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Lecture Slides

@ For those of you who want to take notes on your tablets.

@ Otherwise, slides will be shared on the course website after the lecture.

el
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Homework 1

@ Homework 1 will be released soon. You have until Oct 1 noon (12pm) to finish.
@ Submit PDF and code to Gradescope.

@ Course website: https://nyu-cs2565.github.io/2024-fall/
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Review: ERM J
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Our Machine Learning Setup

Prediction Function

A prediction function gets input x and produces an output y = f(x).
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Our Machine Learning Setup

Prediction Function
A prediction function gets input x and produces an output y = f(x).

Loss Function
A loss function {(y, y) evaluates an action in the context of the outcome y.
b

Pelickon tuie y / [4bel
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Risk and the Bayes Prediction Function

Definition
The risk of a prediction function f: X — Y is

£

R(f) =EL(f(x),y).

[N ——
In words, it's the expected loss off on a new example (x,y) drawn randomly from
<
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Risk and the Bayes Prediction Function
Definition
The risk of a prediction function f: X — Y is

R(f) =EL(f(x),y).

In words, it's the expected loss of f on a new example (x, y) drawn randomly from Py yy.

L 61 ’
Definition v 0P+
A Bayes prediction function @s a function that achieves the minimal risk among all
possible functions:

f*eargminR(f),
f'

@ The risk of a Bayes prediction function is called the Bayes risk.



The Empirical Risk
/;lp(epe,\o(e,wf \'M‘Ha\\

Le@: ((x1,y1),-.-, (Xn, yn)) be drawn(i.i.d)from Py, y.

p— -
Definition

The empirical risk of f with respect to D, is

Rulf) == > U(F0x),39).
Hypothesis dage

/ L] L] Ll L] [l L] L] -
@ Th¢ unconstrained) empirical risk minimizer can overfit.

o i.e. iIf we minimize R,(f) over all functions, we overfit.
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Constrained Empirical Risk Minimization

Definition
A hypothesis space T is a set of functions mapping X — Y.

@ This is the collection of prediction functions we are choosing from.
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Constrained Empirical Risk Minimization

Definition
A hypothesis space T is a set of functions mapping X — Y.

@ This is the collection of prediction functions we are choosing from.

e An empirical risk minimizer (ERM) in J is

n

1

fn € ar%min =D Uflx).yi).
=1

@ From now on "ERM" always means “constrained ERM".

=

@ So we should always specify the hypothesis space when we're doing ERM.



Error Decomposition Review

o Excess risk decomposition for function 7, returned by an optimization algorithm in practice:

Excess Risk(f,) = R(f,) — R(f*)
= R(fn) — R(f) + R(f,) — R(f5) + R(fy) — R(f*)
optimiz;trion error estima’agn error approxim;rtion error

2 (e, (

All Functions
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ERM Overview

@ Given a loss function ¢,
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ERM Overview

@ Given a loss function ¢,

@ Choose a hypothesis space F.
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ERM Overview

@ Given a loss function ¢,
@ Choose a hypothesis space F.

o Use an optimization method to find an empirical risk minimizer #, € 7

L ———
—argmln—ZE (x;),
feg N

L_~_JL J
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ERM Overview

@ Given a loss function ¢,
@ Choose a hypothesis space F.

o Use an optimization method to find an empirical risk minimizer #, € 7

', = argmin — C(f(x; .
gm nZ i), yi)

@ Or find a@(hat comes close to fn

——
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ERM Overview

e Given @B,

@ Choose a hypothesis space J.

o Use an optimization method to find an empirical risk minimizer #, € 7

i?—ar min — €(f(x;)
fge”f ”Z )i

o Or find a £, that comes close to ,

@ The machine learning scientist’s job:
o Choose J that balances approximation and estimation error.

—

o As we get more training data, we can use a bigger F.



