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Lecture Slides

@ For those of you who want to take notes on your tablets.

@ Otherwise, slides will be shared on the course website after the lecture.
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Logistic Regression

@ If the label is 0 or 1:
LT

e’

N\

@ y = 0(z), where o is the sigmoid function.

1
- 1+4exp(—z)

0(z)
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Logistic Regression

@ If the label is 0 or 1:

@ y = 0(z), where o is the sigmoid function.

1
o(z) = 1+exp(—z) Trae ang =
oy Cy) =
[ A
@ The loss is binary cross entropy: L 1t Y =1 [es5=0
_—_ — —_—

togiic {2 8O- 1-y)logl1=9). . © LT

O—f y <o /05'!:0
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Logistic Regression

@ If the label is 0 or 1:

N\

@ y = 0(z), where o is the sigmoid function.

1
- 14exp(—2z)

0(z)

@ The loss is binary cross entropy:

eLogistic :leog()?)C—)l _)/) |Og(1 _)7)

@ Remember the negative sign!



_ . H, A
Logistic Regression [abel 1

— . reﬂilC'H\a/\
@ If the label is -1o 1 " __Z ]D

@ Note: 1—0(z) =0o(—2)

CSCI-GA 2565 4 /60



Logistic Regression ‘ )
(nCorrat (o%g
Correu—
o If the label is -1 o 1: \ j |
@ Note: 1—0(z) =0o(—2) \—i\a )
—_, o M cere fn
@ Now we can derive an equivalent loss form:

oo —log(o(z)) if y=
‘ Logistic —|9§(0‘(—Z)) T y:—i

o

-—loglolyz)
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Logistic Loss

-
Logistic/Log loss: {| ogistic = log (1 + e@ _i",_/.l\ e >\

2 0 2
{L—’/-/I\‘/Iargin m=yf(x)

Logistic loss is differentiable. Logistic loss always rewards a larger margin (the loss is never 0).
~— — TTTTTee———
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What About Square Loss for Classification?

@ Loss {(f(x),y) = (f(x)—y)z.
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What About Square Loss for Classification?

@ Loss £(f(x),y)
116D

@ Turns out, can write this in terms of margin m= f(x)y:

~—

o Using fact that y2 =1, since y € {—1,1}.
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What About Square Loss for Classification?

@ Loss {(f(x),y) = (f(x)—y)Q.
@ Turns out, can write this in terms of margin m= f(x)y:

o Using fact that y2 =1, since y € {—1,1}.

(F(x)y) = (F(x)—y)
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What About Square Loss for Classification?

@ Loss {(f(x),y) = (f(x)—y)2.
@ Turns out, can write this in terms of margin m= f(x)y:

o Using fact that y2 =1, since y € {—1,1}.

(F(x)y) = (F(x)—y)
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What About Square Loss for Classification?

@ Loss {(f(x),y) = (f(x)—y)2.
@ Turns out, can write this in terms of margin m= f(x)y:

o Using fact that y2 =1, since y € {—1,1}.

(F(x).y) = (F(x)—y)°
= 2 (x)—2f(x)y+y?
= ?(x)y?—2f(x)y+1
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What About Square Loss for Classification?

0 2
Margin m=yf(x)

| &

Heavily penalizes outliers (e.g. mislabeled examples).
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Controlling the Complexity through Regularization J
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Complexity of Hypothesis Spaces
< 4 # m"/\r'flj Q&M«"AL.

What is the trade-off between approximation error and estimation error?
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Complexity of Hypothesis Spaces

What is the trade-off between approximation error and estimation error?

@ Bigger JF: better approximation but can overfit (need more samples)

(

—

—
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Complexity of Hypothesis Spaces

What is the trade-off between approximation error and estimation error?
@ Bigger JF: better approximation but can overfit (need more samples)

@ Smaller F: less likely to overfit but can be farther from the true function

- —
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Complexity of Hypothesis Spaces

What is the trade-off between approximation error and estimation error?
@ Bigger JF: better approximation but can overfit (need more samples)
@ Smaller F: less likely to overfit but can be farther from the true function

To control the “size” of F, we need some measure of its complexity:

o W / features I(\Vle,a./ WTX
— <477
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Complexity of Hypothesis Spaces

What is the trade-off between approximation error and estimation error?

@ Bigger JF: better approximation but can overfit (need more samples)

@ Smaller F: less likely to overfit but can be farther from the true function
To control the “size” of F, we need some measure of its complexity:

@ Number of variables / features

@ Degree of polynomial
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General Approach to Control Complexity

1. Learn a sequence of models varying in complexity from the training data

FCFHrCF,---CF

—_—
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General Approach to Control Complexity

1. Learn a sequence of models varying in complexity from the training data

qsflcﬁ"gcﬁ"n---cﬁf

J)

Example: Polynomial Functions
o = {all polynomial functions}

o:{all polynomials of degree < d}
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General Approach to Control Complexity

1. Learn a sequence of models varying in complexity from the training data
F1CFrCFp---CTF

Example: Polynomial Functions p) \
o F ={all polynomial functions} 7 0/) o

o F4 ={all polynomials of degree < d}

Uroler £ OeAfit.

