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Logistics

Class webpage: https://nyu-cs2565.github.io/2024-fall
Course materials (lecture slides, homeworks) will be made available on the website

Discussion / questions on CampusWire: https://campuswire.com/p/G4788841F

Sign up to Gradescope to submit homework assignments (entry code Z3PB2W)

Office Hour: Thursday 1:00-2:00 pm, Room 508, 60 Fifth Ave.
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Course Staff

Instructor:
Mengye Ren (mr3182@nyu.edu)

Graders:
Pavan Ravishankar (pr2248@nyu.edu)

Yilun Kuang (yk2516@nyu.edu)

All course material, assignment, and exam related questions should be posted on
CampusWire.

Assignment regrade requests should be initiated on Gradescope. Further questions directed
to the graders.

I will only respond to administration related emails.
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Assessment

4 assignments (40%)

Midterm Exam (Oct 22) (30%)

Final Project (30%)

Extra credits (2%) answer other students’ questions in a substantial and helpful way on
Campuswire
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Homework

Submit through Gradescope as a PDF document

Late policy: You have 4 late days in total which can be used throughout the semester
without penalty (see more details on website).

You can discuss with other students on the homework assignments, but:
Write up the solutions and code on your own;

List the names of the students you discussed with.

If your solution or code is substantially similar to other students then the incident will be
reported to the University.
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Final Project

Groups of 3 students (by Oct 22, after the midterm).

Goals:
Find a problem and a dataset

Survey existing approaches, identify remaining challenges

Apply and design ML algorithms in real applications

Compare and analyze empirical performance

Project proposal due Oct 29, 2024, 12PM (Noon)

Last lecture: Project presentation

Final report due Wednesday, Dec 13, 2024, 12PM (Noon)
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Prerequisites

Multivariate Calculus: partial derivatives/gradient.

Linear Algebra: vector/matrix manipulations, properties.

Probability Theory: common distributions; Bayes Rule.

Statistics: expectation, variance, covariance, median; maximum likelihood.

Programming: Python, numpy

Mengye Ren (NYU) CSCI-GA 2565 September 3, 2024 9 / 63



Course Overview and Goals
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Syllabus (Tentative)

12 weeks of instruction + 1 week midterm exam + 1 week project presentation

2 weeks: introduction to machine learning, optimization

2 weeks: Linear methods for binary classification and regression (also kernel methods)

2 weeks: Probabilistic models, Bayesian methods

2 weeks: Multiclass classification and introduction to structured prediction

3 weeks: Nonlinear methods (trees, ensemble methods, and neural networks)

1 week: Unsupervised learning: clustering and latent variable models
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The high level goals of the class

Our focus will be on the fundamental building blocks of machine learning

Understand what kind of problems can ML help solve

Accomodate different types of input, output, problem characteristics

Understand the pros & cons of each method, understand the motivation why we choose
one method over the other

Fancy new methods are often combination of basic techniques

Apply and develop ML algorithms in practical problems
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The level of the class

Many ML algorithms have been implemented in standard libraries (e.g. sklearn)

Many people only know how to call these library functions.

We will learn how to implement each ML algorithm from scratch using numpy alone,
without any ML libraries.

Once we have implemented an algorithm from scratch once, we will use the sklearn version.
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Introduction to Machine Learning
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What is learning?

"The activity or process of gaining knowledge or skill by studying, practicing, being taught, or
experiencing something."

Merriam Webster dictionary

“A computer program is said to learn from experience E with respect to some class of tasks T
and performance measure P, if its performance at tasks in T, as measured by P, improves with
experience E.”

Tom Mitchell
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Machine learning as meta-programming

For many problems, it’s difficult to program the correct behavior by hand
recognizing people and objects

understanding human speech

Machine learning approach: program an algorithm to automatically learn from data, or
from experience, and output a program, typically to solve a prediction problem:

Given an input x ,

Predict an output y .

