Support Vector Machine

Mengye Ren

NYU

September 24, 2024

Maximum-Margin Separating Hyperplane

For separable data, there are infinitely many zero-error classifiers. Which one do we pick?

(Perceptron does not return a unique solution.)

Maximum-Margin Separating Hyperplane

We prefer the classifier that is farthest from both classes of points

- Geometric margin: smallest distance between the hyperplane and the points
- Maximum margin: *largest* distance to the closest points

CSCI-GA 2565

Geometric Margin

We want to maximize the distance between the separating hyperplane and the closest points. Let's formalize the problem.

Definition (separating hyperplane)

We say (x_i, y_i) for i = 1, ..., n are linearly separable if there is a $w \in \mathbb{R}^d$ and $b \in \mathbb{R}$ such that $y_i(w^T x_i + b) > 0$ for all *i*. The set $\{v \in \mathbb{R}^d \mid w^T v + b = 0\}$ is called a separating hyperplane.

Definition (geometric margin)

Let *H* be a hyperplane that separates the data (x_i, y_i) for i = 1, ..., n. The **geometric margin** of this hyperplane is

 $\min_i d(x_i, H),$

the distance from the hyperplane to the closest data point.

Distance between a Point and a Hyperplane

Maximize the Margin

We want to maximize the geometric margin:

maximize $\min_{i} d(x_i, H)$.

Given separating hyperplane $H = \{v \mid w^T v + b = 0\}$, we have

maximize min
$$\frac{y_i(w^T x_i + b)}{\|w\|_2}$$

Let's remove the inner minimization problem by

$$\begin{array}{ll} \text{maximize} & M \\ \text{subject to} & \frac{y_i(w^T x_i + b)}{\|w\|_2} \geqslant M \quad \text{for all } i \end{array}$$

Note that the solution is not unique (why?).

Maximize the Margin

Let's fix the norm $||w||_2$ to 1/M to obtain:

maximize
$$\frac{1}{\|w\|_2}$$

subject to $y_i(w^T x_i + b) \ge 1$ for all *i*

It's equivalent to solving the minimization problem

minimize
$$\frac{1}{2} ||w||_2^2$$

subject to $y_i(w^T x_i + b) \ge 1$ for all i

Note that $y_i(w^T x_i + b)$ is the (functional) margin. The optimization finds the minimum norm solution which has a margin of at least 1 on all examples.

What if the data is not linearly separable?

For any w, there will be points with a negative margin.

Soft Margin SVM

Introduce slack variables ξ 's to penalize small margin:

$$\begin{array}{ll} \text{minimize} & \frac{1}{2} \|w\|_2^2 + \frac{c}{n} \sum_{i=1}^n \xi_i \\ \text{subject to} & y_i (w^T x_i + b) \ge 1 - \xi_i \quad \text{for all } i \\ & \xi_i \ge 0 \quad \text{for all } i \end{array}$$

- If $\xi_i = 0 \forall i$, it's reduced to hard SVM.
- What does $\xi_i > 0$ mean?
- What does *C* control?

Slack Variables

 $d(x_i, H) = \frac{y_i(w^T x_i + b)}{\|w\|_2} \ge \frac{1 - \xi_i}{\|w\|_2}$, thus ξ_i measures the violation by multiples of the geometric margin:

- $\xi_i = 1$: x_i lies on the hyperplane
- $\xi_i = 3$: x_i is past 2 margin width beyond the decision hyperplane

Minimize the Hinge Loss

Perceptron Loss

$$\ell(x, y, w) = \max(0, -yw^T x)$$

If we do ERM with this loss function, what happens?

Hinge Loss

- SVM/Hinge loss: $\ell_{\text{Hinge}} = \max\{1 m, 0\} = (1 m)_+$
- Margin m = yf(x); "Positive part" $(x)_+ = x \mathbb{1}[x \ge 0]$.

Hinge is a convex, upper bound on 0-1 loss. Not differentiable at m = 1. We have a "margin error" when m < 1.