2. Select one of these models based on a score (e.g. validation error)
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Feature Selection in Linear Regression

Nested sequence of hypothesis spaces: 1 C J> C Fp--- C T

o J ={linear functions using all features} o (ot of 10@‘(14\2_
o Fy :{ﬂnear functions using fewer than d featurei EERE o]O’

b
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Feature Selection in Linear Regression

Nested sequence of hypothesis spaces: 1 CFo C F,--- CF
@ JF =/{linear functions using all features}

o {linear functions using fewer than d features} D MWK— d
1— J 4

Best subset selection:

@ Choose the subset of features that is best according to th re (e.g. validation error)
o Example with two features: Train models using {}, éXl}, {Xz},}{XLXQ}, respectively
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Feature Selection in Linear Regression

Nested sequence of hypothesis spaces: 1 CFo C F,--- CF
@ JF =/{linear functions using all features}
o F, ={linear functions using fewer than d features}
Best subset selection:

@ Choose the subset of features that is best according to the score (e.g. validation error)
o Example with two features: Train models using {}, {X1}, {Xo}, {X1, X5}, respectively

@ Not an efficient search algorithm; iterating over all subsets becomes very expensive with a
large number of features
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Greedy Selection Methods

Forward selection:

1. Start with an empty set of features S
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Greedy Selection Methods

Forward selection:

1. Start with an empty set of features S

-

2. For each feature i not in §

o Learn a model using features@

o Compute score of the model:
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Greedy Selection Methods

Forward selection:
1. Start with an empty set of features S

2. For each feature i not in S
o Learn a model using features SU |

o Compute score of the mode

3. Find the candidate feature with the highest score: j = argmax; «;

| I
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Greedy Selection Methods

Forward selection:
1. Start with an empty set of features S

2. For each feature i not in S
o Learn a model using features SU |

o Compute score of the model: «;

3. Find the candidate feature with the highest score: j = argmax; «;

4. It o improves the current best score, add feature j: S <— SUj and go to step 2; return S
otherwise.
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Greedy Selection Methods

Forward selection:
1. Start with an empty set of features S

2. For each feature i not in S
o Learn a model using features SU |

o Compute score of the model: «;
3. Find the candidate feature with the highest score: j = argmax; «;

4. It o improves the current best score, add feature j: S <— SUj and go to step 2; return S
otherwise.

Backward Selection:

@ Start with all features: in each iteration, remove the worst feature

—




Feature Selection: Discussion

@ Number of features as a measure of the complexity of a linear prediction function

S~
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Feature Selection: Discussion

@ Number of features as a measure of the complexity of a linear prediction function

@ General approach to feature selection:
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Feature Selection: Discussion

@ Number of features as a measure of the complexity of a linear prediction function

@ General approach to feature selection: J/ )C[ 12),

o Define a score that balances training error and complexity

& cmoe 55 85

e
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Feature Selection: Discussion

@ Number of features as a measure of the complexity of a linear prediction function

@ General approach to feature selection:
o Define a score that balances training error and complexity

e Find the subset of features that maximizes the score
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Feature Selection: Discussion

@ Number of features as a measure of the complexity of a linear prediction function

@ General approach to feature selection:
o Define a score that balances training error and complexity

e Find the subset of features that maximizes the score

@ Forward & backward selection do not guarantee to find the best solution.
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Feature Selection: Discussion

@ Number of features as a measure of the complexity of a linear prediction function

@ General approach to feature selection:
o Define a score that balances training error and complexity

e Find the subset of features that maximizes the score
@ Forward & backward selection do not guarantee to find the best solution.

@ Forward & backward selection do not in general result in the same subset.
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Feature Selection: Discussion

@ Number of features as a measure of the complexity of a linear prediction function

@ General approach to feature selection:
o Define a score that balances training error and complexity

e Find the subset of features that maximizes the score
@ Forward & backward selection do not guarantee to find the best solution.

@ Forward & backward selection do not in general result in the same subset.

@ Could there be a more consistent way of formulating feature selection as an optimization
problem?
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€> and {1 Regularization J
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Complexity Penalty

An objective that balances number of features and prediction performance:

jcore(Sl:Eraining_losE&-S) @ (1)

A balances the training loss and the number of features used.
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Complexity Penalty

An objective that balances number of features and prediction performance:

J

score(S) :{Eainingloss(S)\—r@ (1)

A balances the training loss and the number of features used.