Why might you want to use a learning algorithm?
hard to code up a solution by hand (e.g. vision, speech)

system needs to adapt to a changing environment (e.g. spam detection)

want the system to perform better than the human programmers

privacy/fairness (e.g. ranking search results)

Mengye Ren (NYU) CSCI-GA 2565 September 3, 2024 16 / 63



Machine learning as meta-programming

For many problems, it’s difficult to program the correct behavior by hand
recognizing people and objects

understanding human speech

Machine learning approach: program an algorithm to automatically learn from data, or
from experience, and output a program, typically to solve a prediction problem:

Given an input x ,

Predict an output y .

Why might you want to use a learning algorithm?
hard to code up a solution by hand (e.g. vision, speech)

system needs to adapt to a changing environment (e.g. spam detection)

want the system to perform better than the human programmers

privacy/fairness (e.g. ranking search results)

Mengye Ren (NYU) CSCI-GA 2565 September 3, 2024 16 / 63



Machine learning as meta-programming

For many problems, it’s difficult to program the correct behavior by hand
recognizing people and objects

understanding human speech

Machine learning approach: program an algorithm to automatically learn from data, or
from experience, and output a program, typically to solve a prediction problem:

Given an input x ,

Predict an output y .

Why might you want to use a learning algorithm?

hard to code up a solution by hand (e.g. vision, speech)

system needs to adapt to a changing environment (e.g. spam detection)

want the system to perform better than the human programmers

privacy/fairness (e.g. ranking search results)

Mengye Ren (NYU) CSCI-GA 2565 September 3, 2024 16 / 63



Machine learning as meta-programming

For many problems, it’s difficult to program the correct behavior by hand
recognizing people and objects

understanding human speech

Machine learning approach: program an algorithm to automatically learn from data, or
from experience, and output a program, typically to solve a prediction problem:

Given an input x ,

Predict an output y .

Why might you want to use a learning algorithm?
hard to code up a solution by hand (e.g. vision, speech)

system needs to adapt to a changing environment (e.g. spam detection)

want the system to perform better than the human programmers

privacy/fairness (e.g. ranking search results)
Mengye Ren (NYU) CSCI-GA 2565 September 3, 2024 16 / 63



Example: Spam Detection

Let’s start with a few canonical examples.

Input x: Incoming email

Output y: “SPAM” or “NOT SPAM”

This is a binary classification problem: there are two possible outputs.
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Example: Medical Diagnosis

Input x: Symptoms (fever, cough, fast breathing, shaking, nausea, ...)

Output y: Diagnosis (pneumonia, flu, common cold, bronchitis, ...)

A multiclass classification problem: choosing an output out of a discrete set of possible
outputs.

How do we express uncertainty about the output?

Probabilistic classification or soft classification:

P(pneumonia) = 0.7
P(flu) = 0.2

...
...
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Example: Predicting a Stock Price

Input x: History of the stock’s prices

Output y: The price of the stock at the close of the next day

This is called a regression problem (for historical reasons): the output is continuous.
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Comparison to Rule-Based Approaches (Expert Systems)

Consider the problem of medical diagnosis.

1 Talk to experts (in this case, medical doctors).
2 Understand how the experts come up with a diagnosis.

3 Implement this process as an algorithm (a rule-based system): e.g., a set of symptoms
! a particular diagnosis.

4 Use logical deduction to infer new rules from the rules that are stored in the knowledge
base.
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Rule-Based Approach

Fig 1-1 from Hands-On Machine Learning with Scikit-Learn and TensorFlow by Aurelien Geron (2017).
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Advantages of Rule-Based Approaches

Leverage existing domain expertise.

Generally interpretable: We can describe the rule to another human

Produce reliable answers for the scenarios that are included in the knowledge bases.
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Limitations of Rule-Based Systems

Labor intensive to build: experts’ time is expensive.

Rules work very well for areas they cover, but often do not generalize to unanticipated
input combinations.

Don’t naturally handle uncertainty.
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The Machine Learning Approach

Instead of explicitly engineering the process that a human expert would use to make the
decision...