Example: Linear Least Squares Regression

Setup
%

@ Loss: £(y,y)=(y—
—+—t
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Example: Linear Least Squares Regression

Setup ('/’l‘g} ]cS — ‘ .C c:)&
o Loss: £(9,y)=(y—) Wa

o Hypothesis space: = {f:RY — R|f(x @J w ‘

@ Given a data set D, = ﬁy1 ----- (Xm_)/n :

o Our goal is to find the ERM f € - 7. 2
— —) | AJ

CSCI-GA 2565

11 /60



Example: Linear Least Squares Regression

Objective Function: Empirical Risk

We want to find the function in F, parametrized by w € RY, that minimizes the empirical risk:
y P

Row) ==Y (wTxi—yi)’

=1
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Example: Linear Least Squares Regression

Objective Function: Empirical Risk

We want to find the function in &, parametrized by w € R?, that minimizes the empirical risk:

N
@ How do we solve this optimization problem? V R((ﬂ) =0 ,
. So(u
min R,(w) < ‘FDV- ‘/\J
weRd

@ (For OLS there's a closed form solution, but in general there isn't.)

e ——




Gradient Descent J
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Unconstrained Optimization

le'gk

Setting loss/rvak

We assume that the objective functio
We want to find

@:a min f(x)
XeRdr

CSCI-GA 2565
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The Gradient

@ Let f:R? = R be differentiable at xg € RY.

@ The gradient of f at the point xg, denoteleXf(xo)j is the direction in which f(x)
increases fastest, if we start from X0. \7X<F(3Q>3

@ The gradient of f is the partial derivatives of all dimensions:
Vi(x)=1[0f/0x1(x),...,0f /0xq(x)].

Figure A.111 from Newtonian Dynamics, by Richard Fitzpatrick.



The Gradient

@ Let f:R? = R be differentiable at xg € RY.

@ The gradient of f at the point xg, denoted V,f(xg), is the direction in which f(x)
increases fastest, if we start from xg.

° 'I;h_e_g___d_i_em;gf_f is the partial derivatives of all dimensions:

Vf(x) = [0f/0x1(x),...,0f /0xy(x]].
L— & —~

y contours th(.’l:, y)

Figure A.111 from Newtonian Dynamics, by Richard Fitzpatrick.



Gradient Descent

@ To reach a local minimum as fast as possible, we want to go in the opposite direction from
the gradient.
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Gradient Descent

@ To reach a local minimum as fast as possible, we want to go in the opposite direction from
the gradient.

Gradient Descent
@ Initialize x +— 0.

¢

@ Repeat: - :
o[ X0 ] = STep Qize
— MNejat fwe

@ until the stopping criterion is satlsfled

x- 7£0x) /
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Gradient Descent

@ To reach a local minimum as fast as possible, we want to go in the opposite direction from
the gradient.

Gradient Descent
@ Initialize x «+ 0.

@ Repeat: >
o X ¢ X f(x)

@ until the stopping criterion is satisfied.

@ The “step size” 1 is not the amount by which we update x!

A
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Gradient Descent

@ To reach a local minimum as fast as possible, we want to go in the opposite direction from
the gradient.

Gradient Descent

@ Initialize x « 0.

@ Repeat:
o x < x—mVTf(x)

@ until the stopping criterion is satisfied.

@ The “step size" 1 is not the amount by which we update x!

@ "Step size’ is also referred to as “learning rate” in neural networks literature.



Gradient Descent Path
AN Wz

. g_(f')

*B \/JZ_

NN oo

Image credit: Amini et al. Spatial Uncertainty Sampling for End-to-End Control. 2018.
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Gradient Descent: Step Size

A fixed step size will work, eventually, as long
as it's small enough
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Gradient Descent: Step Size

A fixed step size will work, eventually, as long
as it's small enough

@ If n is too large, the optimization process
might diverge

CSCI-GA 2565 18 /60 ,



Gradient Descent: Step Size

w0 Gradient Descent converging

A fixed step size will work, eventually, as long
as it's small enough

e If n is too large, the optimization process
might diverge

@ In practice, it often makes sense to try
several fixed step sizes

Gradient Descent diverging (stepsize too large)

@ Intuition on when to take big steps and
when to take small steps?
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2D Divergence example

2 T T T T T T T 2 T T T T T T T
15 d 15 d
L4 ]
1+ - 1+ -
05 F E g 05 F E —
0 0 .
05 F - 05 F -
1+ - 1+ —\
15+ . 15+ —
-2 1 1 1 | 1 1 1 -2 1 1 1 | 1 1 1
2 15 -1 05 0 05 1 15 2 2 15 -1 05 0 05 1 15 2
Small Step Size Large Step Size



Notes on Convergence

@ Gradient descent with an appropriate step size converges to stationary point (derivative =

0) for differentiable functions. —

S
P
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Notes on Convergence

@ Gradient descent with an appropriate step size converges to stationary point (derivative =
0) for differentiable functions.