@ Adding an extra feature must be justified by at least A improvement in training loss

@ Larger A — complex models are penalized more heavily

-
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Complexity Penalty

Goal: Balance the complexity of the hypothesis space F and the training loss

Complexity measure: Q :@—> [0,00), e.g. number of features
I l
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Complexity Penalty

Goal: Balance the complexity of the hypothesis space F and the training loss

Complexity measure: Q :F — [0,00), e.g. number of features

Penalized ERM (Tikhonov regularization)

For complexity measure QO : F — [0,00) and fixed A >

mm—ZE X;)
fEF N i) yi)

As usual, we find_A using the validation data.

—
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Complexity Penalty

Goal: Balance the complexity of the hypothesis space F and the training loss

Complexity measure: Q :F — [0,00), e.g. number of features

Penalized ERM (Tikhonov regularization)

For complexity measure QO : F — [0,00) and fixed A >

— ) Uf(x),yi) +AQ(f
pggnz (xi), yi) +AQ(f)

As usual, we find A using the validation data.

Number of features as complexity measure is not differentiable and hard to optimize—other
measures/ ‘"




Soft Selection

@ We can imagine having a weight for each feature dimension.
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Soft Selection

@ We can imagine having a weight for each feature dimension.

@ In linear regression, the model weights multiply each feature dimension:

f(x)= w' x K T—
| (38

Am—
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Soft Selection

@ We can imagine having a weight for each feature dimension.

@ In linear regression, the model weights multiply each feature dimension:

fix)=w'x

@ If w; is zero or close to zero, then it means that we are not using the i-th feature.
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Weight Shrinkage: Intuition

¥ o 5 Njo

@ Why would we prefer a regression line with smaller slope (unless the data strongly supports
a larger slope)?
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Weight Shrinkage: Intuition

N

e Why would we prefer a regression line with smaller slope (unless the data strongly supports
a larger slope)?

@ More stable: small change in the input does not cause large change in the output
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Weight Shrinkage: Intuition

0 5&\0_

@ Why would we prefer a regression line with smaller slope (unless the data strongly supports
a larger slope)?

@ More stable: small change in the input does not cause large change in the output

@ If we push the estimated weights to be small, re-estimating them on a new dataset
wouldn’t cause the prediction function to change dramatically (less sensitive to noise in

data)
e CSCI-GA 2565
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Weight Shrinkage:

Polynomial Regression

40 40 40 40
- =
20 20 20 20
._ .,
o - °° o eo® o o

—20 —20 —20 —20

40 40 40 40
L 4
20 20 20 20
o o o o :
—-20 —20 —20 —-20 . )
(0] 5 10 (0] 5 10 o 5 10 (0] 5 10

2

@ n-th feature dimension is the n-th power of x: 1,x,x~, ...
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Weight Shrinkage: Polynomial Regression

M=3
40 40 40 40
- -
20 20 20 20
.- — .. -
- -
o - o o o
o 10
F L 4
o 5 10

—20 —20 —20 —20

40 40 40 40
20 20 20 20
o o o o

—20 —20 —20
o] 5 10 o 5 10 (o] 5 10

—-20

Y
@ n-th feature dimension is the n-th power of x: 1,x, x, ... D.00 ) X + O:OC‘:’X
" -

@ Large weights are needed to make the curve wiggle sufficiently to overfit the data
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Weight Shrinkage: Polynomial Regression

40 40 40 40
- -
20 20 20 20
.- ..
o - *° o .® o o

—-20 —20 —20 —20

40 40 40 40
20 20 20 20
(o] (o] o (o]

—-20 _20 —20 —20 l
o 5 10 o 5 10 o 5 10 o 5 10

@ n-th feature dimension is the n-th power of x: 1,x, x, ...

@ Large weights are needed to make the curve wiggle sufficiently to overfit the data

oy 0.003x3 41 less likely to overfit than y = 1000x” +500x3 + 1

(Adapated from Mark Schmidt’s slide)
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Linear Regression with £» Regularization

@ We have a linear model

ffz{f: R|f(x)=w'x for WERd}
o Square loss: £(y,y) = (y—y)>

@ Training data D, = ((x1,y1),..., (Xn, Yn))
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Linear Regression with £» Regularization

@ We have a linear model
?:{fIRd%RhC(X):WTXfOI’ WERd}
o Square loss: £(y,y) = (y—y)>
@ Training data D, = ((x1,y1),.--, (Xn, ¥n))
@ Linear least squares regression is ERM for square loss over J-:

(K.y)

1 n
@: argmin — Z(WTX,'—y,')2

WERd n i—=1 )

@ This often overfits, especially when d is large compared to n (e.g. in NLP one can have
1M features for 10K documents).