SVM as an Optimization Problem

• The SVM optimization problem is equivalent to

minimize
$$\frac{1}{2} ||w||^2 + \frac{c}{n} \sum_{i=1}^n \xi_i$$

subject to
$$\xi_i \ge \left(1 - y_i \left[w^T x_i + b\right]\right) \text{ for } i = 1, \dots, n$$

$$\xi_i \ge 0 \text{ for } i = 1, \dots, n$$

which is equivalent to

minimize
$$\frac{1}{2} ||w||^2 + \frac{c}{n} \sum_{i=1}^n \xi_i$$

subject to
$$\xi_i \ge \max\left(0, 1 - y_i \left[w^T x_i + b\right]\right) \text{ for } i = 1, \dots, n.$$

SVM as an Optimization Problem

minimize
$$\frac{1}{2} ||w||^2 + \frac{c}{n} \sum_{i=1}^n \xi_i$$

subject to $\xi_i \ge \max\left(0, 1 - y_i \left[w^T x_i + b\right]\right)$ for $i = 1, ..., n$.

Move the constraint into the objective:

$$\min_{w \in \mathbb{R}^{d}, b \in \mathbb{R}} \frac{1}{2} ||w||^{2} + \frac{c}{n} \sum_{i=1}^{n} \max\left(0, 1 - y_{i} \left[w^{T} x_{i} + b\right]\right).$$

- The first term is the L2 regularizer.
- The second term is the Hinge loss.

Support Vector Machine

Using ERM:

- Hypothesis space $\mathcal{F} = \{f(x) = w^T x + b \mid w \in \mathbb{R}^d, b \in \mathbb{R}\}.$
- ℓ_2 regularization (Tikhonov style)
- Hinge loss $\ell(m) = \max\{1 m, 0\} = (1 m)_+$
- The SVM prediction function is the solution to

$$\min_{w \in \mathbb{R}^{d}, b \in \mathbb{R}} \frac{1}{2} ||w||^{2} + \frac{c}{n} \sum_{i=1}^{n} \max\left(0, 1 - y_{i} \left[w^{T} x_{i} + b\right]\right).$$

Two ways to derive the SVM optimization problem:

- Maximize the margin
- Minimize the hinge loss with ℓ_2 regularization

Both leads to the minimum norm solution satisfying certain margin constraints.

- Hard-margin SVM: all points must be correctly classified with the margin constraints
- Soft-margin SVM: allow for margin constraint violation with some penalty

SVM Optimization Problem

• SVM objective function:

$$J(w) = \frac{1}{n} \sum_{i=1}^{n} \max(0, 1 - y_i w^T x_i) + \lambda ||w||^2.$$

- Not differentiable... but let's think about gradient descent anyway.
- Hinge loss: $\ell(m) = \max(0, 1-m)$

$$\nabla_{w} J(w) = \nabla_{w} \left(\frac{1}{n} \sum_{i=1}^{n} \ell(y_{i} w^{T} x_{i}) + \lambda ||w||^{2} \right)$$
$$= \frac{1}{n} \sum_{i=1}^{n} \nabla_{w} \ell(y_{i} w^{T} x_{i}) + 2\lambda w$$

"Gradient" of SVM Objective

• Derivative of hinge loss $\ell(m) = \max(0, 1-m)$:

$$\ell'(m) = \begin{cases} 0 & m > 1 \\ -1 & m < 1 \\ \text{undefined} & m = 1 \end{cases}$$

• By chain rule, we have

$$\nabla_{w}\ell(y_{i}w^{T}x_{i}) = \ell'(y_{i}w^{T}x_{i})y_{i}x_{i}$$
$$= \begin{cases} 0 & y_{i}w^{T}x_{i} > 1\\ -y_{i}x_{i} & y_{i}w^{T}x_{i} < 1\\ \text{undefined} & y_{i}w^{T}x_{i} = 1 \end{cases}$$