We have the machine learn on its own from inputs and outputs (decisions).

We provide training data: many examples of (input x , output y) pairs, e.g.
A set of videos, and whether or not each has a cat in it.

A set of emails, and whether or not each one should go to the spam folder.

Learning from training data of this form (inputs and outputs) is called supervised

learning.
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Machine Learning Algorithm

A machine learning algorithm learns from the training data:
Input: Training Data (e.g., emails x and their labels y)

Output: A prediction function that produces output y given input x .

The goal of machine learning is to find the “best” (to be defined) prediction function
automatically, based on the training data

The success of ML depends on
The availability of large amounts of data;

Generalization to unseen samples (the test set): just memorizing the training set will
not be useful.
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Machine Learning Approach

Fig 1-2 from Hands-On Machine Learning with Scikit-Learn and TensorFlow by Aurelien Geron (2017).
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add data
clean data
improve algorithm



Key concepts

The most common ML problem types:

Classification (binary and multiclass)

Regression

Prediction function: predicts output y (e.g. spam or not?) given input x (e.g. email)

Training data: a set of (input x , output y) pairs

Supervised learning algorithm: takes training data and produces a prediction function

Beyond prediction

Unsupervised learning: finding structures in data, e.g. clustering

Reinforcement learning: optimizing long-term objective, e.g. Go

Representation learning: learning good features of real-world objects, e.g. text
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Core Questions in Machine Learning

Given any task, the following questions need to be answered:

Modeling: What class of prediction functions are we considering?

Learning: How do we learn the “best” prediction function in this class from our training
data?

Inference: How do we compute the output of the prediction function for a new input?
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Relations to statistics

It’s similar to statistics...
Both fields try to uncover patterns in data

Both fields draw heavily on calculus, probability, and linear algebra, and share many of
the same core algorithms

But it’s not statistics...
Stats is more concerned with helping scientists and policymakers draw good
conclusions; ML is more concerned with building autonomous agents

Stats puts more emphasis on interpretability and mathematical rigor; ML puts
more emphasis on predictive performance, scalability, and autonomy
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Relations to AI

Nowadays, “machine learning” is often brought up with “artificial intelligence” (AI)

AI does not often imply a learning based system
Symbolic reasoning

Rule based system

Tree search

etc.

Learning based system ! learned based on the data ! more flexibility, good at solving
pattern recognition problems.
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Relations to human learning

It is tempting to imagine machine learning as a component in AI just like human learning
in ourselves.

Human learning is:
Very data efficient

An entire multitasking system (vision, language, motor control, etc.)

Flexible to adapt new skills

Takes at least a few years :)

For serving specific purposes, machine learning doesn’t have to look like human learning in
the end.

Machines may borrow ideas from biological systems (e.g. neural networks).
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History of machine learning

1957 — Perceptron algorithm (implemented as a circuit!)

1959 — Arthur Samuel wrote a learning-based checkers program that could defeat him

1969 — Minsky and Papert’s book Perceptrons (limitations of linear models)

1980s — Some foundational ideas
Connectionist psychologists explored neural models of cognition

1984 — Leslie Valiant formalized the problem of learning as PAC learning

1988 — Backpropagation (re-)discovered by Geoffrey Hinton and colleagues

1988 — Judea Pearl’s book Probabilistic Reasoning in Intelligent Systems introduced
Bayesian networks

1990s — the “AI Winter”, a time of pessimism and low funding
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History of machine learning

A lot of practical ML algorithms were invented in the 90s: CNNs, SVMs, boosting, etc.

2000s — applied AI fields (vision, NLP, etc.) adopted ML

2010s — deep learning
2010–2012 — neural nets smashed records in speech-to-text and object recognition

Increasing adoption by the tech industry, many downstream problems

2014 — GANs and generative AI

2016 — AlphaGo defeated the human Go champion

2018–2020 — AlphaFold predicts protein structure

2022 — ChatGPT, chatbot, general intelligence

Mengye Ren (NYU) CSCI-GA 2565 September 3, 2024 33 / 63



History of machine learning

A lot of practical ML algorithms were invented in the 90s: CNNs, SVMs, boosting, etc.

