
Support Vector Machine

Mengye Ren

NYU

September 24, 2024

CSCI-GA 2565 1 / 71

Maximum-Margin Separating Hyperplane

For separable data, there are infinitely many zero-error classifiers.

Which one do we pick?

Xzh

O O

l :*:*. ÷:
x x

x o

-x,

(Perceptron does not return a unique solution.)

CSCI-GA 2565 2 / 71

Maximum-Margin Separating Hyperplane

We prefer the classifier that is farthest from both classes of points

A

yammering
'm

O O

1¥ : :
X x

X x
O o O

x x
x o

-x,

Geometric margin: smallest distance between the hyperplane and the points

Maximum margin: largest distance to the closest points
CSCI-GA 2565 3 / 71

Geometric Margin

We want to maximize the distance between the separating hyperplane and the closest points.

Let’s formalize the problem.

Definition (separating hyperplane)

We say (xi ,yi) for i = 1, . . . ,n are linearly separable if there is a w ∈ Rd and b ∈ R such that
yi (w

T xi +b)> 0 for all i . The set {v ∈ Rd | wT v +b = 0} is called a separating hyperplane.

Definition (geometric margin)

Let H be a hyperplane that separates the data (xi ,yi) for i = 1, . . . ,n. The geometric margin
of this hyperplane is

min
i

d(xi ,H),

the distance from the hyperplane to the closest data point.

CSCI-GA 2565 4 / 71

Distance between a Point and a Hyperplane

<latexit sha1_base64="VQB14ElJwnNPgog3Hhcs5tX+JT4=">AAACVXicdVDLSgMxFM2MVWt9VV24cBMsSkUoMyLoRih247KCVcHWkkkzbTCPIbmjlmG+xq1+j/gxguljoZUeCJx7zj1wc6JEcAtB8OX5C4XFpeXiSml1bX1js7y1fWt1aihrUS20uY+IZYIr1gIOgt0nhhEZCXYXPTVG/t0zM5ZrdQPDhHUk6Ssec0rASd3yblx9PcIXOMLH+OWxDTrBr24MuuVKUAvGwP9JOCUVNEWzu+UdtnuappIpoIJY+xAGCXQyYoBTwfJSO7UsIfSJ9NmDo4pIZjvZ+Ac5PnBKD8fauKcAj9XfiYxIa4cycpuSwMDOeiNxngcDmf/VRF8b7mRO5xgz10J83sm4SlJgik6OjVOBQeNRpbjHDaMgho4Q6vKcYjoghlBwxZfa42DW0FIS1bO5azac7fE/uT2phUEtvD6t1C+nHRfRHtpHVRSiM1RHV6iJWoiiHL2hd/ThfXrffsFfmqz63jSzg/7A3/wB/6uz1A==</latexit>

<latexit sha1_base64="SQ4s8AFHTzFnLzTEnxRMVAdSJDM=">AAACP3icdVBLS8NAGNzUV62vVo9egkXxVBIR9FjsxWNF+4A2lM1mky7dR9jdiCXkJ3jV3+PP8Bd4E6/e3KY52JYOfDDMfAPD+DElSjvOp1Xa2Nza3invVvb2Dw6PqrXjrhKJRLiDBBWy70OFKeG4o4mmuB9LDJlPcc+ftGZ+7xlLRQR/0tMYewxGnIQEQW2kx5eRO6rWnYaTw14lbkHqoEB7VLMuhoFACcNcIwqVGrhOrL0USk0QxVllmCgcQzSBER4YyiHDykvzrpl9bpTADoU0x7Wdq/8TKWRKTZlvPhnUY7XszcR1nh6zbFGjkZDEyAStMZba6vDWSwmPE405mpcNE2prYc/GswMiMdJ0aghEJk+QjcZQQqTNxJVhHkxbgjHIA5WZZd3lHVdJ96rhOg334brevCs2LoNTcAYugQtuQBPcgzboAAQi8ArewLv1YX1Z39bP/LVkFZkTsADr9w/q1LCe</latexit>

<latexit sha1_base64="wLxVwb7JO8TFCMfjpr5pGfRwb2g=">AAACP3icdVBLS8NAGNz4rPXV6tFLsCieSlIEPRZ78VjRPqANZbPZpEv3EXY3Ygn5CV719/gz/AXexKs3t2kOtqUDHwwz38AwfkyJ0o7zaW1sbm3v7Jb2yvsHh0fHlepJV4lEItxBggrZ96HClHDc0URT3I8lhsynuOdPWjO/94ylIoI/6WmMPQYjTkKCoDbS48uoMarUnLqTw14lbkFqoEB7VLUuh4FACcNcIwqVGrhOrL0USk0QxVl5mCgcQzSBER4YyiHDykvzrpl9YZTADoU0x7Wdq/8TKWRKTZlvPhnUY7XszcR1nh6zbFGjkZDEyAStMZba6vDWSwmPE405mpcNE2prYc/GswMiMdJ0aghEJk+QjcZQQqTNxOVhHkxbgjHIA5WZZd3lHVdJt1F3nbr7cF1r3hUbl8AZOAdXwAU3oAnuQRt0AAIReAVv4N36sL6sb+tn/rphFZlTsADr9w/srbCf</latexit>