"Gradient" of SVM Objective

$$\nabla_{w}\ell(y_{i}w^{T}x_{i}) = \begin{cases} 0 & y_{i}w^{T}x_{i} > 1\\ -y_{i}x_{i} & y_{i}w^{T}x_{i} < 1\\ \text{undefined} & y_{i}w^{T}x_{i} = 1 \end{cases}$$

$$\nabla_{w} J(w) = \nabla_{w} \left(\frac{1}{n} \sum_{i=1}^{n} \ell\left(y_{i} w^{T} x_{i}\right) + \lambda ||w||^{2} \right)$$
$$= \frac{1}{n} \sum_{i=1}^{n} \nabla_{w} \ell\left(y_{i} w^{T} x_{i}\right) + 2\lambda w$$
$$= \begin{cases} \frac{1}{n} \sum_{i:y_{i} w^{T} x_{i} < 1} (-y_{i} x_{i}) + 2\lambda w & \text{all } y_{i} w^{T} x_{i} \neq 1 \\ \text{undefined} & \text{otherwise} \end{cases}$$

Gradient Descent on SVM Objective?

• The gradient of the SVM objective is

$$\nabla_{w}J(w) = \frac{1}{n}\sum_{i:y_{i}w^{T}x_{i}<1}(-y_{i}x_{i})+2\lambda w$$

when $y_i w^T x_i \neq 1$ for all *i*, and otherwise is undefined.

Potential arguments for why we shouldn't care about the points of nondifferentiability:

- If we start with a random w, will we ever hit exactly $y_i w^T x_i = 1$?
- If we did, could we perturb the step size by ε to miss such a point?
- Does it even make sense to check $y_i w^T x_i = 1$ with floating point numbers?

Subgradient

First-Order Condition for Convex, Differentiable Function

• Suppose $f : \mathbb{R}^d \to \mathbb{R}$ is convex and differentiable Then for any $x, y \in \mathbb{R}^d$

$$f(y) \ge f(x) + \nabla f(x)^{T}(y - x)$$

• The linear approximation to f at x is a global underestimator of f:

• This implies that if $\nabla f(x) = 0$ then x is a global minimizer of f.

Figure from Boyd & Vandenberghe Fig. 3.2; Proof in Section 3.1.3

Subgradients

Definition

A vector $g \in \mathbb{R}^d$ is a subgradient of a *convex* function $f : \mathbb{R}^d \to \mathbb{R}$ at x if for all z,

 $f(z) \geq f(x) + g^{T}(z-x).$

Blue is a graph of f(x). Each red line $x \mapsto f(x_0) + g^T(x - x_0)$ is a global lower bound on f(x).

Properties

Definitions

- The set of all subgradients at x is called the subdifferential: $\partial f(x)$
- f is subdifferentiable at x if \exists at least one subgradient at x.

For convex functions:

- f is differentiable at x iff $\partial f(x) = \{\nabla f(x)\}.$
- Subdifferential is always non-empty ($\partial f(x) = \emptyset \implies f$ is not convex)
- x is the global optimum iff $0 \in \partial f(x)$.

For non-convex functions:

• The subdifferential may be an empty set (no global underestimator).

Subdifferential of Absolute Value

• Consider f(x) = |x|

• Plot on right shows $\{(x,g) \mid x \in \mathsf{R}, g \in \partial f(x)\}$

Boyd EE364b: Subgradients Slides

Subgradient Descent

• Move along the negative subgradient:

$$x^{t+1} = x^t - \eta g$$
 where $g \in \partial f(x^t)$ and $\eta > 0$

• This can increase the objective but gets us closer to the minimizer if *f* is convex and η is small enough:

$$\|x^{t+1} - x^*\| < \|x^t - x^*\|$$

- Subgradients don't necessarily converge to zero as we get closer to x*, so we need decreasing step sizes.
- Subgradient methods are slower than gradient descent.

