Gradient Descent and Loss Functions

Mengye Ren

(Slides credit to David Rosenberg, He He, et al.)

NYU

September 10, 2024

Lecture Slides

- For those of you who want to take notes on your tablets.
- Otherwise, slides will be shared on the course website after the lecture.

- Homework 1 will be released soon. You have until Oct 1 noon (12pm) to finish.
- Submit PDF and code to Gradescope.
- Course website: <https://nyu-cs2565.github.io/2024-fall/>

[Review: ERM](#page-3-0)

Prediction Function

A prediction function gets input x and produces an output $\hat{y} = f(x)$.

Loss Function

A loss function $\ell(\hat{y}, y)$ evaluates an action in the context of the outcome y.

Risk and the Bayes Prediction Function

Definition

The risk of a prediction function $f: \mathcal{X} \rightarrow \mathcal{Y}$ is

 $R(f) = \mathbb{E}\ell(f(x),y).$

In words, it's the expected loss of f on a new example (x, y) drawn randomly from $P_{\gamma x,y}$.

Definition

A Bayes prediction function f^* is a function that achieves the minimal risk among all possible functions:

 $f^* \in \argmin$ f $R(f)$,

The risk of a Bayes prediction function is called the Bayes risk.

The Empirical Risk

Let $\mathcal{D}_n = ((x_1, y_1), \ldots, (x_n, y_n))$ be drawn i.i.d. from $\mathcal{P}_{\mathcal{X} \times \mathcal{Y}}$.

Definition

The empirical risk of f with respect to \mathcal{D}_n is

$$
\hat{R}_n(f) = \frac{1}{n} \sum_{i=1}^n \ell(f(x_i), y_i).
$$

• The unconstrained empirical risk minimizer can overfit.

i.e. if we minimize $\hat{R}_n(f)$ over all functions, we overfit.

Constrained Empirical Risk Minimization

Definition

A hypothesis space \mathcal{F} is a set of functions mapping $\mathcal{X} \rightarrow \mathcal{Y}$.

- This is the collection of prediction functions we are choosing from.
- An empirical risk minimizer (ERM) in $\mathcal F$ is

$$
\hat{f}_n \in \operatorname*{arg\,min}_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^n \ell(f(x_i), y_i).
$$

- From now on "ERM" always means "constrained ERM".
- So we should always specify the hypothesis space when we're doing ERM.

Error Decomposition Review

Excess risk decomposition for function \tilde{f}_n returned by an optimization algorithm in practice:

[CSCI-GA 2565](#page-0-0) 9 / 60

- Given a loss function ℓ,
- Choose a hypothesis space \mathcal{F} .
- Use an optimization method to find an empirical risk minimizer $\hat{f}_n \in \mathfrak{F}$:

$$
\hat{f}_n = \underset{f \in \mathcal{F}}{\arg \min} \frac{1}{n} \sum_{i=1}^n \ell(f(x_i), y_i).
$$

- Or find a \tilde{f}_n that comes close to \hat{f}_n
- The machine learning scientist's job:
	- Choose $\mathcal F$ that balances approximation and estimation error.
	- As we get more training data, we can use a bigger \mathcal{F} .

Example: Linear Least Squares Regression

Setup

- Loss: $\ell(\hat{y}, y) = (y \hat{y})^2$
- Hypothesis space: $\mathcal{F} = \{f : \mathsf{R}^d \to \mathsf{R} \mid f(x) = w^T x, w \in \mathsf{R}^d\}$
- Given a data set $\mathcal{D}_n = \{(x_1, y_1), \ldots, (x_n, y_n)\},\$
	- Our goal is to find the ERM $\hat{f} \in \mathcal{F}$.

Example: Linear Least Squares Regression

Objective Function: Empirical Risk

We want to find the function in $\mathcal F$, parametrized by $w\in\mathsf{R}^d$, that minimizes the empirical risk:

$$
\hat{R}_n(w) = \frac{1}{n} \sum_{i=1}^n (w^T x_i - y_i)^2
$$

• How do we solve this optimization problem?

$$
\min_{w \in \mathbb{R}^d} \hat{R}_n(w)
$$

(For OLS there's a closed form solution, but in general there isn't.)