<latexit sha1_base64="6bcJ9NFmCNqdZFN3f0Qqrur3zBc=">AAACPnicdVBLS8NAGNz4rPXV6tHLYvFxKokIeiz24rGKfUAbymazaZfuI+xuxBL6D7zq7/Fv+Ae8iVePbtMcbEsHPhhmvoFhgphRbVz301lb39jc2i7sFHf39g8OS+WjlpaJwqSJJZOqEyBNGBWkaahhpBMrgnjASDsY1ad++5koTaV4MuOY+BwNBI0oRsZKjy8X/VLFrboZ4DLxclIBORr9snPeCyVOOBEGM6R113Nj46dIGYoZmRR7iSYxwiM0IF1LBeJE+2lWdQLPrBLCSCp7wsBM/Z9IEdd6zAP7yZEZ6kVvKq7yzJBP5jU2kIpameIVxkJbE936KRVxYojAs7JRwqCRcLodDKki2LCxJQjbPMUQD5FC2NiFi70smNYl50iEemKX9RZ3XCatq6rnVr2H60rtLt+4AE7AKbgEHrgBNXAPGqAJMIjAK3gD786H8+V8Oz+z1zUnzxyDOTi/fwLBsCs=</latexit>

<latexit sha1_base64="vkhjxIL2dCQAq3BWHHHZQwy6UYI=">AAACSXicdVDJTgJBFOwBF8QN9OhlItF4IjPGRI9ELh4xkSWBCelpGmjpZex+YyATvsOrfo9f4Gd4M57sAQ4CoZKXVKpeJZUKI84MeN6Xk8lube/s5vby+weHR8eF4knDqFgTWieKK90KsaGcSVoHBpy2Ik2xCDlthqNq6jdfqTZMySeYRDQQeCBZnxEMVgrG3Q7QMSSRVs/TbqHklb0Z3HXiL0gJLVDrFp3LTk+RWFAJhGNj2r4XQZBgDYxwOs13YkMjTEZ4QNuWSiyoCZJZ66l7YZWe21fangR3pv5PJFgYMxGh/RQYhmbVS8VNHgzFdFnjA6WZlRnZYKy0hf5dkDAZxUAlmZftx9wF5aYzuj2mKQE+sQQTm2fEJUOsMQE7dr4zCyZVJQSWPZMu66/uuE4a12XfK/uPN6XK/WLjHDpD5+gK+egWVdADqqE6IugFvaF39OF8Ot/Oj/M7f804i8wpWkIm+wcQYbSm</latexit>

<latexit sha1_base64="LsWZ6uDGvrbSnbxb8WnpSDBCIcQ=">AAACWHicdZBLSwMxFIVvx0drfdW6002wKOKizBRBN0KxG5cK1hY6tWTSTBuax5BklDIM+Gvc6t/RX2Nau9CKFwKH79wDNydKODPW9z8K3srq2nqxtFHe3Nre2a3sVR+MSjWhbaK40t0IG8qZpG3LLKfdRFMsIk470aQ18ztPVBum5L2dJrQv8EiymBFsHRpUDp4fz9AVCmONSfacZ6FUWjgxaOSDSs2v+/NBf0WwEDVYzO1gr3ASDhVJBZWWcGxML/AT28+wtoxwmpfD1NAEkwke0Z6TEgtq+tn8Ezk6dmSIYqXdkxbN6c9EhoUxUxG5TYHt2Cx7M/ifZ8ci/834SGnmMCP/GEvX2viynzGZpJZK8n1snHJkFZq1ioZMU2L51AlMXJ4RRMbYdWpd9+VwHsxaSggsh2bWbLDc41/x0KgHfj24O681rxcdl+AQjuAUAriAJtzALbSBwAu8whu8Fz498IrexveqV1hk9uHXeNUvTD62pA==</latexit>