Linear Regression with L2 Regularization

Penalizes large weights:

n
W = argminlz {WTX,-—y,-}2 w

d N~
WGR I:]. ~—

Where: w? + -+ w3 is the square of the £-norm.
Ly <

@ Also known as ridge regressions”
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Linear Regression with L2 Regularization

Penalizes large weights:
1 o 2
W:argmin—Z{WTx,-—y,-} +Allwl]3,
weRd 5T

where ||w||5 = wf+---+ w3 is the square of the {,-norm.

@ Also known as ridge regression.

@ Equivalent to linear least square regression when A =0.

CSCI-GA 2565
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Linear Regression with L2 Regularization

Penalizes large weights:

W = argmin1 y {WTXi—)/i} +7\@é>

wer? 57
o T Swap b bosg of
where ||w||5 = wj +---4+wj is the square of the {>-norm.
OHLr pordods |

@ Also known as ridge regression.
@ Equivalent to linear least square regression when A =0.

e {, regularization can be used for other models too (e.g. neural networks).

CSCI-GA 2565
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> regularization reduces sensitivity to changes in input

o f(x) :ﬁvAvT‘x is Lipschitz continuous with Lipschitz constant L : when moving

" from x to x+ h, f changes no more than L| hl.
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> regularization reduces sensitivity to changes in input

o f(x) =w'x is Lipschitz continuous with Lipschitz constant L when moving

from x to x+ h, f changes no more than L||Al|.

o {, regularization controls the maximum rate of change of f.

—
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> regularization reduces sensitivity to changes in input

o f(x)=w'x is Lipschitz continuous with Lipschitz constant L = |W||2: when moving

| ——

from x to x+ h, f changes no more than L||Al|.
o {, regularization controls the maximum rate of change of f.

@ Proof:

)—w ' x| =|w"h|
. ® @

(Cauchy-Schwarz inequality)

requ e Wl — ,C,(g Cél‘-flje 1 R
' output
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> regularization reduces sensitivity to changes in input

o f(x) =w'x is Lipschitz continuous with Lipschitz constant L = ||v“v|@when moving
from x to x4+ h, f changes no more than L||h||.

o {5 regularization controls the maximum rate of change of f.
@ Proof:
fix+h) —Ff(x)] = W (x+h)—w"x|=|wTh|
< ||w]|2||hll2 (Cauchy-Schwarz inequality)

@ Other norms also provide a bound on L due to the equivalence of norms:
1C >0s.t. ||w|2 < Cl|w]p
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Linear Regression vs. Ridge Regression

Objective:
@ Linear: L(w) = %HXW—)/H%
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Linear Regression vs. Ridge Regression

Objective:
@ Linear: L(w) = %HXW—YH%

o Ridge: L(w)=121|Xw—y|3+

\

olon & Luvry oot ng&,«j‘
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Linear Regression vs. Ridge Regression

Objective:
@ Linear: L(w) = %HXW—)/H%

e Ridge: L(W):%HXW_Y|’%+%HWH%

Gradient:
o Linear: VL(w)=XT(Xw—y)
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Linear Regression vs. Ridge Regression

Objective:

@ Linear: L(w) :%HXW—YH%

. namb
o Ridge: L(w) = L[|Xw —y|3+ 3wl wnber of exorpla
‘ / nurber o Lotuog
- h — .
Gradient: E{iﬂ n = d g
o Linear: VL(w) :XT(_)LVK—Q we R
e Ridge: VL(w) =XT(Xw—y)
1age (W) [,( .W yl Iy l/ue(%(k(_ Au“vj,
o Also known as weight decay|in neural networks

o cx .
W=5 5. /
Loz 0. Detx v Olx.
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Linear Regression vs. Ridge Regression

Objective:
@ Linear: L(w) = %HXW—)/H%

e Ridge: L(W):%HXW_Y|’%+%HWH%
Gradient:
- . _xT _
@ Linear: VL(w)=X"(Xw—y) 1_,%
+Aw

o Ridge: VL(w)=XT(Xw—y)
o Also known as weight decay in neural networks

Closed-form so tion:)
@ Linear: :XTy _>y
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Linear Regression vs. Ridge Regression

Objective:

@ Linear: L(w) = %HXW—)/H%

e Ridge: L(W):%HXW_Y|’%+%HWH%
Gradient:

o Linear: VL(w)=XT(Xw—y)

e Ridge: VL(w)=XT(Xw—y)+Aw

o Also known as weight decay in neural networks

Closed-form solution:
o Linear: X" Xw=XTy > w=(X"X)"!XTy

e Ridge: ( TX@W Xy -> W—@j?\:l)‘lXTy

o (XTX+AI) is always invertible —

CSCI-GA 2565
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Constrained Optimization

@ L2 regularizer is a term in our optimization objective.
* . 1 2
w :argm|n§||XW—yH2 wl|5
w

@ This is also called the Tikhonov form.
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Constrained Optimization

@ L2 regularizer is a term in our optimization objective.