[Gradient Descent](#page-12-0)

Setting

We assume that the objective function $f:\mathsf{R}^d\to\mathsf{R}$ is *differentiable.* We want to find

$$
x^* = \arg\min_{x \in \mathbb{R}^d} f(x)
$$

The Gradient

- Let $f: \mathsf{R}^d \to \mathsf{R}$ be differentiable at $x_0 \in \mathsf{R}^d$.
- The gradient of f at the point x_0 , denoted $\nabla_x f(x_0)$, is the direction in which $f(x)$ increases fastest, if we start from x_0 .
- \bullet The gradient of f is the partial derivatives of all dimensions: $\nabla f(x) = [\partial f/\partial x_1(x),...,\partial f/\partial x_d(x)].$

Figure A.111 from Newtonian Dynamics, by Richard Fitzpatrick.

Gradient Descent

To reach a local minimum as fast as possible, we want to go in the opposite direction from the gradient.

Gradient Descent

- Initialize $x \leftarrow 0$.
- Repeat:
	- $\bullet x \leftarrow x n \nabla f(x)$
- until the stopping criterion is satisfied.
- The "step size" η is not the amount by which we update $x!$
- "Step size" is also referred to as "learning rate" in neural networks literature.

Gradient Descent Path

Image credit: Amini et al. Spatial Uncertainty Sampling for End-to-End Control. 2018.

Gradient Descent: Step Size

A fixed step size will work, eventually, as long as it's small enough

- If η is too large, the optimization process might diverge
- In practice, it often makes sense to try several fixed step sizes
- Intuition on when to take big steps and when to take small steps?

Gradient Descent diverging (stepsize too large)

2D Divergence example

- Gradient descent with an appropriate step size converges to stationary point (derivative $=$ 0) for differentiable functions.
- Stationary points can be (local) minima, (local) maxima, saddle points, etc.
- Gradient descent can converge to global minimum for convex functions.

Convergence Theorem for Fixed Step Size

Theorem

Suppose f : $\mathsf{R}^d \to \mathsf{R}$ is convex and differentiable, and ∇f is **Lipschitz continuous** with constant $L > 0$ (L-smooth), i.e.

$$
\|\nabla f(x) - \nabla f(x')\| \leq L\|x - x'\|
$$

for any $x, x' \in \mathsf{R}^d$. Then gradient descent with fixed step size $\eta \leqslant 1/L$ converges. In particular,

$$
f(x^{(k)}) - f(x^*) \leqslant \frac{\|x^{(0)} - x^*\|^2}{2\eta k}.
$$

This says that gradient descent is guaranteed to converge and that it converges with rate $O(1/k)$.

Strongly Convex Functions

Definition

A function f is μ -strongly convex if

$$
f(x') \geqslant f(x) + \nabla f(x) \cdot (x'-x) + \frac{\mu}{2} ||x-x'||^2
$$

Convergence Theorem for Strongly Convex Functions

Theorem

If f is L-smooth and μ -strongly convex, and step size $0 < \eta \leqslant \frac{1}{l}$ $\frac{1}{L}$, then gradient descent converges with the following inequality:

$$
\|x^{(k)}-x^*\|^2\leqslant (1\!-\!\eta\mu)^k\|x^{(0)}-x^*\|^2
$$

This means we can get linear convergence, but it depends on μ . If the estimate of μ is bad then the rate is not great.

- Wait until $\|\nabla f(x)\|_2 \leq \varepsilon$, for some ε of your choosing.
	- (Recall $\nabla f(x) = 0$ at a local minimum.)
- Early stopping:
	- evalute loss on validation data (unseen held out data) after each iteration;
	- stop when the loss does not improve (or gets worse).

[Gradient Descent for Empirical Risk - Scaling Issues](#page-24-0)

Quick recap: Gradient Descent for ERM

- We have a hypothesis space of functions $\mathcal{F}\!=\!\big\{f_{\mathsf{w}}\!:\!\mathfrak{X}\!\to\!\mathcal{Y}\,|\,\mathsf{w}\in\mathsf{R}^d\big\}$
	- Parameterized by $w \in \mathsf{R}^d$.
- Finding an empirical risk minimizer entails finding a w that minimizes

$$
\hat{R}_n(w) = \frac{1}{n} \sum_{i=1}^n \ell(f_w(x_i), y_i)
$$

- Suppose $\ell(f_w(x_i), y_i)$ is differentiable as a function of w.
- Then we can do gradient descent on $\hat{R}_n(w)$

 \bullet At every iteration, we compute the gradient at the current w:

$$
\nabla \hat{R}_n(w) = \frac{1}{n} \sum_{i=1}^n \nabla_w \ell(f_w(x_i), y_i)
$$

- \bullet How does this scale with n^2
- We have to iterate over all *n* training points to take a single step. $[O(n)]$
- Can we make progress without looking at all the data before updating w?