<latexit sha1_base64="5+RaHJWS91d5hlovt7sv+80zee0=">AAACXXicdVHLSgMxFE3HV62vqgsXLgwWRRDKTBF0WezGZQVbC51aMmmmDeYxJHfUMszSr3GrH+PKXzF9LLTigcDhnHvg3pMoEdyC738WvKXlldW14nppY3Nre6e8u9e2OjWUtagW2nQiYpngirWAg2CdxDAiI8Huo8fGxL9/YsZyre5gnLCeJEPFY04JOKlfPgpjQ2j2/BCCTvALPsdRnoVKG5k95/1a3i9X/Ko/Bf5LgjmpoDma/d3CaTjQNJVMARXE2m7gJ9DLiAFOBctLYWpZQugjGbKuo4pIZnvZ9JIcnzhlgGNt3FOAp+rPREaktWMZuUlJYGQXvYn4nwcjmf/WxFAb7mRO/zEWtoX4qpdxlaTAFJ0tG6cCg8aTavGAG0ZBjB0h1OU5xXREXL3gPqAUToNZQ0tJ1MBOmg0We/xL2rVq4FeD24tK/XrecREdomN0hgJ0ieroBjVRC1H0it7QO/oofHkr3qa3PRv1CvPMPvoF7+Ab5a+4zA==</latexit>

CSCI-GA 2565 5 / 71

Maximize the Margin

We want to maximize the geometric margin:

maximize min
i

d(xi ,H).

Given separating hyperplane H =
{
v | wT v +b = 0

}
, we have

maximize min
i

yi (w
T xi +b)

∥w∥2
.

Let’s remove the inner minimization problem by

maximize M

subject to yi(w
T xi+b)

∥w∥2
⩾M for all i

Note that the solution is not unique (why?).

CSCI-GA 2565 6 / 71

Maximize the Margin

Let’s fix the norm ∥w∥2 to 1/M to obtain:

maximize 1
∥w∥2

subject to yi (w
T xi +b)⩾ 1 for all i

It’s equivalent to solving the minimization problem

minimize 1
2∥w∥2

2
subject to yi (w

T xi +b)⩾ 1 for all i

Note that yi (wT xi +b) is the (functional) margin. The optimization finds the minimum norm
solution which has a margin of at least 1 on all examples.

CSCI-GA 2565 7 / 71

Not linearly separable

What if the data is not linearly separable?

For any w , there will be points with a negative margin.

CSCI-GA 2565 8 / 71

Soft Margin SVM

Introduce slack variables ξ’s to penalize small margin:

minimize 1
2∥w∥2

2+
C
n

∑n
i=1ξi

subject to yi (w
T xi +b)⩾ 1−ξi for all i

ξi ⩾ 0 for all i

If ξi = 0 ∀i , it’s reduced to hard SVM.

What does ξi > 0 mean?

What does C control?

CSCI-GA 2565 9 / 71

Slack Variables

d(xi ,H) =
yi(w

T xi+b)
∥w∥2

⩾ 1−ξi
∥w∥2

, thus ξi measures the violation by multiples of the geometric
margin:

ξi = 1: xi lies on the hyperplane

ξi = 3: xi is past 2 margin width beyond the decision hyperplane

ξi = 1.5

ξi = 3

ξi = 1.5
ξi = 2

CSCI-GA 2565 10 / 71

Minimize the Hinge Loss

CSCI-GA 2565 11 / 71

Perceptron Loss

ℓ(x ,y ,w) =max(0,−ywT x)

q loss

§qy
,,

If we do ERM with this loss function, what happens?

CSCI-GA 2565 12 / 71

Hinge Loss

SVM/Hinge loss: ℓHinge =max {1−m,0}= (1−m)+

Margin m = yf (x); “Positive part” (x)+ = x1[x ⩾ 0].

Hinge is a convex, upper bound on 0−1 loss. Not differentiable at m = 1.
We have a “margin error” when m < 1.

CSCI-GA 2565 13 / 71

SVM as an Optimization Problem

The SVM optimization problem is equivalent to

minimize
1
2
||w ||2+

c

n

n∑
i=1

ξi

subject to ξi ⩾
(
1− yi

[
wT xi +b

])
for i = 1, . . . ,n

ξi ⩾ 0 for i = 1, . . . ,n

which is equivalent to

minimize
1
2
||w ||2+

c

n

n∑
i=1

ξi

subject to ξi ⩾max
(
0,1− yi

[
wT xi +b

])
for i = 1, . . . ,n.

CSCI-GA 2565 14 / 71

SVM as an Optimization Problem

minimize
1
2
||w ||2+

c

n

n∑
i=1

ξi

subject to ξi ⩾max
(
0,1− yi

[
wT xi +b

])
for i = 1, . . . ,n.

Move the constraint into the objective:

min
w∈Rd ,b∈R

1
2
||w ||2+

c

n

n∑
i=1

max
(
0,1− yi

[
wT xi +b

])
.

