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Lecture Slides

For those of you who want to take notes on your tablets.

Otherwise, slides will be shared on the course website after the lecture.
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Homework 1

Homework 1 will be released soon. You have until Oct 1 noon (12pm) to finish.

Submit PDF and code to Gradescope.

Course website: https://nyu-cs2565.github.io/2024-fall/
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Review: ERM
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Our Machine Learning Setup

Prediction Function
A prediction function gets input x and produces an output ŷ = f (x).

Loss Function
A loss function ℓ(ŷ ,y) evaluates an action in the context of the outcome y .
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Risk and the Bayes Prediction Function

Definition
The risk of a prediction function f : X→ Y is

R(f ) = Eℓ(f (x),y).

In words, it’s the expected loss of f on a new example (x ,y) drawn randomly from PX×Y.

Definition
A Bayes prediction function f ∗ is a function that achieves the minimal risk among all
possible functions:

f ∗ ∈ argmin
f

R(f ),

The risk of a Bayes prediction function is called the Bayes risk.
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The Empirical Risk

Let Dn = ((x1,y1), . . . ,(xn,yn)) be drawn i.i.d. from PX×Y.

Definition
The empirical risk of f with respect to Dn is

R̂n(f ) =
1
n

n∑
i=1

ℓ(f (xi ),yi ).

The unconstrained empirical risk minimizer can overfit.
i.e. if we minimize R̂n(f ) over all functions, we overfit.
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Constrained Empirical Risk Minimization

Definition
A hypothesis space F is a set of functions mapping X→ Y.

This is the collection of prediction functions we are choosing from.

An empirical risk minimizer (ERM) in F is

f̂n ∈ argmin
f∈F

1
n

n∑
i=1

ℓ(f (xi ),yi ).

From now on “ERM” always means “constrained ERM”.

So we should always specify the hypothesis space when we’re doing ERM.
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Error Decomposition Review

Excess risk decomposition for function f̃n returned by an optimization algorithm in practice:

Excess Risk(f̃n) = R(f̃n)−R(f ∗)

= R(f̃n)−R(f̂n)︸ ︷︷ ︸
optimization error

+R(f̂n)−R(fF)︸ ︷︷ ︸
estimation error

+ R(fF)−R(f ∗)︸ ︷︷ ︸
approximation error
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ERM Overview

Given a loss function ℓ,

Choose a hypothesis space F.

Use an optimization method to find an empirical risk minimizer f̂n ∈ F:

f̂n = argmin
f∈F

1
n

n∑
i=1

ℓ(f (xi ),yi ).

Or find a f̃n that comes close to f̂n

The machine learning scientist’s job:
Choose F that balances approximation and estimation error.

As we get more training data, we can use a bigger F.
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Example: Linear Least Squares Regression

Setup

Loss: ℓ(ŷ ,y) = (y − ŷ)2

Hypothesis space: F =
{
f : Rd → R | f (x) = wT x , w ∈ Rd

}
Given a data set Dn = {(x1,y1), . . . ,(xn,yn)},

Our goal is to find the ERM f̂ ∈ F.
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Example: Linear Least Squares Regression

Objective Function: Empirical Risk

We want to find the function in F, parametrized by w ∈ Rd , that minimizes the empirical risk:

R̂n(w) =
1
n

n∑
i=1

(
wT xi − yi

)2

How do we solve this optimization problem?

min
w∈Rd

R̂n(w)

(For OLS there’s a closed form solution, but in general there isn’t.)
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Gradient Descent
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Unconstrained Optimization

Setting

We assume that the objective function f : Rd → R is differentiable.
We want to find

x∗ = arg min
x∈Rd

f (x)
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The Gradient

Let f : Rd → R be differentiable at x0 ∈ Rd .

The gradient of f at the point x0, denoted ∇x f (x0), is the direction in which f (x)
increases fastest, if we start from x0.

The gradient of f is the partial derivatives of all dimensions:
∇f (x) = [∂f /∂x1(x), ...,∂f /∂xd(x)].

Figure A.111 from Newtonian Dynamics, by Richard Fitzpatrick.
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Gradient Descent

To reach a local minimum as fast as possible, we want to go in the opposite direction from
the gradient.

Gradient Descent
Initialize x ← 0.

Repeat:
x ← x −η∇f (x)

until the stopping criterion is satisfied.

The “step size” η is not the amount by which we update x!