Subgradient descent for SVM

SVM objective function:

$$J(w) = \frac{1}{n} \sum_{i=1}^{n} \max(0, 1 - y_i w^T x_i) + \lambda ||w||^2.$$

Pegasos: stochastic subgradient descent with step size $\eta_t = 1/(t\lambda)$

Input: $\lambda > 0$. Choose $w_1 = 0, t = 0$ While termination condition not met For j = 1, ..., n (assumes data is randomly permuted) t = t + 1 $\eta_t = 1/(t\lambda)$; If $y_j w_t^T x_j < 1$ $w_{t+1} = (1 - \eta_t \lambda) w_t + \eta_t y_j x_j$ Else $w_{t+1} = (1 - \eta_t \lambda) w_t$

- Subgradient: generalize gradient for non-differentiable convex functions
- Subgradient "descent":
 - General method for non-smooth functions
 - Simple to implement
 - Slow to converge

- In addition to subgradient descent, we can directly solve the optimization problem using a Quadratic Programming (QP) solver.
- For convex optimization problem, we can also look into its dual problem.

SVM as a Quadratic Program

• The SVM optimization problem is equivalent to

minimize
$$\frac{1}{2} ||w||^2 + \frac{c}{n} \sum_{i=1}^n \xi_i$$

subject to
$$-\xi_i \leq 0 \quad \text{for } i = 1, \dots, n$$
$$\left(1 - y_i \left[w^T x_i + b\right]\right) - \xi_i \leq 0 \quad \text{for } i = 1, \dots, n$$

- Differentiable objective function
- n+d+1 unknowns and 2n affine constraints.
- A quadratic program that can be solved by any off-the-shelf QP solver.
- Let's get more insights by examining the dual.

The Lagrangian

The general [inequality-constrained] optimization problem is:

minimize
$$f_0(x)$$

subject to $f_i(x) \leq 0, i = 1, ..., m$

Definition

The Lagrangian for this optimization problem is

$$L(x,\lambda) = f_0(x) + \sum_{i=1}^m \lambda_i f_i(x).$$

- λ_i 's are called Lagrange multipliers (also called the dual variables).
- Weighted sum of the objective and constraint functions
- \bullet Hard constraints \rightarrow soft penalty (objective function)

Lagrange Dual Function

Definition

The Lagrange dual function is

$$g(\lambda) = \inf_{x} L(x, \lambda) = \inf_{x} \left(f_0(x) + \sum_{i=1}^{m} \lambda_i f_i(x) \right)$$

• $g(\lambda)$ is concave

- Lower bound property: if λ ≥ 0, g(λ) ≤ p* where p* is the optimal value of the optimization problem.
- $g(\lambda)$ can be $-\infty$ (uninformative lower bound)

The Primal and the Dual

• For any primal form optimization problem,

minimize $f_0(x)$ subject to $f_i(x) \leq 0, i = 1, ..., m$,

there is a recipe for constructing a corresponding Lagrangian dual problem:

 $\begin{array}{ll} \text{maximize} & g(\lambda) \\ \text{subject to} & \lambda_i \ge 0, \ i = 1, \dots, m, \end{array}$

• The dual problem is always a convex optimization problem.

Weak Duality

We always have weak duality: $p^* \ge d^*$.

Plot courtesy of Brett Bernstein.

Strong Duality

For some problems, we have strong duality: $p^* = d^*$.

For convex problems, strong duality is fairly typical.

Plot courtesy of Brett Bernstein.

Complementary Slackness

• Assume strong duality. Let x^* be primal optimal and λ^* be dual optimal. Then:

$$\begin{array}{rcl} f_0(x^*) &=& g(\lambda^*) = \inf_x L(x,\lambda^*) \quad (\text{strong duality and definition}) \\ &\leqslant& L(x^*,\lambda^*) \\ &=& f_0(x^*) + \sum_{i=1}^m \lambda_i^* f_i(x^*) \\ &\leqslant& f_0(x^*). \end{array}$$

Each term in sum $\sum_{i=1} \lambda_i^* f_i(x^*)$ must actually be 0. That is

$$\lambda_i > 0 \implies f_i(x^*) = 0$$
 and $f_i(x^*) < 0 \implies \lambda_i = 0$ $\forall i$

This condition is known as **complementary slackness**.