The first term is the L2 regularizer.

The second term is the Hinge loss.

CSCI-GA 2565 15 / 71

Support Vector Machine

Using ERM:

Hypothesis space F =
{
f (x) = wT x +b | w ∈ Rd ,b ∈ R

}
.

ℓ2 regularization (Tikhonov style)

Hinge loss ℓ(m) =max {1−m,0}= (1−m)+

The SVM prediction function is the solution to

min
w∈Rd ,b∈R

1
2
||w ||2+

c

n

n∑
i=1

max
(
0,1− yi

[
wT xi +b

])
.

CSCI-GA 2565 16 / 71

Summary

Two ways to derive the SVM optimization problem:

Maximize the margin

Minimize the hinge loss with ℓ2 regularization

Both leads to the minimum norm solution satisfying certain margin constraints.

Hard-margin SVM: all points must be correctly classified with the margin constraints

Soft-margin SVM: allow for margin constraint violation with some penalty

CSCI-GA 2565 17 / 71

SVM Optimization Problem

SVM objective function:

J(w) =
1
n

n∑
i=1

max
(
0,1− yiw

T xi
)
+λ||w ||2.

Not differentiable... but let’s think about gradient descent anyway.

Hinge loss: ℓ(m) =max(0,1−m)

∇wJ(w) = ∇w

(
1
n

n∑
i=1

ℓ
(
yiw

T xi
)
+λ||w ||2

)

=
1
n

n∑
i=1

∇w ℓ
(
yiw

T xi
)
+2λw

CSCI-GA 2565 18 / 71

“Gradient” of SVM Objective

Derivative of hinge loss ℓ(m) =max(0,1−m):

ℓ ′(m) =


0 m > 1
−1 m < 1
undefined m = 1

By chain rule, we have

∇w ℓ
(
yiw

T xi
)

= ℓ ′
(
yiw

T xi
)
yixi

=


0 yiw

T xi > 1
−yixi yiw

T xi < 1
undefined yiw

T xi = 1

CSCI-GA 2565 19 / 71

“Gradient” of SVM Objective

∇w ℓ
(
yiw

T xi
)

=


0 yiw

T xi > 1
−yixi yiw

T xi < 1
undefined yiw

T xi = 1

So

∇wJ(w) = ∇w

(
1
n

n∑
i=1

ℓ
(
yiw

T xi
)
+λ||w ||2

)

=
1
n

n∑
i=1

∇w ℓ
(
yiw

T xi
)
+2λw

=

{
1
n

∑
i :yiwT xi<1 (−yixi)+2λw all yiwT xi ̸= 1

undefined otherwise

CSCI-GA 2565 20 / 71

Gradient Descent on SVM Objective?

The gradient of the SVM objective is

∇wJ(w) =
1
n

∑
i :yiwT xi<1

(−yixi)+2λw

when yiw
T xi ̸= 1 for all i , and otherwise is undefined.

Potential arguments for why we shouldn’t care about the points of nondifferentiability:
If we start with a random w , will we ever hit exactly yiw

T xi = 1?

If we did, could we perturb the step size by ε to miss such a point?

Does it even make sense to check yiw
T xi = 1 with floating point numbers?

CSCI-GA 2565 21 / 71

Subgradient

CSCI-GA 2565 22 / 71

First-Order Condition for Convex, Differentiable Function

Suppose f : Rd → R is convex and differentiable Then for any x ,y ∈ Rd

f (y)⩾ f (x)+∇f (x)T (y − x)

The linear approximation to f at x is a global underestimator of f :

This implies that if ∇f (x) = 0 then x is a global minimizer of f .

Figure from Boyd & Vandenberghe Fig. 3.2; Proof in Section 3.1.3

CSCI-GA 2565 23 / 71

Subgradients

Definition

A vector g ∈ Rd is a subgradient of a convex function f : Rd → R at x if for all z ,

f (z)⩾ f (x)+gT (z− x).

Blue is a graph of f (x).
Each red line x 7→ f (x0)+gT (x − x0) is a global lower bound on f (x).

CSCI-GA 2565 24 / 71

Properties

Definitions
The set of all subgradients at x is called the subdifferential: ∂f (x)

f is subdifferentiable at x if ∃ at least one subgradient at x .

For convex functions:
f is differentiable at x iff ∂f (x) = {∇f (x)}.

Subdifferential is always non-empty (∂f (x) = ∅ =⇒ f is not convex)

x is the global optimum iff 0 ∈ ∂f (x).

For non-convex functions:
The subdifferential may be an empty set (no global underestimator).