@ Stationary points can be (local) minima, (local) maxima, saddle points, etc.
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Notes on Convergence

@ Gradient descent with an appropriate step size converges to stationary point (derivative =
0) for differentiable functions.

@ Stationary points can be (local) minima, (local) maxima, saddle points, etc.

e Gradient descent can converge to global minimum for convex functions.

e
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Convergence Theorem for Fixed Step Size

/\/\/ i

Suppose f : RY — R is convex and differentiable, and s Lipschitz continuous with
constant L >0 (L-smooth), i.e. '

Theorem

xe———>X)'
|VF(x)=VF(x)| < Llx—x'| :

AR S—
for an@e RY. Then gradient descent with fixed step siz{ﬁ]< 1/L converges. In particular,

_——J

O _yx2 3 £ e oF
@ X9 —x* |2 B vee &

ﬁVLﬂ\éu \/pf Iﬂ-v,‘%_e.,'f‘! %2+ gf-e/PS #: 1'1‘7:/&_“-0” |
This says that gradient descent is guaranteed to converge and that it converges with rate
l\k, o (Vg oD




Strongly Convex Functions

Definition
A function f is p-strongly convex if
=

u-strongly convex
—

Lo
7{tx) - (x-X)

2

fG) + VG =) +5|lx = x|

‘\ f(x) convex
fG)+ V)" —x)
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Convergence Theorem for Strongly Convex Functions

Theorem

If f is L-smooth and u-strongly convex, and step size 0 <1 < % then gradient descent
converges with the following inequality: D- Q00 |

This means we can get linear convergence bu%t depen n L. If the estimate of i is bad

then the rate is not great.
[—}j/.‘“ eSS
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Gradient Descent: When to Stop?

e Wait until || Vf(x)||2|< €,/for some ¢ of your choosing.
— .
o (Recall Vf(x) =0 at a local minimum.)
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Gradient Descent: When to Stop?

@Nait until ||VF(x)||> < ¢, for some € of your choosing.
o (Recall Vf(x) =0 at a local minimum.)

e Early stopping:
o evalute loss on lvalidation data (unseen held out data) after each iteration;

N
o stop when the loss does not improve (or gets worse).
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Gradient Descent for Empirical Risk - Scaling Issues J
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Quick recap: Gradient Descent for ERM

@ We have a hypothesis space of functions F = {fw X —=>Ylwe Rd}
o Parameterized by w € RY.
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Quick recap: Gradient Descent for ERM

@ We have a hypothesis space of functions F = {fw X —=>Ylwe Rd}
o Parameterized by w € RY.

e Finding an empirical risk minimizer entails finding a w that minimizes

o~

%{V
L

W

e
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Quick recap: Gradient Descent for ERM

@ We have a hypothesis space of functions F = {fw X —=>Ylwe Rd}
o Parameterized by w € RY.

e Finding an empirical risk minimizer entails finding a w that minimizes
Ra(w) 1§n Ufu (1), i)
W)= — w XI v Yi
n n e Y

@ Suppose {(f,(x;),y;) is differentiable as a function of w.

@ Then we can do gradient descent on R,(w)
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Gradient Descent: Scalability

@ At every iteration, we compute the gradient at the current w:
1 n

vRn(W) — ;Zlvwe(fw(xi)y)/i)
|=

@ How does this scale with n?
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Gradient Descent: Scalability

@ At every iteration, we compute the gradient at the current w:
1 n

vRn(W) — ; 'Zlvwe(fw(xi)yyi)
|=

@ How does this scale with n?

@ We have to iterate over all n training points to take a single step. [O(n)]
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Gradient Descent: Scalability

@ At every iteration, we compute the gradient at the current w:
1 n

vRn(W) — ; Zlvwe(fw(xi)yyi)
|=

@ How does this scale with n?