The SVM Dual Problem

SVM Lagrange Multipliers

minimize
$$\frac{1}{2} ||w||^2 + \frac{c}{n} \sum_{i=1}^n \xi_i$$

subject to
$$-\xi_i \leq 0 \quad \text{for } i = 1, \dots, n$$
$$\left(1 - y_i \left[w^T x_i + b\right]\right) - \xi_i \leq 0 \quad \text{for } i = 1, \dots, n$$

Lagrange Multiplier	Constraint
λ_i	$-\xi_i \leqslant 0$
α_i	$\left(1-y_i\left[w^T x_i+b\right]\right)-\xi_i\leqslant 0$

$$L(w, b, \xi, \alpha, \lambda) = \frac{1}{2} ||w||^2 + \frac{c}{n} \sum_{i=1}^n \xi_i + \sum_{i=1}^n \alpha_i \left(1 - y_i \left[w^T x_i + b \right] - \xi_i \right) + \sum_{i=1}^n \lambda_i \left(-\xi_i \right)$$

Strong Duality by Slater's Constraint Qualification

The SVM optimization problem:

minimize
$$\frac{1}{2} ||w||^2 + \frac{c}{n} \sum_{i=1}^n \xi_i$$

subject to
$$-\xi_i \leq 0 \text{ for } i = 1, \dots, n$$
$$(1 - y_i [w^T x_i + b]) - \xi_i \leq 0 \text{ for } i = 1, \dots, n$$

Slater's constraint qualification:

- Convex problem + affine constraints \implies strong duality iff problem is feasible
- Do we have a feasible point?
- For SVM, we have strong duality.

SVM Dual Function: First Order Conditions

Lagrange dual function is the inf over primal variables of *L*:

$$g(\alpha, \lambda) = \inf_{w, b, \xi} L(w, b, \xi, \alpha, \lambda)$$

=
$$\inf_{w, b, \xi} \left[\frac{1}{2} w^T w + \sum_{i=1}^n \xi_i \left(\frac{c}{n} - \alpha_i - \lambda_i \right) + \sum_{i=1}^n \alpha_i \left(1 - y_i \left[w^T x_i + b \right] \right) \right]$$

 $\partial_w L = 0$

$$\partial_b L = 0$$

 $\partial_{\xi_i} L = 0$

SVM Dual Function

- Substituting these conditions back into *L*, the second term disappears.
- First and third terms become

• Putting it together, the dual function is

SVM Dual Problem

• The dual function is

$$g(\alpha, \lambda) = \begin{cases} \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{n} \alpha_i \alpha_j y_i y_j x_j^T x_i & \frac{\sum_{i=1}^{n} \alpha_i y_i = 0}{\alpha_i + \lambda_i = \frac{c}{n}, \text{ all } i} \\ -\infty & \text{otherwise.} \end{cases}$$

• The dual problem is $\sup_{\alpha,\lambda \succeq 0} g(\alpha, \lambda)$:

$$\sup_{\substack{\alpha,\lambda}\\ \text{s.t.}} \sum_{i=1}^{n} \alpha_{i} - \frac{1}{2} \sum_{i,j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} x_{j}^{T} x_{i}$$

s.t.
$$\sum_{i=1}^{n} \alpha_{i} y_{i} = 0$$
$$\alpha_{i} + \lambda_{i} = \frac{c}{n} \quad \alpha_{i}, \lambda_{i} \ge 0, \ i = 1, \dots, n$$

Insights from the Dual Problem

KKT Conditions

For convex problems, if Slater's condition is satisfied, then KKT conditions provide necessary and sufficient conditions for the optimal solution.