CSCI-GA 2565 25 / 71

Subdifferential of Absolute Value

Consider f (x) = |x |

Plot on right shows {(x ,g) | x ∈ R, g ∈ ∂f (x)}

Boyd EE364b: Subgradients Slides

CSCI-GA 2565 26 / 71

Subgradient Descent

Move along the negative subgradient:

x t+1 = x t −ηg where g ∈ ∂f (x t) and η > 0

This can increase the objective but gets us closer to the minimizer if f is convex and η is
small enough:

∥x t+1− x∗∥< ∥x t − x∗∥

Subgradients don’t necessarily converge to zero as we get closer to x∗, so we need
decreasing step sizes.

Subgradient methods are slower than gradient descent.

CSCI-GA 2565 27 / 71

Subgradient descent for SVM

SVM objective function:

J(w) =
1
n

n∑
i=1

max
(
0,1− yiw

T xi
)
+λ||w ||2.

Pegasos: stochastic subgradient descent with step size ηt = 1/(tλ)

CSCI-GA 2565 28 / 71

Summary

Subgradient: generalize gradient for non-differentiable convex functions

Subgradient “descent”:
General method for non-smooth functions

Simple to implement

Slow to converge

CSCI-GA 2565 29 / 71

The Dual Problem

In addition to subgradient descent, we can directly solve the optimization problem using a
Quadratic Programming (QP) solver.

For convex optimization problem, we can also look into its dual problem.

CSCI-GA 2565 30 / 71

SVM as a Quadratic Program

The SVM optimization problem is equivalent to

minimize
1
2
||w ||2+

c

n

n∑
i=1

ξi

subject to −ξi ⩽ 0 for i = 1, . . . ,n(
1− yi

[
wT xi +b

])
−ξi ⩽ 0 for i = 1, . . . ,n

Differentiable objective function

n+d +1 unknowns and 2n affine constraints.

A quadratic program that can be solved by any off-the-shelf QP solver.

Let’s get more insights by examining the dual.

CSCI-GA 2565 31 / 71

The Lagrangian

The general [inequality-constrained] optimization problem is:

minimize f0(x)

subject to fi (x)⩽ 0, i = 1, . . . ,m

Definition
The Lagrangian for this optimization problem is

L(x ,λ) = f0(x)+
m∑
i=1

λi fi (x).

λi ’s are called Lagrange multipliers (also called the dual variables).

Weighted sum of the objective and constraint functions

Hard constraints → soft penalty (objective function)
CSCI-GA 2565 32 / 71

Lagrange Dual Function

Definition
The Lagrange dual function is

g(λ) = inf
x
L(x ,λ) = inf

x

(
f0(x)+

m∑
i=1

λi fi (x)

)

g(λ) is concave

Lower bound property: if λ⪰ 0, g(λ)⩽ p∗ where p∗ is the optimal value of the
optimization problem.

g(λ) can be −∞ (uninformative lower bound)

CSCI-GA 2565 33 / 71

The Primal and the Dual

For any primal form optimization problem,

minimize f0(x)

subject to fi (x)⩽ 0, i = 1, . . . ,m,

there is a recipe for constructing a corresponding Lagrangian dual problem:

maximize g(λ)

subject to λi ⩾ 0, i = 1, . . . ,m,

The dual problem is always a convex optimization problem.

CSCI-GA 2565 34 / 71

Weak Duality

We always have weak duality: p∗ ⩾ d∗.

Plot courtesy of Brett Bernstein.

CSCI-GA 2565 35 / 71

Strong Duality

For some problems, we have strong duality: p∗ = d∗.

For convex problems, strong duality is fairly typical.
Plot courtesy of Brett Bernstein.

CSCI-GA 2565 36 / 71

Complementary Slackness

Assume strong duality. Let x∗ be primal optimal and λ∗ be dual optimal. Then:

f0(x
∗) = g(λ∗) = inf

x
L(x ,λ∗) (strong duality and definition)

⩽ L(x∗,λ∗)

= f0(x
∗)+

m∑
i=1

λ∗i fi (x
∗)

⩽ f0(x
∗).

Each term in sum
∑

i=1λ
∗
i fi (x

∗) must actually be 0. That is

λi > 0 =⇒ fi (x
∗) = 0 and fi (x

∗)< 0 =⇒ λi = 0 ∀i

This condition is known as complementary slackness.