1
w* = argmin = || Xw — y||3 +
w2 -

| —— ——

@ This is also called the Tikhonov form.
bbbtk

w:llw|[3<r
@ At optimum, the gradients of the main objective and the constraint cancel out.

@ This is also called the lvanov form.
Sihbatbid



Ridge Regression' ngularlzatlon Path

hqher t M@%\J&f 1—«1—0‘91\ | ower
Q‘W")“’\ Ridge Regression Q-I'f%ﬁ H |
# | funding W, =

w =
ﬁ hs ~ P
college4

—

2
"o, \

college
—

e For r =0, ||w.||2/]|w]2 = 0.

e For r = oo, [|w,||2/||Ww]ls =1

Modified from Hastie, Tibshirani, and Wainwright's Statistical Learning with Sparsity, Fig 2.1. About predicting crime in 50 US cities.



Lasso Regression

Penalize the £; norm of the weights:

Lasso Regression (Tikhonov Form, soft penalty)

1 n
W = argmin—Z {WTXi—)/i}2‘|‘7\||W||1v

n S
weRT 1T

—_—

where HW”l = |W1|—|— - |wyl is the £1-norm.

l/\)-/— l/JL+l/J0‘ [/L
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Ridge vs. Lasso: Regularization Paths

rl ‘“L
_ Ridge Regression
9 ]
LD —
O —
0 _|
|

0.0 02 04 06 08 1.0

[0 [l2/[[0]]2

Modified from Hastie, Tibshirani, and Wainwright's Statistical Learning with Sparsity, Fig 2.1. About predicting crime in 50 US cities.
CSCI-GA 2565
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Ridge vs. Lasso: Regularization Paths

Ridge Regression Lasso
5 funding 5 funding
o - oSfils ol nSlas
o college o _ - | college
.- .
hs : hs
T | | | I I T T T | | T
0.0 02 04 06 08 1.0 00 02 04 06 08 1.0
[ |2/ ]| [ [[1/]|@][1

Lasso yields sparse weights.

Modified from Hastie, Tibshirani, and Wainwright's Statistical Learning with Sparsity, Fig 2.1. About predicting crime in 50 US cities.



The Benefits of Sparsity

The coefficient for a feature is 0 — the feature is not needed for prediction. Why is that
useful?
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The coefficient for a feature is 0 — the feature is not needed for prediction. Why is that
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@ Faster to compute the features; cheaper to measure or annotate them
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The Benefits of Sparsity
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@ Less memory to store features (deployment on a mobile device)
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The Benefits of Sparsity

The coefficient for a feature is 0 — the feature is not needed for prediction. Why is that
useful?

@ Faster to compute the features; cheaper to measure or annotate them
@ Less memory to store features (deployment on a mobile device)

@ Interpretability: identifies the important features
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The Benefits of Sparsity

The coefficient for a feature is 0 — the feature is not needed for prediction. Why is that
useful?

@ Faster to compute the features; cheaper to measure or annotate them
@ Less memory to store features (deployment on a mobile device)
@ Interpretability: identifies the important features

@ Prediction function may generalize better (model is less complex)
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Why does £; Regularization Lead to Sparsity? J
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Lasso Regression

Penalize the £; norm of the weights:

Lasso Regression (Tikhonov Form, soft penalty)

n
W = argmin ! y {WTX,-—y,'}2 -l-@
weRd N =

=1

where ||w||1 = |wa|+---+|wy| is the £1-norm. [fhee f€7/’e(f/o«

CSCI-GA 2565 30/60



Regularization as Constrained ERM

Constrained ERM (Ivanov regularization)

For complexity measure Q : ¥ — [0, 00) and fixed r > 0,
o e I ]
iy 270
s.t. Q(f) <r

Lasso Regression (lvanov Form, hard constraint)

The lasso regression solution for complexity parameter r > 0 is
— argmi Z{W Xj — y,

r has the same role as A in penalized ERM (Tikhonov).
e CSCI-GA 2565 31/60



The £1 and €» Norm Constraints

o Let's consider F = {f(x) = w1x3 + woxa} space)

@ We can represent each function in F as a point (wy, ws) € R?.

@ Where in R? are the functions that satisfy the lvanov regularization constraint for {; and
57
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The £1 and €» Norm Constraints

o Let's consider F = {f(x) = w1x3 + woxa} space)

@ We can represent each function in F as a point (wy, ws) € R?.