@ We have to iterate over all n training points to take a single step

@ Can we make progress without looking at all the data before updating w?
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Stochastic Gradient Descent J

—
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“Noisy" Gradient Descent

@ Instead of using the gradient, we use a noisy estimate of the gradient.

@ Turns out this can work just fine!
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“Noisy" Gradient Descent

@ Instead of using the gradient, we use a noisy estimate of the gradient.
@ Turns out this can work just fine!

@ Intuition:

o Gradient descent is an iterative procedure anyway.

o At every step, we have a chance to recover from previous missteps.
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Minibatch Gradient

@ The full gradient is

Vli’n(w) = 1vae(fw(xi)vyi)

n <
=1

@ It's an average over the full batch of data D, ={(x1,y1),..., (Xn, ¥n)}-
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Minibatch Gradient
@ The full gradient is / ‘FM'” b&\—HL\

Vli’n(w) = %vae(fw(xi),)/i)
i=1
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Minibatch Gradient

@ The full gradient is

30/ 60



Batch vs Stochastic Methods

// 0

20
|

o

10
|

Rule of thumb for stochastic methods:

@ Stochastic methods work well far from the optimum

@ But struggle close the the optimum

-10

e,
PR
(‘}§$§~ L

5= s

“" S

S
o S\
AN <

|

| | | | |
-20 -10 0 10 20

(Slide adapted from Ryan Tibshirani)




Minibatch Gradient Properties

® The minibatch gradient is an unbiased estimator for the [full] batch gradient. What does
that mean? ‘
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Minibatch Gradient Properties

@ The minibatch gradient is an unbiased estimator for the [full] batch gradient. What does

that mean? X X
@VRN(w)} — VR (w)
—_AD/

T
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Minibatch Gradient Properties

@ The minibatch gradient is an unbiased estimator for the [full] batch gradient. What does
that mean?

E [vé,\,(w)} — VR, (w)

:—Var > VR ar
ij ]
© =z

@ The bigger the minibatch, thei)etter the estimate.

:j@iw v
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Minibatch Gradient Properties

@ The minibatch gradient is an unbiased estimator for the [full] batch gradient. What does
that mean?

E [vé,\,(w)} — VR, (w)

@ The bigger the minibatch, the better the estimate.

ZVR

= lVar [Vli’,-(w)}

Var [VRN } Var N

= —Var

ZVR

@ Tradeoffs of minibatch size:
o Bigger N = Better estimate of gradient, but slower (more data to process)

‘— S —
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Minibatch Gradient Properties

@ The minibatch gradient is an unbiased estimator for the [full] batch gradient. What does
that mean?

E [VQN(W)} — VR, (w)

@ The bigger the minibatch, the better the estimate.

ZVR

= lVar [Vli’,-(w)}

= —V
ar N

Var[Vli’N( } Var

ZVR

@ Tradeoffs of minibatch size:
o Bigger N = Better estimate of gradient, but slower (more data to process)

o Smaller N — Worse estimate of gradient, but can be quite fast




Minibatch Gradient Properties

@ The minibatch gradient is an unbiased estimator for the [full] batch gradient. What does

that mean? X X o ol
E|VRy(w)| = VRy(w) R
é L K
@ The bigger the minibatch, the better the estimate. I/ M
Var [Vﬁ’,\,( ] Var ZVR _ —Var ZVR _ %Var [V/%,-( )}

@ Tradeoffs of minibatch size:
o Bigger N = Better estimate of gradient, but slower (more data to process)

o Smaller N — Worse estimate of gradient, but can be quite fast

@ Because of vectorization, the computation cost of minibatches is sublinear




Convergence of SGD

@ For convergence guarantee, use diminishing step sizes, e.g. N, =1/k

e——

@ Theoretically, GD is much faster than SGD in terms of convergence rate and number of
steps: — o

o much faster to add a digit of accuracy (more details later) 2 2_5/ ? I
‘ By
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Convergence of SGD