“Step size” is also referred to as “learning rate” in neural networks literature.
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Gradient Descent Path

Image credit: Amini et al. Spatial Uncertainty Sampling for End-to-End Control. 2018.
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Gradient Descent: Step Size

A fixed step size will work, eventually, as long
as it’s small enough

If η is too large, the optimization process
might diverge

In practice, it often makes sense to try
several fixed step sizes

Intuition on when to take big steps and
when to take small steps?
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2D Divergence example
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Notes on Convergence

Gradient descent with an appropriate step size converges to stationary point (derivative =
0) for differentiable functions.

Stationary points can be (local) minima, (local) maxima, saddle points, etc.

Gradient descent can converge to global minimum for convex functions.
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Convergence Theorem for Fixed Step Size

Theorem

Suppose f : Rd → R is convex and differentiable, and ∇f is Lipschitz continuous with
constant L> 0 (L-smooth), i.e.

∥∇f (x)−∇f (x ′)∥⩽ L∥x − x ′∥

for any x ,x ′ ∈ Rd . Then gradient descent with fixed step size η⩽ 1/L converges. In particular,

f (x(k))− f (x∗)⩽
∥x(0)− x∗∥2

2ηk
.

This says that gradient descent is guaranteed to converge and that it converges with rate
O(1/k).
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Strongly Convex Functions

Definition
A function f is µ-strongly convex if

f (x ′)⩾ f (x)+∇f (x) · (x ′− x)+
µ

2
∥x − x ′∥2
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Convergence Theorem for Strongly Convex Functions

Theorem

If f is L-smooth and µ-strongly convex, and step size 0< η⩽ 1
L , then gradient descent

converges with the following inequality:

∥x(k)− x∗∥2 ⩽ (1−ηµ)k∥x(0)− x∗∥2

This means we can get linear convergence, but it depends on µ. If the estimate of µ is bad
then the rate is not great.
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Gradient Descent: When to Stop?

Wait until ∥∇f (x)∥2 ⩽ ε, for some ε of your choosing.
(Recall ∇f (x) = 0 at a local minimum.)

Early stopping:
evalute loss on validation data (unseen held out data) after each iteration;

stop when the loss does not improve (or gets worse).
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Gradient Descent for Empirical Risk - Scaling Issues
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Quick recap: Gradient Descent for ERM

We have a hypothesis space of functions F =
{
fw : X→ Y | w ∈ Rd

}
Parameterized by w ∈ Rd .

Finding an empirical risk minimizer entails finding a w that minimizes

R̂n(w) =
1
n

n∑
i=1

ℓ(fw (xi ),yi )

Suppose ℓ(fw (xi ),yi ) is differentiable as a function of w .

Then we can do gradient descent on R̂n(w)
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Gradient Descent: Scalability

At every iteration, we compute the gradient at the current w :

∇R̂n(w) =
1
n

n∑
i=1

∇w ℓ(fw (xi ),yi )

How does this scale with n?

We have to iterate over all n training points to take a single step. [O(n)]

Can we make progress without looking at all the data before updating w?
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Stochastic Gradient Descent
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“Noisy” Gradient Descent

Instead of using the gradient, we use a noisy estimate of the gradient.

Turns out this can work just fine!

Intuition:
Gradient descent is an iterative procedure anyway.

At every step, we have a chance to recover from previous missteps.
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Minibatch Gradient

The full gradient is

∇R̂n(w) =
1
n

n∑
i=1

∇w ℓ(fw (xi ),yi )

It’s an average over the full batch of data Dn = {(x1,y1), . . . ,(xn,yn)}.

Let’s take a random subsample of size N (called a minibatch):

(xm1 ,ym1), . . . ,(xmN
,ymN

)

The minibatch gradient is

∇R̂N(w) =
1
N

N∑
i=1

∇w ℓ(fw (xmi ),ymi )
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Batch vs Stochastic Methods

Rule of thumb for stochastic methods:
Stochastic methods work well far from the optimum

But struggle close the the optimum

(Slide adapted from Ryan Tibshirani)
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Minibatch Gradient Properties

The minibatch gradient is an unbiased estimator for the [full] batch gradient. What does
that mean?

E
[
∇R̂N(w)

]
=∇R̂n(w)

The bigger the minibatch, the better the estimate.