@ Where in R? are the functions that satisfy the lvanov regularization constraint for {; and
57

e@contour: Qo @contour:
W12—|—W22:I’ lwy| + wo| =r

CSCI-GA 2565 32/60




The £1 and €» Norm Constraints

o Let's consider F = {f(x) = w1x3 + woxa} space)
@ We can represent each function in F as a point (wy, ws) € R?.
@ Where in R? are the functions that satisfy the lvanov regularization constraint for {; and

7

e {» contour: @ {4 contour:
W12—|—W22:I’ lwy| + wo| =r

- ‘
U/

@ Where are the sparse solutions?
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Visualizing Regularization

. 2 1

o Blue region: Area satisfying complexity constraint: w?+ w3 < r

o Red lines: contours of the empirical risk R,(w) = > (WTX,'—y,')2.

KPM Fig. 13.3



Why Does £; Regularization Encourage Sparse Solutions?

= 2 1
o ff= argmlnweRz%ZLl (WTX,'—y,') subject to|wy |+ |ws| < r

@ Blue region: Area satisfying complexity constraint: |wy|+ |wy| < r

o Red lines: contours of the empirical risk R,(w) = >y (WTX,'—y,')2.

@ (1 solution tends to touch the corners.

KPM Fig. 13.3



Why Does £; Regularization Encourage Sparse Solutions?

Suppose the loss contour is growing like a perfect circle/sphere.
Geometric intuition: Projection onto diamond encourages solutions at corners.

@ W in red/green regions are closest to corners in the £; “ball”.

Fig from Mairal et al.’s Sparse Modeling for Image and Vision Processing Fig 1.6


https://arxiv.org/abs/1411.3230

Why Does £; Regularization Encourage Sparse Solutions?

Suppose the loss contour is growing like a perfect circle/sphere.
Geometric intuition: Projection onto {, sphere favors all directions equally.

all]

/Kz-lball

ledlz < p

Fig from Mairal et al.’s Sparse Modeling for Image and Vision Processing Fig 1.6


https://arxiv.org/abs/1411.3230

Optimization Perspective

For {> regularization,

@ As w; becomes smaller, there is less and less penalty
o What is the {, penalty for w; =0.00017 l/d('}‘ A Lo D.ooo [ A

@ The gradient—which determines the pace of optimization—decreases as w; approaches
zero

@ Less incentive to make a small weight equal to exactly zero
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Optimization Perspective

For {> regularization,

@ As w; becomes smaller, there is less and less penalty
o What is the £, penalty for w; = 0.00017

@ The gradient—which determines the pace of optimization—decreases as w; approaches
zero

o . W | T

@ Less incentive to make a small weight equal to exactly zero ’X b

For {1 regularization,
@ The gradient stays the same as the weights approach zero

o]

@ This pushes the weights to be exactly zero even if they are already small



(Eq) Regularization

o We can generalize to £y : (||w]|q)? =Iwa |7+ Iwo|?.
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(ﬂq) Regularization

o We can generalize to £y : (||w]|q)? =Iwa |7+ Iwo|?.

()
Q
|
-
F—

q=4 q=2 =® qg = 0.
|

SHE IR S
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(ﬂq) Regularization

o We can generalize to £y : (||w]|q)? =Iwa |7+ Iwo|?.

— g=1

e

e Note: ||w||q4 is only a norm if g > 1, but not for g € (0,1)

CSCI-GA 2565
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(Eq) Regularization

o We can generalize to £y : (||w]|q)? =Iwa |7+ Iwo|?.
|
) |

e Note: ||w||q4 is only a norm if g > 1, but not for g € (0,1)

@ When g < 1, the {4 constraint is non-convex, so it is hard to optimize; lasso is good
enough in practice
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(Eq) Regularization

o We can generalize to £y : (||w]|q)? =Iwa |7+ Iwo|?.

0.5 g=0.1

LT

g=4 q=2 qg=1 q
|
! | |

e Note: ||w||q4 is only a norm if g > 1, but not for g € (0,1)

@ When g < 1, the {4 constraint is non-convex, so it is hard to optimize; lasso is good
enough in practice

o (||wllo) is defined as the number of non-zero weights, i.e. subset selection

— —

=2
CSCI-GA 2565 38 /60




Maximum Margin Classifier J
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Linearly Separable Data

Consider a linearly separable dataset D:

Kz A\ Mc\kg\ﬂ, PDQ[

o o
£ X 00 o
O
YEKK 6 o @
\(/\XS( DDDIL
g KX o/
\L/
l [ > X

Find a separating hyperplane such that

o w'x; >0 for all x; where y; = +1

o w'x; <0 for all x; where y; =—1
e CSCI-GA 2565 40 / 60



Linearly Separable Data
Consider a linearly separable dataset D:

Xo N

Now let's design a learning algorithm: If there is a misclassified example, change the hyperplane
according to the example.