- Primal feasibility: $f_i(x) \leq 0 \quad \forall i$
- Dual feasibility: $\lambda \succeq 0$
- Complementary slackness: $\lambda_i f_i(x) = 0$
- First-order condition:

$$\frac{\partial}{\partial x}L(x,\lambda)=0$$

The SVM Dual Solution

• We found the SVM dual problem can be written as:

$$\sup_{\alpha} \sum_{i=1}^{n} \alpha_{i} - \frac{1}{2} \sum_{i,j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} x_{j}^{T} x_{i}$$

s.t.
$$\sum_{i=1}^{n} \alpha_{i} y_{i} = 0$$
$$\alpha_{i} \in \left[0, \frac{c}{n}\right] \quad i = 1, \dots, n.$$

- Given solution α^* to dual, primal solution is $w^* = \sum_{i=1}^n \alpha_i^* y_i x_i$.
- The solution is in the space spanned by the inputs.
- Note $\alpha_i^* \in [0, \frac{c}{n}]$. So c controls max weight on each example. (Robustness!)
 - What's the relation between c and regularization?

Complementary Slackness Conditions

• Recall our primal constraints and Lagrange multipliers:

Lagrange Multiplier	Constraint
λ_i	-ξ, _i ≤ 0
α_i	$(1-y_if(x_i))-\xi_i\leqslant 0$

- Recall first order condition $\nabla_{\xi_i} L = 0$ gave us $\lambda_i^* = \frac{c}{n} \alpha_i^*$.
- By strong duality, we must have complementary slackness:

$$\alpha_i^* \left(1 - y_i f^*(x_i) - \xi_i^* \right) = 0$$
$$\lambda_i^* \xi_i^* = \left(\frac{c}{n} - \alpha_i^* \right) \xi_i^* = 0$$

Consequences of Complementary Slackness

By strong duality, we must have complementary slackness.

$$\begin{aligned} x_i^* \left(1 - y_i f^*(x_i) - \xi_i^*\right) &= 0\\ \left(\frac{c}{n} - \alpha_i^*\right) \xi_i^* &= 0 \end{aligned}$$

Recall "slack variable" $\xi_i^* = \max(0, 1 - y_i f^*(x_i))$ is the hinge loss on (x_i, y_i) .

- If $y_i f^*(x_i) > 1$ then the margin loss is $\xi_i^* = 0$, and we get $\alpha_i^* = 0$.
- If $y_i f^*(x_i) < 1$ then the margin loss is $\xi_i^* > 0$, so $\alpha_i^* = \frac{c}{n}$.
- If $\alpha_i^* = 0$, then $\xi_i^* = 0$, which implies no loss, so $y_i f^*(x) \ge 1$.
- If $\alpha_i^* \in (0, \frac{c}{n})$, then $\xi_i^* = 0$, which implies $1 y_i f^*(x_i) = 0$.

Complementary Slackness Results: Summary

If α^{\ast} is a solution to the dual problem, then primal solution is

$$w^* = \sum_{i=1}^n lpha_i^* y_i x_i \quad ext{where} lpha_i^* \in [0, rac{c}{n}].$$

Relation between margin and example weights (α_i 's):

$$\begin{aligned} \alpha_i^* &= 0 \implies y_i f^*(x_i) \ge 1\\ \alpha_i^* &\in \left(0, \frac{c}{n}\right) \implies y_i f^*(x_i) = 1\\ \alpha_i^* &= \frac{c}{n} \implies y_i f^*(x_i) \le 1\\ y_i f^*(x_i) < 1 \implies \alpha_i^* = \frac{c}{n}\\ y_i f^*(x_i) = 1 \implies \alpha_i^* \in \left[0, \frac{c}{n}\right]\\ y_i f^*(x_i) > 1 \implies \alpha_i^* = 0 \end{aligned}$$

 $\bullet\,$ If α^* is a solution to the dual problem, then primal solution is

$$w^* = \sum_{i=1}^n \alpha_i^* y_i x_i$$

with $\alpha_i^* \in [0, \frac{c}{n}]$.

- The x_i 's corresponding to $\alpha_i^* > 0$ are called **support vectors**.
- Few margin errors or "on the margin" examples \implies sparsity in input examples.

