature}
@ Issue:

o Health is not an affine function of temperature.

o Affine function can either say
o Very high is bad and very low is good, or
o Very low is bad and very high is good,

o But here, both extremes are bad.

From Percy Liang's "Lecture 3" slides from Stanford’s CS221, Autumn 2014.

e — o o o i

Non-monotonicity: Solution 1

@ Transform the input:
$(x) = [1,{temperature(x)-37}2] ,

where 37 is “normal” temperature in Celsius.

o Ok, but requires manually-specified domain knowledge
o Do we really need that?

o What does w’ ¢ (x) look like?

From Percy Liang's "Lecture 3" slides from Stanford’s CS221, Autumn 2014.

e — o o 5,7

Non-monotonicity: Solution 2

@ Think less, put in more:
d(x) = 1,temperature(x),{temperature(x)}2

@ More expressive than Solution 1.

General Rule
Features should be simple building blocks that can be pieced together.

From Percy Liang's "Lecture 3" slides from Stanford’s CS221, Autumn 2014.

e — o o i

Saturation: The Issue

Setting: Find products relevant to user's query

Input: Product x

Output: Score the relevance of x to user's query

Feature Map:
$(x) =1, N(x)],

where N(x) = number of people who bought x.

@ We expect a monotonic relationship between N(x) and relevance, but also expect
diminishing return.

From Percy Liang's "Lecture 3" slides from Stanford’s CS221, Autumn 2014.

e —— o o 5 7

Saturation: Solve with nonlinear transform

@ Smooth nonlinear transformation:
$(x) =[1,log {1+ N(x)}]
o log(-) good for values with large dynamic ranges
e Discretization (a discontinuous transformation):
$(x) = (1[0 < N(x) < 10, 1[10 < N(x) < 100],...)

o Small buckets allow quite flexible relationship

From Percy Liang's "Lecture 3" slides from Stanford’s CS221, Autumn 2014.

e — o o o EyEn

Interactions: The Issue

Input: Patient information x

Action: Health score y € R (higher is better)

o Feature Map
& (x) = [height(x), weight(x)]

@ Issue: It's the weight relative to the height that's important.

Impossible to get with these features and a linear classifier.

Need some interaction between height and weight.

From Percy Liang's "Lecture 3" slides from Stanford’s CS221, Autumn 2014.

e —— o o EyEn

Interactions: Approach 1

e Google “ideal weight from height”

e J. D. Robinson’s “ideal weight” formula:
weight(kg) = 52+ 1.9 [height(in) — 60]

e Make score square deviation between height(h) and ideal weight(w)
f(x) = (52+ 1.9 [h(x) —60] — w(x))?

o WolframAlpha for complicated Mathematics:

f(x) =3.61h(x)?—3.8h(x)w(x) —235.6h(x) + w(x)?>+ 124w(x) + 3844

From Percy Liang's "Lecture 3" slides from Stanford’s CS221, Autumn 2014.

e — o o EEyEn

Interactions: Approach 2

@ Just include all second order features:

d(x) = |1, h(x),w(x), h(x)?, w(x)?, h(x)w(x)
H,_/
cross term

@ More flexible, no Google, no WolframAlpha.

General Principle

Simpler building blocks replace a single “smart” feature.

From Percy Liang's "Lecture 3" slides from Stanford’s CS221, Autumn 2014.

e —— o o o EEyEn

Monomial Interaction Terms

Interaction terms are useful building blocks to model non-linearities in features.
@ Suppose we start with x = (1,xq,...,xq) € RIT1 =X.

o Consider adding all monomials of degree M: x*--- x5, with p1 +---+pg = M.

o Monomials with degree 2 in 2D space: x12, x22, X1X2

e — B B EoyEn

Big Feature Spaces

This leads to extremely large data matrices
@ For d =40 and M =8, we get 314457495 features.

Very large feature spaces have two potential issues:
o Overfitting

@ Memory and computational costs

Solutions:

e Overfitting we handle with regularization.

e Kernel methods can help with memory and computational costs when we go to high (or
infinite) dimensional spaces.

e — e B ERyEn

	Minimize the Hinge Loss
	Subgradient
	The SVM Dual Problem
	Insights from the Dual Problem
	Feature Maps
	Handling Nonlinearity with Linear Methods