The Perceptron Algorithm

o Initialize (o ¢ 0) ol 4b

@ While not converged (exists misclassified examples) LJTX
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The Perceptron Algorithm

@ Initialize w < 0

o ile not converged (exists misclassified examples)
o For (x;,y;) €D
o If yiw T x; <0 (wrong prediction)

e Update w + w+y;x;

@ Intuition: move towards misclassified positive examples and away from negative examples
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The Perceptron Algorithm

@ Initialize w < 0

@ While not converged (exists misclassified examples)
o For (x;,y;) €D
o If yiw'x; <0 (wrong prediction)
e Update w + w+y;x;

@ Intuition: move towards misclassified positive examples and away from negative examples

@ Guarantees to find a zero-error classifier (if one exists) in finite steps

—_—
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The Perceptron Algorithm

@ Initialize w < 0

@ While not converged (exists misclassified examples)
o For (xj,yi) €D

o If yiw'x; <0 (wrong prediction)
e Update w « W@
@ Intuition: move towards misclassified positive examples and away from negative examples

@ Guarantees to find a zero-error classifier (if one exists) in finite steps

@ What is the loss function if we consider this as a SGD algorithm?
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Minimize the Hinge Loss J
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Perceptron Loss

Ux,y,w) =max(0,—yw x)

1

'W” ~UXx
l.

\ypfx \Y,

@ %fw( destunt .

v —f 9
mz\g\l\){’x
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Maximum-Margin Separating Hyperplane

For separable data, there are infinitely many zero-error classifiers.

Which one do we pick?

K A\

0
X 5 o

D

« b5 .

X s * X 0

g KX 0

(Perceptron does not return a unique solution.)
CSCI-GA 2565
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Maximum-Margin Separating Hyperplane

We prefer the classifier that is farthest from both classes of points

9(1_ /\ q@ﬂw@tﬁb
/7l w«w‘g?r\;

© o
XX 5 o
Yi(k GDOO
SR 0 60
g KX 0
k _— > X/

@ Geometric margin: smallest distance between the hyperplane and the points

@ Maximum margin: largest distance to the closest points



Geometric Margin

We want to maximize the distance between the separating hyperplane and the closest points.
Let's formalize the problem.
Definition (separating hyperplane)

We say (x;,y;) for i=1,...,n are linearly separable if there is a w € R and b € R such that
yilwTx;+b) >0 for all i. The set {veRY|w'v+b=0}is called a separating hyperplane.
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Geometric Margin

We want to maximize the distance between the separating hyperplane and the closest points.

Let's formalize the problem.

Definition (separating hyperplane)

We say (x;,y;) for i=1,...,n are linearly separable if there is a w € R and b € R such that
yilwTx;+b) >0 for all i. The set {veRY|w'v+b=0}is called a separating hyperplane.

Definition (geometric margin)

Let H be a hyperplane that separates the data (x;,y;) for i =1,...,n. The geometric margin

of this hyperplane is
mind(x;, H),

I

the distance from the hyperplane to the closest data point.



Distance between a Point and a Hyperplane

@ Any point on the plane p, and normal
vector w/||wl|2

fx)=b+w'z=0
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Distance between a Point and a Hyperplane

@ Any point on the plane p, and normal
vector w/||wl|2
)T

@ Projection of x onto the normal: (X”W

fx)=b+w'z=0
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Distance between a Point and a Hyperplane

@ Any point on the plane p, and normal
vector w/||wl|2
)T

@ Projection of x onto the normal: (X”W

o (x'—p)Tw=x"Tw—pTw=

x"Tw+b (since pTw+b=0)

fx)=b+w'z=0
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Distance between a Point and a Hyperplane

fx)=b+w'z=0

@ Any point on the plane p, and normal
vector w/||wl|2
)T

@ Projection of x onto the normal: Twilz

o (x'—p)Tw=x"Tw—pTw=

x"Tw+b (since pTw+b=0)

@ Signed distance between x’ and

Hyperplane H: W”TXhJ;b

CSCI-GA 2565 48 / 60



Distance between a Point and a Hyperplane

@ Any point on the plane p, and normal
vector w/||wl|2

(x'—p)Tw

@ Projection of x onto the normal: Twilz

o (x'—p)Tw=x"Tw—pTw=
x"Tw+b (since pTw+b=0)

@ Signed distance between x’ and

Hyperplane H: W”TX]EI’

fx)=b+w'z=0
@ Taking into account of the label y:

d(X/, H) — y(WTX/+b)

[[wll2
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Maximize the Margin

We want to maximize the geometric margin:

maximize mind(x;, H).
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Maximize the Margin

We want to maximize the geometric margin:

maximize mind(x;, H).

Given separating hyperplane H = {vl wliv+b= 0}, we have

o CyilwTx; +b)
maximize min .
i w2
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Maximize the Margin

We want to maximize the geometric margin:

maximize mind(x;, H).