Var
[
∇R̂N(w)

]
= Var

[
1
N

∑
i

∇R̂i (w)

]
=

1
N2 Var

[∑
i

∇R̂i (w)

]
=

1
N

Var
[
∇R̂i (w)

]

Tradeoffs of minibatch size:
Bigger N =⇒ Better estimate of gradient, but slower (more data to process)

Smaller N =⇒Worse estimate of gradient, but can be quite fast

Because of vectorization, the computation cost of minibatches is sublinear
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Convergence of SGD

For convergence guarantee, use diminishing step sizes, e.g. ηk = 1/k

Theoretically, GD is much faster than SGD in terms of convergence rate and number of
steps:

much faster to add a digit of accuracy (more details later)

costlier to compute a single step

but most of that advantage comes into play once we’re already pretty close to the
minimum

in many ML problems we don’t care about optimizing to high accuracy (why?)
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Step Sizes in Minibatch Gradient Descent

Minibatch Gradient Descent (minibatch size N)

initialize w = 0

repeat
randomly choose N points {(xi ,yi )}

N
i=1 ⊂Dn

w ← w −η
[

1
N

∑N
i=1∇w ℓ(fw (xi ),yi )

]
For SGD, fixed step size can work well in practice.

Typical approach: Fixed step size reduced by constant factor whenever validation
performance stops improving (staircase decay).

Other schedules: inverse time decay (1/t) etc.
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Convergence of SGD Theorem (Optional)

More on why we need a diminishing step size.

Theorem

If f is L-smooth and convex, and SGD has bounded variance Var(∇f (x(k)))⩽ σ2 for all k ,
then SGD with step size η⩽ 1

L satisifies:

min
k

E[||∇f (x(k)||2]⩽ f (x(0))− f (x∗)∑
k ηk

+
Lσ2

2

∑
k η

2
k∑

k ηk

The extra term of variance will dominate if the step size does not decrease. 1

1https://www.cs.ubc.ca/~schmidtm/Courses/540-W19/L11.pdf
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Summary

Gradient descent or “full-batch” gradient descent
Use full data set of size n to determine step direction

Minibatch gradient descent
Use a random subset of size N to determine step direction

Stochastic gradient descent
Minibatch with N = 1.

Use a single randomly chosen point to determine step direction.

These days terminology isn’t used so consistently, so when referring to SGD, always clarify the
[mini]batch size.

SGD is much more efficient in time and memory cost and has been quite successful in
large-scale ML.
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Example: Logistic regression with ℓ2 regularization

Batch methods converge faster :

(Example from Ryan Tibshirani)
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Example: Logistic regression with ℓ2 regularization

Stochastic methods are computationally more efficient:

(Example from Ryan Tibshirani)
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Example: Logistic regression with ℓ2 regularization

Batch methods are much faster close to the optimum:

(Example from Ryan Tibshirani)
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Loss Functions: Regression
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Regression Problems

Examples:
Predicting the stock price given history prices

Predicting medical cost of given age, sex, region, BMI etc.

Predicting the age of a person based on their photos

Notation:
ŷ is the predicted value (the action)

y is the actual observed value (the outcome)
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Loss Functions for Regression

A loss function in general:
(ŷ ,y) 7→ ℓ(ŷ ,y) ∈ R

Regression losses usually only depend on the residual r = y − ŷ .
what you have to add to your prediction to get the correct answer.

A loss ℓ(ŷ ,y) is called distance-based if:
1 It only depends on the residual:

ℓ(ŷ ,y) =ψ(y − ŷ) for some ψ:R→ R

2 It is zero when the residual is 0:
ψ(0) = 0
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Distance-Based Losses are Translation Invariant

Distance-based losses are translation-invariant. That is,

ℓ(ŷ +b,y +b) = ℓ(ŷ ,y) ∀b ∈ R.

When might you not want to use a translation-invariant loss?

Sometimes the relative error ŷ−y
y is a more natural loss (but not translation-invariant)
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Some Losses for Regression

Residual: r = y − ŷ

Square or ℓ2 Loss: ℓ(r) = r2

Absolute or Laplace or ℓ1 Loss: ℓ(r) = |r |

y ŷ |r |= |y − ŷ | r2 = (y − ŷ)2

1 0 1 1
5 0 5 25
10 0 10 100
50 0 50 2500

An outlier is a data point that differs significantly from other observations.

Outliers typically have large residuals.