Dual Problem: Dependence on x through inner products

• SVM Dual Problem:

$$\sup_{\alpha} \sum_{i=1}^{n} \alpha_{i} - \frac{1}{2} \sum_{i,j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} x_{j}^{T} x_{i}$$

s.t.
$$\sum_{i=1}^{n} \alpha_{i} y_{i} = 0$$
$$\alpha_{i} \in \left[0, \frac{c}{n}\right] \quad i = 1, \dots, n.$$

- Note that all dependence on inputs x_i and x_j is through their inner product: $\langle x_j, x_i \rangle = x_i^T x_i$.
- We can replace $x_i^T x_i$ by other products...
- This is a "kernelized" objective function.

Feature Maps

The Input Space ${\mathcal X}$

- \bullet Our general learning theory setup: no assumptions about ${\mathcal X}$
- But $\mathfrak{X} = \mathsf{R}^d$ for the specific methods we've developed:
 - Ridge regression
 - Lasso regression
 - Support Vector Machines
- Our hypothesis space for these was all affine functions on R^d :

$$\mathcal{F} = \left\{ x \mapsto w^{T} x + b \mid w \in \mathsf{R}^{d}, b \in \mathsf{R} \right\}.$$

• What if we want to do prediction on inputs not natively in R^d ?

The Input Space ${\mathfrak X}$

- Often want to use inputs not natively in R^d:
 - Text documents
 - Image files
 - Sound recordings
 - DNA sequences
- They may be represented in numbers, but...
- The *i*th entry of each sequence should have the same "meaning"
- All the sequences should have the same length

Feature Extraction

Definition

Mapping an input from \mathcal{X} to a vector in \mathbb{R}^d is called **feature extraction** or **featurization**.

Raw Input

Feature Vector

Linear Models with Explicit Feature Map

- Input space: \mathcal{X} (no assumptions)
- Introduce feature map $\phi: \mathcal{X} \to \mathsf{R}^d$
- The feature map maps into the feature space R^d .
- Hypothesis space of affine functions on feature space:

$$\mathcal{F} = \left\{ x \mapsto w^T \varphi(x) + b \mid w \in \mathbb{R}^d, b \in \mathbb{R} \right\}.$$

Geometric Example: Two class problem, nonlinear boundary

- With identity feature map $\phi(x) = (x_1, x_2)$ and linear models, can't separate regions
- With appropriate featurization $\phi(x) = (x_1, x_2, x_1^2 + x_2^2)$, becomes linearly separable.
- Video: http://youtu.be/3liCbRZPrZA

Expressivity of Hypothesis Space

- For linear models, to grow the hypothesis spaces, we must add features.
- Sometimes we say a larger hypothesis is more expressive.
 - (can fit more relationships between input and action)
- Many ways to create new features.

Handling Nonlinearity with Linear Methods

Example Task: Predicting Health

- General Philosophy: Extract every feature that might be relevant
- Features for medical diagnosis
 - height
 - weight
 - body temperature
 - blood pressure
 - etc...

From Percy Liang's "Lecture 3" slides from Stanford's CS221, Autumn 2014.

Feature Issues for Linear Predictors

- For linear predictors, it's important how features are added
 - The relation between a feature and the label may not be linear
 - There may be complex dependence among features
- Three types of nonlinearities can cause problems:
 - Non-monotonicity
 - Saturation
 - Interactions between features

From Percy Liang's "Lecture 3" slides from Stanford's CS221, Autumn 2014.

Non-monotonicity: The Issue

- Feature Map: $\phi(x) = [1, temperature(x)]$
- Action: Predict health score $y \in R$ (positive is good)
- Hypothesis Space $\mathcal{F}=\{affine \text{ functions of temperature}\}$
- Issue:
 - Health is not an affine function of temperature.
 - Affine function can either say
 - Very high is bad and very low is good, or
 - Very low is bad and very high is good,
 - But here, both extremes are bad.

From Percy Liang's "Lecture 3" slides from Stanford's CS221, Autumn 2014.