Given separating hyperplane H = {vl wliv+b= 0}, we have

o CyilwTx; +b)
maximize min .
i w2

Let's remove the inner minimization problem by

maximize M

(wT .
subject to y’('/ﬁW)ﬂ’jb) > M for all i
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Maximize the Margin

We want to maximize the geometric margin:

maximize mind(x;, H).

Given separating hyperplane H = {vl wliv+b= 0}, we have

o CyilwTx; +b)
maximize min .
i w2

Let's remove the inner minimization problem by

maximize M

(wTx
subject to YW xitb)

>M foralli

Note that the solution is not unique (why?).



Maximize the Margin

Let’s fix the norm ||w|]> to 1/M to obtain:

1

[[wll2

subject to  yi(w'x;+b)>1 forall i

maximize
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Maximize the Margin

Let’s fix the norm ||w||> to 1/M to obtain:

1

|wl|2

subject to  y;(w'x;+b)>1 forall i

maximize

It's equivalent to solving the minimization problem
. . . 1 2
minimize  3||w||5

subject to  y;(w'x;+b)>1 forall i

Note that y;(w ' x; + b) is the (functional) margin. The optimization finds the minimum norm
solution which has a margin of at least 1 on all examples.
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Not linearly separable

What if the data is not linearly separable?

For any w, there will be points with a negative margin.
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Soft Margin SVM

Introduce slack variables &'s to penalize small margin:

minimize  3{|w|3+53 7 &,
subject to  yi(w'xi+b)>1—&; foralli
E>0 foralli

o If £ =0V/, it's reduced to hard SVM.
@ What does &; > 0 mean?

@ What does C control?
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Slack Variables

d(x;, H) = lath) 5 1ok

[wllz2 = flwl]l2

, thus &; measures the violation by multiples of the geometric
margin:

@ &; =1: x; lies on the hyperplane

@ &; =3: x; is past 2 margin width beyond the decision hyperplane

A
+ +
_|_
_|_
/
/
, /
/
— e / +
-
/ / ,
! / / _
. -
7
, /
/ /
_ / /
&=34 /
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Minimize the Hinge Loss J
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Perceptron Loss
"x)

U(x,y,w)=max(0,—yw ' x

;ﬁw

Mﬁ‘g\’\‘TX

If we do ERM with this loss function, what happens?
e CSCI-GA 2565 55 /60



Hinge Loss

e SVM/Hinge loss: {Hinge = max{1—m,0} = (1—m)_

@ Margin m = yf(x); "Positive part’ (x).

= x1[x > 0].

Loss
== Zero_One
3 -

=== Hinge

0 2
Margin m=yf(x)

Hinge is a convex, upper bound on 0—1 loss. Not differentiable at m =1.
We have a “margin error’” when m < 1.

CSCI-GA 2565
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SVM as an Optimization Problem

@ The SVM optimization problem is equivalent to

minimize

subject to

1, » C -
I+ 53 &
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SVM as an Optimization Problem

@ The SVM optimization problem is equivalent to

minimize

subject to

which is equivalent to
minimize
subject to

1, » C -
I+ 53 &

£;>max(0,1—y,- [WTX,-—i—bD fori=1,..., n.
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SVM as an Optimization Problem

L. 1 C —
minimize —HW||2—|——E &

2 n 4 -

| =

subjectto & = max(0,1—y; [waier]) fori=1,...,n.
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SVM as an Optimization Problem

L 1, » Cw
minimize EHWH +; ;—1 &
. T .
subjectto & =max(0,1—y; [w'x+b]) fori=1,...,n.

Move the constraint into the objective:

_ 1 5 C ? T
wegy,rl]aeREHWH +E;max(0,1—y, (w'xi+b]).
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SVM as an Optimization Problem

L 1, » Cw
minimize EHWH +; ;—1 &
. T .
subjectto & =max(0,1—y; [w'x+b]) fori=1,...,n.

Move the constraint into the objective:

_ 1 5 C ? T
wegy,?aeREHWH +E;max(0,1—y, (w'xi+b]).

@ The first term is the L2 regularizer.

@ The second term is the Hinge loss.



Support Vector Machine

Using ERM:
@ Hypothesis space F = {f(x) —w!x+b|lweRd be R}.
@ {5 regularization (Tikhonov style)
@ Hinge loss {(m) =max{l1—m,0}=(1—m)

@ The SVM prediction function is the solution to

, 1 C —
WEg\dl’r;DGREHWHZ + ~ I_Zl max (0, 1—y; [WTX,' - bD .
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Summary

Two ways to derive the SVM optimization problem:
@ Maximize the margin
@ Minimize the hinge loss with {»> regularization
Both leads to the minimum norm solution satisfying certain margin constraints.
@ Hard-margin SVM: all points must be correctly classified with the margin constraints

e Soft-margin SVM: allow for margin constraint violation with some penalty
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