@ For convergence guarantee, use diminishing step sizes, e.g. N, =1/k

@ Theoretically, GD is much faster than SGD in terms of convergence rate and number of
steps:
o much faster to add a digit of accuracy (more details later)

o costlier to compute a single step
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Convergence of SGD

@ For convergence guarantee, use diminishing step sizes, e.g. N, =1/k

@ Theoretically, GD is much faster than SGD in terms of convergence rate and number of
steps:
o much faster to add a digit of accuracy (more details later)

o costlier to compute a single step

o but most of that advantage comes into play once we're already pretty close to the
minimum
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Convergence of SGD

@ For convergence guarantee, use diminishing step sizes, e.g. N, =1/k

@ Theoretically, GD is much faster than SGD in terms of convergence rate and number of
steps:

o much faster to add a digit of accuracy (more details later)
o costlier to compute a single step

o but most of that advantage comes into play once we're already pretty close to the
minimum

o in many ML problems we don’t care about optimizing to high accuracy (why?)
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Step Sizes in Minibatch Gradient Descent
Minibatch Gradient Descent (minibatch size V)
@ initialize w =0

@ repeat
o randomly choose N points {(x;, yi)}; C D,

. we W_n([ﬂ Vul(fu (7). 1)

@ For SGD, fixed step size can work well in practice.

Tooee——————
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Step Sizes in Minibatch Gradient Descent

Minibatch Gradient Descent (minibatch size V)

@ initialize w =0

@ repeat
o randomly choose N points {(x;, yi)}; C D,

@ W < W—@% vazl vwe(fw(xi)vyi)}
= (k)

@ For SGD, fixed step size can work well in practice.

@ Typical approach: Fixed step size reduced by constant factor whenever validation
performance stops improving (staircase decay).
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Step Sizes in Minibatch Gradient Descent

Minibatch Gradient Descent (minibatch size V)

@ initialize w =0

@ repeat
o randomly choose N points {(x;, yi)}; C D,

0w w—n [} TN, Vullfu(xi).y1)

R\
@ For SGD, fixed step size can work well in practice. / \

@ Typical approach: Fixed step size reduced by constant factor whenever validation
performance stops improving (staircase decay). \
@ Other schedules: inverse time decay (1/t) etc. L >~ ,1L—3




Convergence of SGD Theorem (Optional) 9[& :‘P’ %/
<

More on why we need a diminishing step size. — -

\
Theorem %T%' — @

If f is@smooth and convex, and SGD has‘bounded variance Var(Vf(x%)))
then SGD with step size 1 @satisiﬁes:

———————— P

- > Nk y

2
The extra term of variance will dominate if the step size does not decrease. ! & J
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https://www.cs.ubc.ca/~schmidtm/Courses/540-W19/L11.pdf

Summary

e Gradient descent or “full-batch” gradient descent
o Use full data set of size n to determine step direction
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Summary

e Gradient descent or “full-batch” gradient descent
o Use full data set of size n to determine step direction

@ Minibatch gradient descent
o Use a random subset of size N to determine step direction
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Summary

e Gradient descent or “full-batch” gradient descent
o Use full data set of size n to determine step direction

@ Minibatch gradient descent
o Use a random subset of size N to determine step direction

@ Stochastic gradient ¢ escent
o Minibatch with(V =(1)

o Use a single randomly chosen point to determine step direction.
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Summary

e Gradient descent or “full-batch” gradient descent

o Use full data set of size n to determine step direction

@ Minibatch gradient descent

o Use a random subset of size N to determine step direction

@ Stochastic gradient descent
o Minibatch with N =1.

o Use a single randomly chosen point to determine step direction.

These days terminology isn't used so consistently, so when referring to SGD, always clarify the
[mini]batch size.

