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Logistic Regression

o If the label is 0 or 1:

@ ¥y =0(z), where o is the sigmoid function.

1

o(z) = 1+exp(—z)

@ The loss is binary cross entropy:

eLogistic = —y|0g(}7) - (1_}/) |og(1—f/)

@ Remember the negative sign!
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Logistic Regression

o If the label is -1 o 1:
@ Note: 1—o0(z) =0(—2)
@ Now we can derive an equivalent loss form:
—log(o(z)) if y=1
Logistie = {—Iog(d(—z)) if y=—1
= —log(o(yz))
~ log(— 1)

14e )2
=log(l4+e™ ™).
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Logistic Loss

Logistic/Log loss: £ ogistic = log (1+e~™)

Loss
== Zero_One
= Hinge

== Logistic

Loss(m)

~N

0
Margin m=yf(x)

Logistic loss is differentiable. Logistic loss always rewards a larger margin (the loss is never 0).
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What About Square Loss for Classification?

o Loss £(f(x),y) = (f(x)—y)%.
@ Turns out, can write this in terms of margin m=f(x)y:

o Using fact that y?> =1, since y € {—1,1}.

UF(x)y) = (F(x)—y)

1
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What About Square Loss for Classification?

Loss(m)
e e

0
Margin m=yf(x)

Heavily penalizes outliers (e.g. mislabeled examples).
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Loss

= Zero_One
== Hinge
= Logistic

= Square
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Controlling the Complexity through Regularization J
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Complexity of Hypothesis Spaces

What is the trade-off between approximation error and estimation error?

o Bigger F: better approximation but can overfit (need more samples)

@ Smaller F: less likely to overfit but can be farther from the true function
To control the “size” of F, we need some measure of its complexity:

@ Number of variables / features

@ Degree of polynomial
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General Approach to Control Complexity

1. Learn a sequence of models varying in complexity from the training data
F1CFCFp---CT

Example: Polynomial Functions
o F ={all polynomial functions}

o F4 ={all polynomials of degree < d}

2. Select one of these models based on a score (e.g. validation error)
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Feature Selection in Linear Regression

Nested sequence of hypothesis spaces: F1 Cc Fr, C F,--- C F
e F ={linear functions using all features}
o F4 ={linear functions using fewer than d features}
Best subset selection:

@ Choose the subset of features that is best according to the score (e.g. validation error)
o Example with two features: Train models using {}, {X1}, {Xo}, {X1, X2}, respectively

@ Not an efficient search algorithm; iterating over all subsets becomes very expensive with a
large number of features
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Greedy Selection Methods

Forward selection:
1. Start with an empty set of features S

2. For each feature i not in S
o Learn a model using features SU/

o Compute score of the model: «;
3. Find the candidate feature with the highest score: j = argmax; «;

4. If «; improves the current best score, add feature j: S < SU, and go to step 2; return S
otherwise.

Backward Selection:

@ Start with all features; in each iteration, remove the worst feature
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Feature Selection: Discussion

Number of features as a measure of the complexity of a linear prediction function

General approach to feature selection:
o Define a score that balances training error and complexity

o Find the subset of features that maximizes the score

Forward & backward selection do not guarantee to find the best solution.

Forward & backward selection do not in general result in the same subset.

@ Could there be a more consistent way of formulating feature selection as an optimization
problem?
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€>» and £; Regularization J
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Complexity Penalty

An objective that balances number of features and prediction performance:

score(S) = training_loss(S) + A[S] (1)

A balances the training loss and the number of features used.
o Adding an extra feature must be justified by at least A improvement in training loss

o Larger A — complex models are penalized more heavily
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Complexity Penalty

Goal: Balance the complexity of the hypothesis space I and the training loss

Complexity measure: Q:F — [0,00), e.g. number of features

Penalized ERM (Tikhonov regularization)
For complexity measure Q : F — [0,00) and fixed A > 0,

1
min— ;E(f(xl'),yi) +AQ(f)

As usual, we find A using the validation data.

Number of features as complexity measure is not differentiable and hard to optimize—other
measures?
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Soft Selection

@ We can imagine having a weight for each feature dimension.
@ In linear regression, the model weights multiply each feature dimension:

Flx)=w'x

o If w; is zero or close to zero, then it means that we are not using the j-th feature.
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Weight Shrinkage: Intuition

@ Why would we prefer a regression line with smaller slope (unless the data strongly supports
a larger slope)?