[Stochastic Gradient Descent](#page-27-0)

- Instead of using the gradient, we use a noisy estimate of the gradient.
- Turns out this can work just fine!
- **o** Intuition:
	- Gradient descent is an iterative procedure anyway.
	- At every step, we have a chance to recover from previous missteps.

Minibatch Gradient

• The full gradient is

$$
\nabla \hat{R}_n(w) = \frac{1}{n} \sum_{i=1}^n \nabla_w \ell(f_w(x_i), y_i)
$$

- It's an average over the full batch of data $\mathcal{D}_n = \{(x_1, y_1), \ldots, (x_n, y_n)\}.$
- \bullet Let's take a random subsample of size N (called a minibatch):

$$
(x_{m_1},y_{m_1}),\ldots,(x_{m_N},y_{m_N})
$$

• The minibatch gradient is

$$
\nabla \hat{R}_N(w) = \frac{1}{N} \sum_{i=1}^N \nabla_w \ell(f_w(x_{m_i}), y_{m_i})
$$

Batch vs Stochastic Methods

(Slide adapted from Ryan Tibshirani)

Rule of thumb for stochastic methods:

- Stochastic methods work well far from the optimum
- But struggle close the the optimum

Minibatch Gradient Properties

• The minibatch gradient is an **unbiased estimator** for the [full] batch gradient. What does that mean?

$$
\mathbb{E}\left[\nabla \hat{R}_N(w)\right] = \nabla \hat{R}_n(w)
$$

• The bigger the minibatch, the better the estimate.

$$
\text{Var}\left[\nabla \hat{R}_N(w)\right] = \text{Var}\left[\frac{1}{N}\sum_{i} \nabla \hat{R}_i(w)\right] = \frac{1}{N^2} \text{Var}\left[\sum_{i} \nabla \hat{R}_i(w)\right] = \frac{1}{N} \text{Var}\left[\nabla \hat{R}_i(w)\right]
$$

- **o** Tradeoffs of minibatch size:
	- Bigger $N \implies$ Better estimate of gradient, but slower (more data to process)
	- Smaller $N \implies$ Worse estimate of gradient, but can be quite fast
- Because of vectorization, the computation cost of minibatches is sublinear

[CSCI-GA 2565](#page-0-0) 32 / 60

- For convergence guarantee, use diminishing step sizes, e.g. $\eta_k = 1/k$
- Theoretically, GD is much faster than SGD in terms of convergence rate and number of steps:
	- much faster to add a digit of accuracy (more details later)
	- costlier to compute a single step
	- but most of that advantage comes into play once we're already pretty close to the minimum
	- in many ML problems we don't care about optimizing to high accuracy (why?)

Step Sizes in Minibatch Gradient Descent

Minibatch Gradient Descent (minibatch size N)

- \bullet initialize $w = 0$
- repeat
	- randomly choose N points $\left\{\left(x_i, y_i\right)\right\}_{i=1}^N \subset \mathcal{D}_n$

•
$$
w \leftarrow w - \eta \left[\frac{1}{N} \sum_{i=1}^{N} \nabla_w \ell(f_w(x_i), y_i) \right]
$$

- For SGD, fixed step size can work well in practice.
- Typical approach: Fixed step size reduced by constant factor whenever validation performance stops improving (staircase decay).
- \bullet Other schedules: inverse time decay (1/t) etc.

Convergence of SGD Theorem (Optional)

More on why we need a diminishing step size.