SGD is much more efficient in time and memory cost and has been quite successful in
large-scale ML. M




Example: Logistic regression with {> regularization

Batch methods converge faster :

— Full
—— Stochastic
—— Mini-batch, b=10
—— Mini-batch, b=100
o}
©
o
X
= o
c o 4
S o
e
o
n
w0
o
o
w0
o

0 10 20 30 40 50

Iteration number k

(Example from Ryan Tibshirani)
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Example: Logistic regression with {> regularization

Stochastic methods are computationally more efficient:

ull

tochastic
ini-batch, b=10
ini-batch, b=100

0.65
|

Criterion fk
0.60
|

0.55
|

0.50
|

1e+02 1e+04 1e+06

Flop count

(Example from Ryan Tibshirani)
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Example: Logistic regression with {> regularization

Batch methods are much faster close to the optimum:

[42)
3
[0]
&
7]
£ o
o C|> ]
S o
c ™~
o
g
o
[e)]
Q
9
— Full
—— Stochastic
——  Mini-batch, b=10
N —— Mini-batch, b=100
5'_: l T T T T T

0 10 20 30 40 50

Iteration number k

(Example from Ryan Tibshirani)
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Loss Functions: Regression J
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Regression Problems

@ Examples:
o Predicting the stock price given history prices
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Regression Problems

@ Examples:
o Predicting the stock price given history prices

o Predicting medical cost of given age, sex, region, BMI etc.
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Regression Problems

@ Examples:
o Predicting the stock price given history prices

o Predicting medical cost of given age, sex, region, BMI etc.

o Predicting the age of a person based on their photos
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Regression Problems

@ Examples:
o Predicting the stock price given history prices

o Predicting medical cost of given age, sex, region, BMI etc.

o Predicting the age of a person based on their photos

e Notation:
o@is the predicted value (the action)

a@is the actual observed value (the outcome)

CSCI-GA 2565

41/ 60



Loss Functions for Regression

@ A loss function in general:

(P.y) =ty y) eR
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Loss Functions for Regression

@ A loss function in general:
(P.y) =ty y) eR

@ Regression losses usually only depend on the residual r —@@

o what you have to add to your prediction to get the correct answer.
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Loss Functions for Regression

@ A loss function in general:
(P.y)—=ty,y)eR

@ Regression losses usually only depend on the residual r=y —y.
o what you have to add to your prediction to get the correct answer.

@ Aloss £(y,y) is called distance-based if:
© It only depends on the residual:

Ly,y)=P(y—y) for someP:R—R

@ It is zero when the residual is 0:

- P(0) =0

CSCI-GA 2565 42 /60



Distance-Based Losses are Translation Invariant

@ Distance-based losses are translation-invariant. That is,

e(y@,y+b —0(y.y) VbeR
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Distance-Based Losses are Translation Invariant

@ Distance-based losses are translation-invariant. That is,

Up+by+b)=L(y,y) VbeER.

@ When might you not want to use a translation-invariant loss?
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Distance-Based Losses are Translation Invariant

@ Distance-based losses are translation-invariant. That is,

{p+by+b) =L(y.y) VbER

@ When might you not want to use a translation-invariant loss?

@ Sometimes the relative error/ =% is a more natural loss (but not translation-invariant)
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Some Losses for Regression

@ Residual: r=y—¢

@ Square or ¢, Loss: {(r) :@
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Some Losses for Regression

@ Residual: r=y—y
e Square or {5 Loss: {(r) = r?

@ Absolute or Laplace or {1 Loss: £(r) =|r|
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Some Losses for Regression X

@ Residual: r=y—y

o Square or {, Loss: {(r) = r? A e
AN
@ Absolute or Laplace or ¢; Loss: £(r) =|r| VT x
y [y llrl=ly=gl [ rP=(y—9) -
ajol 1 1
510 5 25
10 | O LO\ "
a0 | 0] (50) (2500

@ An outlier is a data point that differs significantly from other observations.
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Some Losses for Regression

@ Residual: r=y—y
e Square or {5 Loss: {(r) = r?

@ Absolute or Laplace or ¢; Loss: £(r) =|r|

y |y Ird=ly=yl| rP=(y—y)°
1 |0 1 1
510 25
10 | O 10 100
5010 50 2500

@ An outlier is a data point that differs significantly from other observations.
@ Outliers typically have large residuals.

@ Square loss much more affected by outliers than absolute loss.



| oss Function Robustness

@ Robustness refers to how affected a learning algorithm is by outliers.