@ More stable: small change in the input does not cause large change in the output

o If we push the estimated weights to be small, re-estimating them on a new dataset
wouldn't cause the prediction function to change dramatically (less sensitive to noise in

data)
] CSCI-GA 2565 17 /59



Weight Shrinkage: Polynomial Regression

40 a0 a0 a0
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@ n-th feature dimension is the n-th power of x: 1,x,x?, ...

o Large weights are needed to make the curve wiggle sufficiently to overfit the data

@ § =0.001x"40.003x3+1 less likely to overfit than y = 1000x” 4+ 500x3 +1

(Adapated from Mark Schmidt's slide)
e CSCI-GA 2565 18 /59



Linear Regression with > Regularization

@ We have a linear model
&":{f:Rd—>R|f(x):WTxfor WERd}

Square loss: £(y,y) = (y —9)?

Training data D, = ((x1,y1), ..., (Xn, ¥n))

@ Linear least squares regression is ERM for square loss over J:
n

N 1
W = argmin — E (w'x—yj)?
weRd n i=1

@ This often overfits, especially when d is large compared to n (e.g. in NLP one can have
1M features for 10K documents).
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Linear Regression with L2 Regularization

Penalizes large weights:

_argmlan{w Xj— y,} +Allw|3
weRd

21

where ||w||3 = w2 +---+ w3 is the square of the {,-norm.

@ Also known as ridge regression.
o Equivalent to linear least square regression when A =0.

@ {5 regularization can be used for other models too (e.g. neural networks).
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> regularization reduces sensitivity to changes in input

o f(x) =wTx is Lipschitz continuous with Lipschitz constant L = ||W||»: when moving
from x to x+ h, f changes no more than L| hl|.

o {, regularization controls the maximum rate of change of .
@ Proof:
Fx+h—Fx)| = 1w (x+h)—w"x|=|wTh
< |Iw|l2llhll2 (Cauchy-Schwarz inequality)

@ Other norms also provide a bound on L due to the equivalence of norms:
AC >0 s.t. ||w]2 < C||W|p
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Linear Regression vs. Ridge Regression

Objective:

o Linear: L(w 2||XW }/”2

o Ridge: L(w QHXW )/H2 7\||W”§
Gradient:

o Linear: VL(w)=XT(Xw—y)
e Ridge: VL(w)=XT(Xw—y)+Aw

o Also known as weight decay in neural networks

Closed-form solution:
o Linear: X" Xw=XTy ->w=(X"X)"1XTy
o Ridge: (X" X+ANw=XTy ->w=(XTX+A)"IXTy
o (XTX+AI is always invertible
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Constrained Optimization
@ L2 regularizer is a term in our optimization objective.
.1 A
w* = argmin || Xw —y|[3+ 2 || wli3
w2 2

@ This is also called the Tikhonov form.

The Lagrangian theory allows us to interpret the second term as a constraint.

1
w* = argmin = || Xw—y/|3

w:||wl3<r

At optimum, the gradients of the main objective and the constraint cancel out.

This is also called the Ivanov form.
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Ridge Regression: Regularization Path

Ridge Regression

n

) 1
o | funding W, = argmin— Z (IUTCU«L - yi)2
= lwli3<r2 ™ 527

W = s = Unconstrained ERM
o Sfelea
o college

e For r =0, ||w,]|2/|w]]2 = 0.
o e For r = oo, ||7~Dr||2/||7j’||2 =1

hs

00 02 04 06 08 1.0
[[dr ]2/l

Modified from Hastie, Tibshirani, and Wainwright's Statistical Learning with Sparsity, Fig 2.1. About predicting crime in 50 US cities.
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Lasso Regression

Penalize the £; norm of the weights:
Lasso Regression (Tikhonov Form, soft penalty)
1 2
W = argmin — Z {WTX,' —yi} +Awl|z,
weRd 1 i=1

where ||w||1 = |wi|+ -+ |wyl is the £1-norm.
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Ridge vs. Lasso: Regularization Paths

Ridge Regression Lasso
- funding . funding
o Rofelis o | Rofela
o - college o - - | college
? - 7
hs hs
T T T T T T T T T T T T
0.0 02 04 06 08 1.0 00 02 04 06 08 1.0
l[@r[l2/ll]l2 [[@r [l /[l

Lasso yields sparse weights.

Modified from Hastie, Tibshirani, and Wainwright's Statistical Learning with Sparsity, Fig 2.1. About predicting crime in 50 US cities.
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The Benefits of Sparsity

The coefficient for a feature is 0 = the feature is not needed for prediction. Why is that
useful?

@ Faster to compute the features; cheaper to measure or annotate them
@ Less memory to store features (deployment on a mobile device)
@ Interpretability: identifies the important features

e Prediction function may generalize better (model is less complex)
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Why does £; Regularization Lead to Sparsity? J
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Lasso Regression

Penalize the £; norm of the weights:
Lasso Regression (Tikhonov Form, soft penalty)
1 2
W = argmin — Z {WTX,' —yi} +Awl|z,
weRd 1 i=1

where ||w||1 = |wi|+ -+ |wyl is the £1-norm.
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Regularization as Constrained ERM

Constrained ERM (lvanov regularization)

For complexity measure Q) : F — [0, 00) and fixed r > 0,

- e 1 ]
iy 5 3.3
s.t. Q(f) <r

Lasso Regression (lvanov Form, hard constraint)

The lasso regression solution for complexity parameter r > 0 is

n
w :argminEZ{WTx,-—y,-}z.