CSCI-GA 2565 37 / 71

The SVM Dual Problem

CSCI-GA 2565 38 / 71

SVM Lagrange Multipliers

minimize
1
2
||w ||2+

c

n

n∑
i=1

ξi

subject to −ξi ⩽ 0 for i = 1, . . . ,n(
1− yi

[
wT xi +b

])
−ξi ⩽ 0 for i = 1, . . . ,n

Lagrange Multiplier Constraint
λi -ξi ⩽ 0
αi

(
1− yi

[
wT xi +b

])
−ξi ⩽ 0

L(w ,b,ξ,α,λ) =
1
2
||w ||2+

c

n

n∑
i=1

ξi +

n∑
i=1

αi

(
1− yi

[
wT xi +b

]
−ξi

)
+

n∑
i=1

λi (−ξi)

CSCI-GA 2565 39 / 71

Strong Duality by Slater’s Constraint Qualification

The SVM optimization problem:

minimize
1
2
||w ||2+

c

n

n∑
i=1

ξi

subject to −ξi ⩽ 0 for i = 1, . . . ,n(
1− yi

[
wT xi +b

])
−ξi ⩽ 0 for i = 1, . . . ,n

Slater’s constraint qualification:
Convex problem + affine constraints =⇒ strong duality iff problem is feasible

Do we have a feasible point?

For SVM, we have strong duality.

CSCI-GA 2565 40 / 71

SVM Dual Function: First Order Conditions

Lagrange dual function is the inf over primal variables of L:

g(α,λ) = inf
w ,b,ξ

L(w ,b,ξ,α,λ)

= inf
w ,b,ξ

[
1
2
wTw +

n∑
i=1

ξi

(c
n
−αi −λi

)
+

n∑
i=1

αi

(
1− yi

[
wT xi +b

])]

∂wL= 0

∂bL= 0

∂ξi
L= 0

CSCI-GA 2565 41 / 71

SVM Dual Function

Substituting these conditions back into L, the second term disappears.

First and third terms become

Putting it together, the dual function is

CSCI-GA 2565 42 / 71

SVM Dual Problem

The dual function is

g(α,λ) =


∑n

i=1αi −
1
2
∑n

i ,j=1αiαjyiyjx
T
j xi

∑n
i=1αiyi=0

αi+λi=
c
n , all i

−∞ otherwise.

The dual problem is supα,λ⪰0 g(α,λ):

sup
α,λ

n∑
i=1

αi −
1
2

n∑
i ,j=1

αiαjyiyjx
T
j xi

s.t.
n∑

i=1

αiyi = 0

αi +λi =
c

n
αi ,λi ⩾ 0, i = 1, . . . ,n

CSCI-GA 2565 43 / 71

Insights from the Dual Problem

CSCI-GA 2565 44 / 71

KKT Conditions

For convex problems, if Slater’s condition is satisfied, then KKT conditions provide necessary
and sufficient conditions for the optimal solution.

Primal feasibility: fi (x)⩽ 0 ∀i

Dual feasibility: λ⪰ 0

Complementary slackness: λi fi (x) = 0

First-order condition:
∂

∂x
L(x ,λ) = 0

CSCI-GA 2565 45 / 71

The SVM Dual Solution

We found the SVM dual problem can be written as:

sup
α

n∑
i=1

αi −
1
2

n∑
i ,j=1

αiαjyiyjx
T
j xi

s.t.
n∑

i=1

αiyi = 0

αi ∈
[
0,
c

n

]
i = 1, . . . ,n.

Given solution α∗ to dual, primal solution is w∗ =
∑n

i=1α
∗
i yixi .

The solution is in the space spanned by the inputs.

Note α∗
i ∈ [0, cn]. So c controls max weight on each example. (Robustness!)

What’s the relation between c and regularization?
CSCI-GA 2565 46 / 71

Complementary Slackness Conditions

Recall our primal constraints and Lagrange multipliers:

Lagrange Multiplier Constraint
λi -ξi ⩽ 0
αi (1− yi f (xi))−ξi ⩽ 0

Recall first order condition ∇ξi
L= 0 gave us λ∗i =

c
n −α∗

i .

By strong duality, we must have complementary slackness:

α∗
i (1− yi f

∗(xi)−ξ∗i) = 0

λ∗i ξ
∗
i =

(c
n
−α∗

i

)
ξ∗i = 0

CSCI-GA 2565 47 / 71

Consequences of Complementary Slackness

By strong duality, we must have complementary slackness.

α∗
i (1− yi f

∗(xi)−ξ∗i) = 0(c
n
−α∗

i

)
ξ∗i = 0

Recall “slack variable” ξ∗i =max(0,1− yi f
∗(xi)) is the hinge loss on (xi ,yi).

If yi f ∗(xi)> 1 then the margin loss is ξ∗i = 0, and we get α∗
i = 0.

If yi f ∗(xi)< 1 then the margin loss is ξ∗i > 0, so α∗
i =

c
n .

If α∗
i = 0, then ξ∗i = 0, which implies no loss, so yi f

∗(x)⩾ 1.