Non-monotonicity: Solution 1

• Transform the input:

$$\phi(x) = \left[1, \{\text{temperature}(x)-37\}^2\right],$$

where 37 is "normal" temperature in Celsius.

- Ok, but requires manually-specified domain knowledge
 - Do we really need that?
 - What does $w^T \phi(x)$ look like?

From Percy Liang's "Lecture 3" slides from Stanford's CS221, Autumn 2014.

Non-monotonicity: Solution 2

• Think less, put in more:

$$\phi(x) = \left[1, \text{temperature}(x), \{\text{temperature}(x)\}^2\right]$$

• More expressive than Solution 1.

General Rule

Features should be simple building blocks that can be pieced together.

From Percy Liang's "Lecture 3" slides from Stanford's CS221, Autumn 2014.

Saturation: The Issue

- Setting: Find products relevant to user's query
- Input: Product *x*
- Output: Score the relevance of x to user's query
- Feature Map:

$$\varphi(x) = [1, N(x)],$$

where N(x) = number of people who bought x.

• We expect a monotonic relationship between N(x) and relevance, but also expect diminishing return.

From Percy Liang's "Lecture 3" slides from Stanford's CS221, Autumn 2014.

Saturation: Solve with nonlinear transform

• Smooth nonlinear transformation:

 $\phi(x) = [1, \log\{1 + N(x)\}]$

- $\bullet~\log{(\cdot)}$ good for values with large dynamic ranges
- Discretization (a discontinuous transformation):

 $\Phi(x) = (\mathbb{1}[0 \le N(x) < 10], \mathbb{1}[10 \le N(x) < 100], \ldots)$

• Small buckets allow quite flexible relationship

From Percy Liang's "Lecture 3" slides from Stanford's CS221, Autumn 2014.

Interactions: The Issue

- Input: Patient information x
- Action: Health score $y \in R$ (higher is better)
- Feature Map

 $\phi(x) = [height(x), weight(x)]$

- Issue: It's the weight *relative* to the height that's important.
- Impossible to get with these features and a linear classifier.
- Need some interaction between height and weight.

From Percy Liang's "Lecture 3" slides from Stanford's CS221, Autumn 2014.

Interactions: Approach 1

- Google "ideal weight from height"
- J. D. Robinson's "ideal weight" formula:

weight(kg) = 52 + 1.9 [height(in) - 60]

• Make score square deviation between height(h) and ideal weight(w)

$$f(x) = (52 + 1.9 [h(x) - 60] - w(x))^2$$

• WolframAlpha for complicated Mathematics:

$$f(x) = 3.61h(x)^2 - 3.8h(x)w(x) - 235.6h(x) + w(x)^2 + 124w(x) + 3844$$

From Percy Liang's "Lecture 3" slides from Stanford's CS221, Autumn 2014.

Interactions: Approach 2

• Just include all second order features:

$$\phi(x) = \left[1, h(x), w(x), h(x)^2, w(x)^2, \underbrace{h(x)w(x)}_{\text{cross term}}\right]$$

• More flexible, no Google, no WolframAlpha.

General Principle

Simpler building blocks replace a single "smart" feature.

From Percy Liang's "Lecture 3" slides from Stanford's CS221, Autumn 2014.

Interaction terms are useful building blocks to model non-linearities in features.

- Suppose we start with $x = (1, x_1, \dots, x_d) \in \mathbb{R}^{d+1} = \mathfrak{X}$.
- Consider adding all monomials of degree M: $x_1^{p_1} \cdots x_d^{p_d}$, with $p_1 + \cdots + p_d = M$.
 - Monomials with degree 2 in 2D space: x_1^2 , x_2^2 , x_1x_2

Big Feature Spaces

This leads to extremely large data matrices

• For d = 40 and M = 8, we get 314457495 features.

Very large feature spaces have two potential issues:

- Overfitting
- Memory and computational costs

Solutions:

- Overfitting we handle with regularization.
- Kernel methods can help with memory and computational costs when we go to high (or infinite) dimensional spaces.