Q— e

Linear data with noise and outliers

—O— least squares [b)
L)1 "o 4

3 = -EF - laplace

KPM Figure 7.6



Some Losses for Regression

e Square or {, Loss: {(r) = r? (not robust)

e Absolute or Laplace Loss: {(r) =|r| (not differentiable)
o gives median regression

@ Huber Loss: Quadratic for |r| < & and linear for |r| > 6 (robust and differentiable)
Huber Loss
o Equal values and slopes at r =5

5

KPM Figure 7.6



Classification Loss Functions J
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The Classification Problem

@ Examples:

o Predict whether the image contains a cat

o Predict whether the email is spam
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o Classification spaces:;
o Input space

o Outcome space Y ={—1,1}
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The Classification Problem

@ Examples:

o Predict whether the image contains a cat

o Predict whether the email is spam

@ Classification spaces:
o Input space RY

o Outcome space Y :i—,l_Jl

@ Inference: /

f(x) >0 — Predict 1
e J
f(x) <0 — Predict (1

[_/———V
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The Classification Problem

@ Examples:

o Predict whether the image contains a cat

o Predict whether the email is spam

@ Classification spaces:
o Input space RY

o Outcome space Y ={—1,1}

@ Inference:

f(x) >0 = Predict 1 FF(‘X') 208 - |
f(x) <0 = Predict —1 ~F(><)<()e§ 4
How can we optimize the model output?



The Score Function

@ Output space Y ={—1,1}

@ Real-valued prediction function@: X —R

Definition

The value f(x) is called the score for the input x.
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The Score Function

@ Output space Y ={—1,1}
@ Real-valued prediction function f: X — R

Definition

The value f(x) is called the score for the input x. 5
\-

Flac) =
@ In this context, f may be called a score function. é;( 9 :

@ The magnitude of the score can be interpreted as our confidence of our prediction.

—

——
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The Margin

£0)

The margin (or functional margin) for a predicted scoré yjand the true class y € {—1, 1} is@

\_/"__ e —_—————

Definition
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The Margin

Definition
The margin (or functional margin) for a predicted scor@nd the true classz e{—1,1} is@

@ The margin is often written as yf(x), where f(x) is our score function.
\
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The Margin

Definition
The margin (or functional margin) for a predicted score y and the true class y € {—1,1} is yy.

@ The margin is often written as yf(x), where f(x) is our score function.

@ The margin is a measure of how correct we are:
o If y and y are the same sign, prediction is correct and margin is positive.

o If y and y have different sign, prediction is incorrect and margin is negative.
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@ The margin is often written as yf(x), where f(x) is our score function.

@ The margin is a measure of how correct we are:
o If y and y are the same sign, prediction is correct and margin is positive.
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@ We want to maximize the margin.
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The Margin

Definition
The margin (or functional margin) for a predicted score y and the true class y € {—1,1} is yy.
@ The margin is often written as yf(x), where f(x) is our score function.

@ The margin is a measure of how correct we are:
o If y and y are the same sign, prediction is correct and margin is positive.

o If y and y have different sign, prediction is incorrect and margin is negative.

@ We want to maximize the margin.

@ Most classification losses depend only on the margin (they are margin-based losses).



Classification Losses: 0 —1 Loss

o If f is the inference function (1 if f(x) > 0 and —1 otherwise), then

@ The 0-1 loss for f: X — {—1, 1}

L(F(x),y) @[N(X)#y]
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Classification Losses: 0 —1 Loss

o If f is the inference function (1 if f(x) > 0 and —1 otherwise), then 'K b&A
@ The 0-1 loss for f: X — {—1, 1} ;\/

~ v —
L(f(x),y) =1If(x) #y] / v
@ Empirical risk for 0—1 loss: / b% Ug.cf“‘:jw
A 1 ¢ v Y
Rn(f) — ;Zl[ If(XI) < 0]
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Classification Losses: 0 —1 Loss

o If f is the inference function (1 if f(x) > 0 and —1 otherwise), then

@ The 0-1 loss for f: X — {—1, 1}

L(f(x),y) = 1[f(x) #y]

@ Empirical risk for 0—1 loss:
n

Ra(F)==) 1lyif(x) <0l

n-“
=1

Minimizing empirical 0 —1 risk not computationally feasible.