If α∗
i ∈

(
0, cn
)
, then ξ∗i = 0, which implies 1− yi f

∗(xi) = 0.

CSCI-GA 2565 48 / 71

Complementary Slackness Results: Summary

If α∗ is a solution to the dual problem, then primal solution is

w∗ =

n∑
i=1

α∗
i yixi whereα∗

i ∈ [0,
c

n
].

Relation between margin and example weights (αi ’s):

α∗
i = 0 =⇒ yi f

∗(xi)⩾ 1

α∗
i ∈

(
0,
c

n

)
=⇒ yi f

∗(xi) = 1

α∗
i =

c

n
=⇒ yi f

∗(xi)⩽ 1

yi f
∗(xi)< 1 =⇒ α∗

i =
c

n

yi f
∗(xi) = 1 =⇒ α∗

i ∈
[
0,
c

n

]
yi f

∗(xi)> 1 =⇒ α∗
i = 0

CSCI-GA 2565 49 / 71

Support Vectors

If α∗ is a solution to the dual problem, then primal solution is

w∗ =

n∑
i=1

α∗
i yixi

with α∗
i ∈ [0, cn].

The xi ’s corresponding to α∗
i > 0 are called support vectors.

Few margin errors or “on the margin” examples =⇒ sparsity in input examples.

CSCI-GA 2565 50 / 71

Dual Problem: Dependence on x through inner products

SVM Dual Problem:

sup
α

n∑
i=1

αi −
1
2

n∑
i ,j=1

αiαjyiyjx
T
j xi

s.t.
n∑

i=1

αiyi = 0

αi ∈
[
0,
c

n

]
i = 1, . . . ,n.

Note that all dependence on inputs xi and xj is through their inner product: ⟨xj ,xi ⟩= xTj xi .

We can replace xTj xi by other products...

This is a “kernelized” objective function.

CSCI-GA 2565 51 / 71

Feature Maps

CSCI-GA 2565 52 / 71

The Input Space X

Our general learning theory setup: no assumptions about X

But X= Rd for the specific methods we’ve developed:
Ridge regression

Lasso regression

Support Vector Machines

Our hypothesis space for these was all affine functions on Rd :

F =
{
x 7→ wT x +b | w ∈ Rd ,b ∈ R

}
.

What if we want to do prediction on inputs not natively in Rd?

CSCI-GA 2565 53 / 71

The Input Space X

Often want to use inputs not natively in Rd :
Text documents

Image files

Sound recordings

DNA sequences

They may be represented in numbers, but...

The ith entry of each sequence should have the same “meaning”

All the sequences should have the same length

CSCI-GA 2565 54 / 71

Feature Extraction

Definition

Mapping an input from X to a vector in Rd is called feature extraction or featurization.

CSCI-GA 2565 55 / 71

Linear Models with Explicit Feature Map

Input space: X (no assumptions)

Introduce feature map ϕ : X→ Rd

The feature map maps into the feature space Rd .

Hypothesis space of affine functions on feature space:

F =
{
x 7→ wTϕ(x)+b | w ∈ Rd ,b ∈ R

}
.

CSCI-GA 2565 56 / 71

Geometric Example: Two class problem, nonlinear boundary

With identity feature map ϕ(x) = (x1,x2) and linear models, can’t separate regions

With appropriate featurization ϕ(x) =
(
x1,x2,x

2
1 + x2

2
)
, becomes linearly separable .

Video: http://youtu.be/3liCbRZPrZA
CSCI-GA 2565 57 / 71

http://youtu.be/3liCbRZPrZA

Expressivity of Hypothesis Space

For linear models, to grow the hypothesis spaces, we must add features.

Sometimes we say a larger hypothesis is more expressive.
(can fit more relationships between input and action)

Many ways to create new features.

CSCI-GA 2565 58 / 71

Handling Nonlinearity with Linear Methods

CSCI-GA 2565 59 / 71

Example Task: Predicting Health

General Philosophy: Extract every feature that might be relevant

Features for medical diagnosis
height

weight

body temperature

blood pressure

etc...

From Percy Liang’s "Lecture 3" slides from Stanford’s CS221, Autumn 2014.

CSCI-GA 2565 60 / 71

Feature Issues for Linear Predictors

For linear predictors, it’s important how features are added
The relation between a feature and the label may not be linear

There may be complex dependence among features

Three types of nonlinearities can cause problems:
Non-monotonicity

Saturation

Interactions between features

From Percy Liang’s "Lecture 3" slides from Stanford’s CS221, Autumn 2014.