Theorem

If f is L-smooth and convex, and SGD has bounded variance $Var(\nabla f(x^{(k)})) \leq \sigma^2$ for all k, then SGD with step size $\eta \leqslant \frac{1}{l}$ $\frac{1}{L}$ satisifies:

$$
\min_{k} \mathbb{E}[\|\nabla f(\mathbf{x}^{(k)}\|^2] \leqslant \frac{f(\mathbf{x}^{(0)}) - f(\mathbf{x}^*)}{\sum_{k} \eta_k} + \frac{L\sigma^2}{2} \frac{\sum_{k} \eta_k^2}{\sum_{k} \eta_k}
$$

The extra term of variance will dominate if the step size does not decrease. 1

¹<https://www.cs.ubc.ca/~schmidtm/Courses/540-W19/L11.pdf>

Summary

- Gradient descent or "full-batch" gradient descent
	- \bullet Use full data set of size *n* to determine step direction
- Minibatch gradient descent
	- Use a random subset of size N to determine step direction
- Stochastic gradient descent
	- Minibatch with $N = 1$.
	- Use a single randomly chosen point to determine step direction.

These days terminology isn't used so consistently, so when referring to SGD, always clarify the [mini]batch size.

SGD is much more efficient in time and memory cost and has been quite successful in large-scale ML.

Example: Logistic regression with ℓ_2 regularization

Batch methods converge faster :

(Example from Ryan Tibshirani)

[CSCI-GA 2565](#page-0-0) 37 / 60

Example: Logistic regression with ℓ_2 regularization

Stochastic methods are computationally more efficient:

(Example from Ryan Tibshirani)

Example: Logistic regression with ℓ_2 regularization

Batch methods are much faster close to the optimum:

(Example from Ryan Tibshirani)

[Loss Functions: Regression](#page-39-0)

- **•** Examples:
	- Predicting the stock price given history prices
	- Predicting medical cost of given age, sex, region, BMI etc.
	- Predicting the age of a person based on their photos
- **o** Notation:
	- \hat{y} is the predicted value (the action)
	- \bullet y is the actual observed value (the outcome)

Loss Functions for Regression

• A loss function in general:

$$
(\hat{y},y)\mapsto \ell(\hat{y},y)\in R
$$

- Regression losses usually only depend on the residual $r = y \hat{y}$.
	- what you have to add to your prediction to get the correct answer.
- A loss $\ell(\hat{v}, v)$ is called distance-based if:
	- **1** It only depends on the residual:

$$
\ell(\hat{y}, y) = \psi(y - \hat{y})
$$
 for some $\psi: R \to R$

2 It is zero when the residual is 0:

 $\psi(0) = 0$

Distance-based losses are translation-invariant. That is,

$$
\ell(\hat{y}+b, y+b) = \ell(\hat{y}, y) \qquad \forall b \in \mathsf{R}.
$$

- When might you not want to use a translation-invariant loss?
- Sometimes the relative error $\frac{\hat{y}-y}{y}$ is a more natural loss (but not translation-invariant)

Some Losses for Regression

- Residual: $r = y \hat{y}$
- **Square** or ℓ_2 Loss: $\ell(r) = r^2$
- Absolute or Laplace or ℓ_1 Loss: $\ell(r) = |r|$

- An outlier is a data point that differs significantly from other observations.
- Outliers typically have large residuals.
- Square loss much more affected by outliers than absolute loss.

Loss Function Robustness

• Robustness refers to how affected a learning algorithm is by outliers.

KPM Figure 7.6

Some Losses for Regression

Square or ℓ_2 Loss: $\ell(r) = r^2$ (not robust)

- Absolute or Laplace Loss: $\ell(r) = |r|$ (not differentiable)
	- gives median regression
- Huber Loss: Quadratic for $|r| \le \delta$ and linear for $|r| > \delta$ (robust and differentiable) • Equal values and slopes at $r = \delta$

KPM Figure 7.6

[Classification Loss Functions](#page-46-0)

The Classification Problem

- **•** Examples:
	- Predict whether the image contains a cat
	- Predict whether the email is spam
- Classification spaces:
	- \bullet Input space R^d
	- \bullet Outcome space $\mathcal{Y} = \{-1, 1\}$
- o Inference:

$$
f(x) > 0 \implies \text{Predict 1}
$$

$$
f(x) < 0 \implies \text{Predict -1}
$$

How can we optimize the model output?

The Score Function

- \bullet Output space $\mathcal{Y} = \{-1, 1\}$
- Real-valued prediction function $f: \mathcal{X} \to \mathsf{R}$

Definition

The value $f(x)$ is called the score for the input x.

- \bullet In this context, f may be called a score function.
- The magnitude of the score can be interpreted as our confidence of our prediction.