Iwlla<r M55

r has the same role as A in penalized ERM (Tikhonov).
e CSCI-GA 2565
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The £1 and €» Norm Constraints

o Let's consider F ={f(x) = wyx1 + waxp} space)
@ We can represent each function in F as a point (wy, ws) € R,
@ Where in R? are the functions that satisfy the Ivanov regularization constraint for £; and

Y

e {» contour: @ {1 contour:
w2+wi=r wal+Iwo| =r

@ Where are the sparse solutions?
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Visualizing Regularization

o f*=argmin,cre Y g (W xi— y,) subject to wZ + w3 < r

-/

@ Blue region: Area satisfying complexity constraint: W12+ w22 <r

o Red lines: contours of the empirical risk Ry(w) =Y 7_; (w'x — y,) .

KPM Fig. 13.3
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Why Does {1 Regularization Encourage Sparse Solutions?

o fr=argmin,ere 2> 7 (wlxi— y,) subject to|wy|+[wa| < r

(&

@ Blue region: Area satisfying complexity constraint: |wy|+|wa| < r

n

o Red lines: contours of the empirical risk Ry(w) =Y 7_; (wTx — y,) .

@ {7 solution tends to touch the corners.

KPM Fig. 13.3
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Why Does {1 Regularization Encourage Sparse Solutions?

Suppose the loss contour is growing like a perfect circle/sphere.
Geometric intuition: Projection onto diamond encourages solutions at corners.

@ W in red/green regions are closest to corners in the ¢; “ball”.

Fig from Mairal et al.’s Sparse Modeling for Image and Vision Processing Fig 1.6
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https://arxiv.org/abs/1411.3230

Why Does {1 Regularization Encourage Sparse Solutions?

Suppose the loss contour is growing like a perfect circle/sphere.
Geometric intuition: Projection onto £, sphere favors all directions equally.

£5-ball ol]

Fig from Mairal et al.’s Sparse Modeling for Image and Vision Processing Fig 1.6

e — o e S


https://arxiv.org/abs/1411.3230

Optimization Perspective

For {> regularization,

@ As w; becomes smaller, there is less and less penalty
o What is the £, penalty for w; =0.00017

@ The gradient—which determines the pace of optimization—decreases as w; approaches
zero

@ Less incentive to make a small weight equal to exactly zero
For {1 regularization,
@ The gradient stays the same as the weights approach zero

@ This pushes the weights to be exactly zero even if they are already small
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(ﬁq) Regularization

e We can generalize to £y : (||wlq)? = wa|?+ wa|.

0.

o
o
|

o=

[

qg=4 q=2 g=1 q=
‘ ‘ ; I
| | | |
@ Note: ||wl|q is only a norm if g > 1, but not for g € (0,1)

e When g < 1, the {,; constraint is non-convex, so it is hard to optimize; lasso is good
enough in practice

@ {o (]lwlo) is defined as the number of non-zero weights, i.e. subset selection
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Maximum Margin Classifier J
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Linearly Separable Data

Consider a linearly separable dataset D:

Find a separating hyperplane such that

o w'x; >0 for all x; where y; =+1

o w'x; <0 for all x; where y; =—1
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Linearly Separable Data

Consider a linearly separable dataset D:

Now let's design a learning algorithm: If there is a misclassified example, change the hyperplane
according to the example.
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The Perceptron Algorithm

o Initialize w <0

While not converged (exists misclassified examples)
o For (x;,y;) €D
o If yjwTx; <0 (wrong prediction)
o Update w + w+y;x;

@ Intuition: move towards misclassified positive examples and away from negative examples

o Guarantees to find a zero-error classifier (if one exists) in finite steps

What is the loss function if we consider this as a SGD algorithm?
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Minimize the Hinge Loss J
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Perceptron Loss

U(x,y, w) =max(0,—yw " x)

4%

—
m< \&WT’X

CSCI-GA 2565
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Maximum-Margin Separating Hyperplane

For separable data, there are infinitely many zero-error classifiers.

Which one do we pick?

(Perceptron does not return a unique solution.)
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Maximum-Margin Separating Hyperplane

We prefer the classifier that is farthest from both classes of points

e Geometric margin: smallest distance between the hyperplane and the points

@ Maximum margin: /argest distance to the closest points
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Geometric Margin

We want to maximize the distance between the separating hyperplane and the closest points.
Let's formalize the problem.