Square loss much more affected by outliers than absolute loss.
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Loss Function Robustness

Robustness refers to how affected a learning algorithm is by outliers.
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Some Losses for Regression

Square or ℓ2 Loss: ℓ(r) = r2 (not robust)

Absolute or Laplace Loss: ℓ(r) = |r | (not differentiable)
gives median regression

Huber Loss: Quadratic for |r |⩽ δ and linear for |r |> δ (robust and differentiable)
Equal values and slopes at r = δ
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Classification Loss Functions
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The Classification Problem

Examples:
Predict whether the image contains a cat

Predict whether the email is spam

Classification spaces:
Input space Rd

Outcome space Y= {−1,1}

Inference:

f (x)> 0 =⇒ Predict 1
f (x)< 0 =⇒ Predict −1

How can we optimize the model output?
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The Score Function

Output space Y= {−1,1}

Real-valued prediction function f : X→ R

Definition
The value f (x) is called the score for the input x .

In this context, f may be called a score function.

The magnitude of the score can be interpreted as our confidence of our prediction.
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The Margin

Definition
The margin (or functional margin) for a predicted score ŷ and the true class y ∈ {−1,1} is y ŷ .

The margin is often written as yf (x), where f (x) is our score function.

The margin is a measure of how correct we are:
If y and ŷ are the same sign, prediction is correct and margin is positive.

If y and ŷ have different sign, prediction is incorrect and margin is negative.

We want to maximize the margin.

Most classification losses depend only on the margin (they are margin-based losses).
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Classification Losses: 0−1 Loss

If f̃ is the inference function (1 if f (x)> 0 and −1 otherwise), then

The 0-1 loss for f : X→ {−1,1}:

ℓ(f (x),y) = 1[f̃ (x) ̸= y ]

Empirical risk for 0−1 loss:

R̂n(f ) =
1
n

n∑
i=1

1[yi f (xi )⩽ 0]

Minimizing empirical 0−1 risk not computationally feasible.

R̂n(f ) is non-convex, not differentiable, and even discontinuous.
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Classification Losses

Zero-One loss: ℓ0-1 = 1[m ⩽ 0]

x-axis is margin: m > 0 ⇐⇒ correct classification
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Hinge Loss

SVM/Hinge loss: ℓHinge =max(1−m,0)

Hinge is a convex, upper bound on 0−1 loss. Not differentiable at m = 1.

We will cover SVM and Hinge loss in more details in future lectures.
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Logistic Regression

Also known as linear classification. Logistic regression is not actually “regression.”

Two equivalent types of logistic regression losses, depending on the labels.

If the label is 0 or 1:

ŷ = σ(z), where σ is the sigmoid function, and z = f (x) = w⊤x .

σ(z) =
1

1+ exp(−z)
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Logistic Regression

If the label is 0 or 1:

ŷ = σ(z), where σ is the sigmoid function.

σ(z) =
1

1+ exp(−z)

The loss is binary cross entropy:

ℓLogistic =−y log(ŷ)−(1− y) log(1− ŷ)

Remember the negative sign!
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Logistic Regression

If the label is -1 o 1:

Note: 1−σ(z) = σ(−z)

Now we can derive an equivalent loss form:

ℓLogistic =

{
− log(σ(z)) if y = 1
− log(σ(−z)) if y =−1

=− log(σ(yz))

= − log(
1

1+ e−yz
)

= log(1+ e−m).
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Logistic Loss

Logistic/Log loss: ℓLogistic = log (1+ e−m)

Logistic loss is differentiable. Logistic loss always rewards a larger margin (the loss is never 0).
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What About Square Loss for Classification?

Loss ℓ(f (x),y) = (f (x)− y)2.

Turns out, can write this in terms of margin m = f (x)y :

Using fact that y2 = 1, since y ∈ {−1,1}.

ℓ(f (x),y) = (f (x)− y)2

= f 2(x)−2f (x)y + y2

= f 2(x)y2−2f (x)y +1
= (1− f (x)y)2

= (1−m)2
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What About Square Loss for Classification?

Heavily penalizes outliers (e.g. mislabeled examples).
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Summary

Gradient descent: step size/learning rate, batch size, convergence

Loss functions for regression and classification problems.

Regression: Squared (L2) loss, Absolute (L1) loss, Huber loss.

Classification: Hinge loss, Logistic loss.

Residual, margin

Logistic regression
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