R,(f) is non-convex, not differentiable, and even discontinuous.



Classification Losses

Zero-One loss: {g.1 = 1[m < 0]

Loss

=== Zero_One

1
-2 0

2
Margin m=yf(x)

@ x-axis is margin: m > (0 <= correct classification
e
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Hinge Loss

SVM/Hinge loss: {Hinge = max(1—m,0)

Loss
s Zero_One
3 -

== Hinge

: ; >
1 é /' /
Margin m=yf(x)

Hinge is a convex, upper bound on 0—1 loss. Not differentiable at m=1.

We will cover SVM and Hinge loss in more details in future lectures.
e
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Logistic Regression

@ Also known as linear classification. Logistic regression is not actually “regression.”

@ Two equivalent types of logistic regression losses, depending on the labels.
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Logistic Regression

@ Also known as linear classification. Logistic regression is not actually “regression.”

@ Two equivalent types of logistic regression losses, depending on the labels.

@ If the label is 0 or 1:

N\

@ y = 0(z), where o is the sigmoid function, and z=f(x)=w'x. — SCoro

1.0

[GjESHc

0.2

005 == = ® 2 4 6 +’q%
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Logistic Regression

@ If the label is 0 or 1:

N\

@ y = 0(z), where o is the sigmoid function.
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Logistic Regression

@ If the label is 0 or 1:

@ y = 0(z), where o is the sigmoid function.

o L
Z | =
1+exp(—z)
@ The loss is binary cross entropy:
eLogistic: Og(}?) (]—_Y) Iog(l—f/)

42099 logCerfq) = Il =0
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Logistic Regression

@ If the label is 0 or 1:

N\

@ y = 0(z), where o is the sigmoid function.

@ The loss is binary cross entropy:

eLogistic — —y|0g()7) — (1 _)/) |og(1 _)7)

@ Remember the negative sign!



Logistic Regression

@ If the label is -1 o 1:

@ Note: 1—0(z) =0o(—2)
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Logistic Regression

@ If the label is -1 o 1:
@ Note: 1—0(z) =0o(—2)

@ Now we can derive an equivalent loss form:

. {Iog(a(z)) if y=1
HEHCT | —log(o(—2)) if y=—1
= —log(o(yz))
1
1+e 7
—log(1+e™ ™).

= —log( )
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Logistic Regression

@ If the label is -1 o 1:
@ Note: 1—0(z) =0o(—2)
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Logistic Regression

@ If the label is -1 o 1:
@ Note: 1—0(z) =0o(—2)

@ Now we can derive an equivalent loss form:

. {Iog(o(z)) if y=1
HEHCT | —log(o(—2)) if y=—1
= —log(o(yz))
1
14+e =
—log(1+e™ ™).

= —log( )
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Logistic Loss

Logistic/Log loss: {| ogistic = log (1+e~ ™)

Loss
== Zero_One
=== Hinge

=== | ogistic

1
2
Margin m=yf(x)

Logistic loss is differentiable. Logistic loss always rewards a larger margin (the loss is never 0).
e
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What About Square Loss for Classification?

@ Loss {(f(x),y) = (f(x)—y)z.
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What About Square Loss for Classification?

@ Loss {(f(x),y) = (f(x)—y)Q.
@ Turns out, can write this in terms of margin m= f(x)y:

o Using fact that y2 =1, since y € {—1,1}.
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What About Square Loss for Classification?

@ Loss {(f(x),y) = (f(x)—y)Q.
@ Turns out, can write this in terms of margin m= f(x)y:

o Using fact that y2 =1, since y € {—1,1}.

(F(x)y) = (F(x)—y)
)
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What About Square Loss for Classification?

0 2
Margin m=yf(x)

Heavily penalizes outliers (e.g. mislabeled examples)
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Summary

@ Gradient descent: step size/learning rate, batch size, convergence
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Summary
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Summary

o Gradient descent: step size/learning rate, batch size, convergence
@ Loss functions for regression and classification problems.

@ Regression: Squared (L2) loss, Absolute (L1) loss, Huber loss.

@ Classification: Hinge loss, Logistic loss.

@ Residual, margin

@ Logistic regression
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