The Margin

Definition

The **margin** (or **functional margin)** for a predicted score \hat{y} and the true class $y \in \{-1,1\}$ is $y\hat{y}$.

- The margin is often written as $y f(x)$, where $f(x)$ is our score function.
- The margin is a measure of how correct we are:
	- If y and \hat{y} are the same sign, prediction is correct and margin is positive.
	- If y and \hat{v} have different sign, prediction is **incorrect** and margin is negative.
- We want to maximize the margin.
- Most classification losses depend only on the margin (they are margin-based losses).

Classification Losses: 0−1 Loss

- If \tilde{f} is the inference function (1 if $f(x) > 0$ and -1 otherwise), then
- The 0-1 loss for $f: \mathcal{X} \rightarrow \{-1, 1\}$:

$$
\ell(f(x),y) = \mathbb{1}[\tilde{f}(x) \neq y]
$$

Empirical risk for 0−1 loss:

$$
\hat{R}_n(f) = \frac{1}{n} \sum_{i=1}^n \mathbb{1}[y_i f(x_i) \leq 0]
$$

Minimizing empirical 0−1 risk not computationally feasible.

 $\hat{R}_n(f)$ is non-convex, not differentiable, and even discontinuous.

Classification Losses

Zero-One loss: $\ell_{0-1} = \mathbb{1}[m \leq 0]$

• x-axis is margin: $m > 0 \iff$ correct classification

[CSCI-GA 2565](#page-0-0) 52 / 60

Hinge Loss

SVM/Hinge loss: $\ell_{\text{Hinge}} = \max(1-m,0)$

Hinge is a convex, upper bound on $0-1$ loss. Not differentiable at $m=1$.

We will cover SVM and Hinge loss in more details in future lectures.

[CSCI-GA 2565](#page-0-0) 53 / 60

Logistic Regression

- Also known as linear classification. Logistic regression is not actually "regression."
- Two equivalent types of logistic regression losses, depending on the labels.
- \bullet If the label is 0 or 1:
- $\hat{y} = \sigma(z)$, where σ is the sigmoid function, and $z = f(x) = w^\top x.$

$$
\sigma(z)=\frac{1}{1+\text{exp}(-z)}
$$

Logistic Regression

- \bullet If the label is 0 or 1:
- $\hat{y} = \sigma(z)$, where σ is the sigmoid function.

$$
\sigma(z)=\frac{1}{1+exp(-z)}
$$

• The loss is binary cross entropy:

$$
\ell_{\text{Logistic}} = -y\log(\hat{y}) - (1-y)\log(1-\hat{y})
$$

Remember the negative sign!

Logistic Regression

- \bullet If the label is -1 o 1:
- Note: $1-\sigma(z) = \sigma(-z)$
- Now we can derive an equivalent loss form:

$$
\ell_{Logistic} = \begin{cases}\n-\log(\sigma(z)) & \text{if } y = 1 \\
-\log(\sigma(-z)) & \text{if } y = -1\n\end{cases}
$$
\n
$$
= -\log(\sigma(yz))
$$
\n
$$
= -\log(\frac{1}{1 + e^{-yz}})
$$
\n
$$
= \log(1 + e^{-m}).
$$

Logistic Loss

Logistic/Log loss: $\ell_{\text{Logistic}} = \log{(1+e^{-m})}$

Logistic loss is differentiable. Logistic loss always rewards a larger margin (the loss is never 0).

What About Square Loss for Classification?

• Loss
$$
l(f(x), y) = (f(x) - y)^2
$$
.

- Turns out, can write this in terms of margin $m = f(x)y$:
- Using fact that $y^2 = 1$, since $y \in \{-1, 1\}$.

$$
\ell(f(x), y) = (f(x)-y)^2
$$

= $f^2(x)-2f(x)y+y^2$
= $f^2(x)y^2-2f(x)y+1$
= $(1-f(x)y)^2$
= $(1-m)^2$

What About Square Loss for Classification?

Heavily penalizes outliers (e.g. mislabeled examples).

- Gradient descent: step size/learning rate, batch size, convergence
- Loss functions for regression and classification problems.
- Regression: Squared (L2) loss, Absolute (L1) loss, Huber loss.
- Classification: Hinge loss, Logistic loss.
- Residual, margin
- Logistic regression