CSCI-GA 2565 61 / 71

Non-monotonicity: The Issue

Feature Map: ϕ(x) = [1, temperature(x)]

Action: Predict health score y ∈ R (positive is good)

Hypothesis Space F= {affine functions of temperature}

Issue:
Health is not an affine function of temperature.

Affine function can either say
Very high is bad and very low is good, or
Very low is bad and very high is good,
But here, both extremes are bad.

From Percy Liang’s "Lecture 3" slides from Stanford’s CS221, Autumn 2014.

CSCI-GA 2565 62 / 71

Non-monotonicity: Solution 1

Transform the input:
ϕ(x) =

[
1, {temperature(x)-37}2

]
,

where 37 is “normal” temperature in Celsius.

Ok, but requires manually-specified domain knowledge
Do we really need that?

What does wTϕ(x) look like?

From Percy Liang’s "Lecture 3" slides from Stanford’s CS221, Autumn 2014.

CSCI-GA 2565 63 / 71

Non-monotonicity: Solution 2

Think less, put in more:

ϕ(x) =
[
1, temperature(x), {temperature(x)}2

]
.

More expressive than Solution 1.

General Rule
Features should be simple building blocks that can be pieced together.

From Percy Liang’s "Lecture 3" slides from Stanford’s CS221, Autumn 2014.

CSCI-GA 2565 64 / 71

Saturation: The Issue

Setting: Find products relevant to user’s query

Input: Product x

Output: Score the relevance of x to user’s query

Feature Map:
ϕ(x) = [1,N(x)] ,

where N(x) = number of people who bought x .

We expect a monotonic relationship between N(x) and relevance, but also expect
diminishing return.

From Percy Liang’s "Lecture 3" slides from Stanford’s CS221, Autumn 2014.

CSCI-GA 2565 65 / 71

Saturation: Solve with nonlinear transform

Smooth nonlinear transformation:

ϕ(x) = [1, log {1+N(x)}]

log (·) good for values with large dynamic ranges

Discretization (a discontinuous transformation):

ϕ(x) = (1[0 ⩽ N(x)< 10],1[10 ⩽ N(x)< 100], . . .)

Small buckets allow quite flexible relationship

From Percy Liang’s "Lecture 3" slides from Stanford’s CS221, Autumn 2014.

CSCI-GA 2565 66 / 71

Interactions: The Issue

Input: Patient information x

Action: Health score y ∈ R (higher is better)

Feature Map
ϕ(x) = [height(x),weight(x)]

Issue: It’s the weight relative to the height that’s important.

Impossible to get with these features and a linear classifier.

Need some interaction between height and weight.

From Percy Liang’s "Lecture 3" slides from Stanford’s CS221, Autumn 2014.

CSCI-GA 2565 67 / 71

Interactions: Approach 1

Google “ideal weight from height”

J. D. Robinson’s “ideal weight” formula:

weight(kg) = 52+1.9 [height(in)−60]

Make score square deviation between height(h) and ideal weight(w)

f (x) = (52+1.9 [h(x)−60]−w(x))2

WolframAlpha for complicated Mathematics:

f (x) = 3.61h(x)2−3.8h(x)w(x)−235.6h(x)+w(x)2+124w(x)+3844

From Percy Liang’s "Lecture 3" slides from Stanford’s CS221, Autumn 2014.

CSCI-GA 2565 68 / 71

Interactions: Approach 2

Just include all second order features:

ϕ(x) =

1,h(x),w(x),h(x)2,w(x)2, h(x)w(x)︸ ︷︷ ︸
cross term


More flexible, no Google, no WolframAlpha.

General Principle
Simpler building blocks replace a single “smart” feature.

From Percy Liang’s "Lecture 3" slides from Stanford’s CS221, Autumn 2014.

CSCI-GA 2565 69 / 71

Monomial Interaction Terms

Interaction terms are useful building blocks to model non-linearities in features.

Suppose we start with x = (1,x1, . . . ,xd) ∈ Rd+1 = X.

Consider adding all monomials of degree M: xp1
1 · · ·xpdd , with p1+ · · ·+pd =M.

Monomials with degree 2 in 2D space: x2
1 , x2

2 , x1x2

CSCI-GA 2565 70 / 71

Big Feature Spaces

This leads to extremely large data matrices

For d = 40 and M = 8, we get 314457495 features.

Very large feature spaces have two potential issues:
Overfitting

Memory and computational costs

Solutions:
Overfitting we handle with regularization.

Kernel methods can help with memory and computational costs when we go to high (or
infinite) dimensional spaces.

CSCI-GA 2565 71 / 71

	Minimize the Hinge Loss
	Subgradient
	The SVM Dual Problem
	Insights from the Dual Problem
	Feature Maps
	Handling Nonlinearity with Linear Methods