Definition (separating hyperplane)

We say (x;,y;) for i=1,...,n are linearly separable if there is a w € RY and b € R such that
yi(wTxj+b) >0 for all i. The set {v € R?|w”v+b=0}is called a separating hyperplane.

Definition (geometric margin)

Let H be a hyperplane that separates the data (x;,y;) for i=1,...,n. The geometric margin
of this hyperplane is
mind(x;, H),
1

the distance from the hyperplane to the closest data point.
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Distance between a Point and a Hyperplane

Any point on the plane p, and normal
vector w/||w||2

w
'—p)Tw

Projection of x onto the normal: (X||W|\2

el

(X/—p)TW:X/TW—pTW:

x'Tw+b (since pTw+b=0)

@ Signed distance bgtween x’ and
Hyperplane H: W”v);”;“b

f(a:):b-‘erz:O

Taking into account of the label y:

T,/
dix’, H) = )
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Maximize the Margin

We want to maximize the geometric margin:
maximize mind(x;, H).
1
Given separating hyperplane H = {v| wliv+b= O}, we have
. _ YilwTx +b)
maximize min ———
i [wl|2
Let's remove the inner minimization problem by

maximize M

subject to yilw?x+b) >M foralli

Twil2
Note that the solution is not unique (why?).
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Maximize the Margin

Let's fix the norm ||jw||2 to 1/M to obtain:

maximize —L—
Iwll2

subject to  yj(w'xj+b)>1 forall i
It's equivalent to solving the minimization problem
. . . 1 2
minimize 5 |lwl|5

subject to  yj(w'xj+b) =1 forall i

Note that y;(w T x; + b) is the (functional) margin. The optimization finds the minimum norm
solution which has a margin of at least 1 on all examples.
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Not linearly separable

What if the data is not linearly separable?

For any w, there will be points with a negative margin.

o
e — B B 0153



Soft Margin SVM

Introduce slack variables &'s to penalize small margin:

minimize  {|w|3+ <37 &
subject to  yj(wTxi+b)>1—E&; forall i
£, >0 foralli

o If £ =0Vi, it's reduced to hard SVM.
@ What does &; > 0 mean?
@ What does C control?
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Slack Variables

d(x;, H) = yilwTx+b) 1-¢&;

lwll2 = llwll2

margin:

@ &; =1: x; lies on the hyperplane

, thus &; measures the violation by multiples of the geometric

e &; =3: x; is past 2 margin width beyond the decision hyperplane

+
/
/
/ &=15
/ /
/ /
7
/ /
CSCI-GA 2565
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Minimize the Hinge Loss J
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Perceptron Loss
7x)

U(x,y,w) =max(0,—yw ' x

4%

—
m< \AWT’X

If we do ERM with this loss function, what happens?
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Hinge Loss

e SVM/Hinge loss: £Hinge = max{l1—m,0} = (1—m)_

e Margin m = yf(x); “Positive part” (x)+ =x1[x > 0].

Loss
=== Zero_One

== Hinge

Loss(m)

0
Margin m=yf(x)

Hinge is a convex, upper bound on 0—1 loss. Not differentiable at m = 1.
We have a “margin error” when m < 1.

e — e B
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SVM as an Optimization Problem
@ The SVM optimization problem is equivalent to
minimize  MwiP+SY &
1M1z —||W — i
2 n 4 !
i=1
subject to &
which is equivalent to
1 ¢ w
. 2
minimize = = - ;
inimiz 2||W|| +n;£
. T .
subjectto & =max(0,1—y; [w'x+b]) fori=1,..., n.
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SVM as an Optimization Problem

. 1, > €
minimize §||W|| +nzlii
=
. T .
subject to &;2max(0,1—y; [W X,-—i—b]) fori=1,...,n.

Move the constraint into the objective:

. 1 2 C . T
min  —|lw||*+— max (0,1 —y; |w' x;+b]|).
i I+ 5 2 max (01— [+ )
@ The first term is the L2 regularizer.

@ The second term is the Hinge loss.
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Support Vector Machine

Using ERM:
o Hypothesis space = {f(x) =w'x+b|weR? beR}.
e {5 regularization (Tikhonov style)
@ Hinge loss £(m) =max{1—m,0}=(1—m)

@ The SVM prediction function is the solution to

) 1 5 C - T
Weg]dlerEREHWII —i—n;max(o,l—y; [w'xi+b]).
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Summary

Two ways to derive the SVM optimization problem:
@ Maximize the margin
@ Minimize the hinge loss with £, regularization
Both leads to the minimum norm solution satisfying certain margin constraints.
e Hard-margin SVM: all points must be correctly classified with the margin constraints

@ Soft-margin SVM: allow for margin constraint violation with some penalty
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