2000s — applied AI fields (vision, NLP, etc.) adopted ML

2010s — deep learning
2010–2012 — neural nets smashed records in speech-to-text and object recognition

Increasing adoption by the tech industry, many downstream problems

2014 — GANs and generative AI

2016 — AlphaGo defeated the human Go champion

2018–2020 — AlphaFold predicts protein structure

2022 — ChatGPT, chatbot, general intelligence

Mengye Ren (NYU) CSCI-GA 2565 September 3, 2024 33 / 63



History of machine learning

A lot of practical ML algorithms were invented in the 90s: CNNs, SVMs, boosting, etc.

2000s — applied AI fields (vision, NLP, etc.) adopted ML

2010s — deep learning
2010–2012 — neural nets smashed records in speech-to-text and object recognition

Increasing adoption by the tech industry, many downstream problems

2014 — GANs and generative AI

2016 — AlphaGo defeated the human Go champion

2018–2020 — AlphaFold predicts protein structure

2022 — ChatGPT, chatbot, general intelligence

Mengye Ren (NYU) CSCI-GA 2565 September 3, 2024 33 / 63

O



History of machine learning

A lot of practical ML algorithms were invented in the 90s: CNNs, SVMs, boosting, etc.

2000s — applied AI fields (vision, NLP, etc.) adopted ML

2010s — deep learning
2010–2012 — neural nets smashed records in speech-to-text and object recognition

Increasing adoption by the tech industry, many downstream problems

2014 — GANs and generative AI

2016 — AlphaGo defeated the human Go champion

2018–2020 — AlphaFold predicts protein structure

2022 — ChatGPT, chatbot, general intelligence

Mengye Ren (NYU) CSCI-GA 2565 September 3, 2024 33 / 63



History of machine learning

A lot of practical ML algorithms were invented in the 90s: CNNs, SVMs, boosting, etc.

2000s — applied AI fields (vision, NLP, etc.) adopted ML

2010s — deep learning
2010–2012 — neural nets smashed records in speech-to-text and object recognition

Increasing adoption by the tech industry, many downstream problems

2014 — GANs and generative AI

2016 — AlphaGo defeated the human Go champion

2018–2020 — AlphaFold predicts protein structure

2022 — ChatGPT, chatbot, general intelligence

Mengye Ren (NYU) CSCI-GA 2565 September 3, 2024 33 / 63



History of machine learning

A lot of practical ML algorithms were invented in the 90s: CNNs, SVMs, boosting, etc.

2000s — applied AI fields (vision, NLP, etc.) adopted ML

2010s — deep learning
2010–2012 — neural nets smashed records in speech-to-text and object recognition

Increasing adoption by the tech industry, many downstream problems

2014 — GANs and generative AI

2016 — AlphaGo defeated the human Go champion

2018–2020 — AlphaFold predicts protein structure

2022 — ChatGPT, chatbot, general intelligence

Mengye Ren (NYU) CSCI-GA 2565 September 3, 2024 33 / 63



History of machine learning

A lot of practical ML algorithms were invented in the 90s: CNNs, SVMs, boosting, etc.

2000s — applied AI fields (vision, NLP, etc.) adopted ML

2010s — deep learning
2010–2012 — neural nets smashed records in speech-to-text and object recognition

Increasing adoption by the tech industry, many downstream problems

2014 — GANs and generative AI

2016 — AlphaGo defeated the human Go champion

2018–2020 — AlphaFold predicts protein structure

2022 — ChatGPT, chatbot, general intelligence

Mengye Ren (NYU) CSCI-GA 2565 September 3, 2024 33 / 63



History of machine learning

A lot of practical ML algorithms were invented in the 90s: CNNs, SVMs, boosting, etc.

2000s — applied AI fields (vision, NLP, etc.) adopted ML

2010s — deep learning
2010–2012 — neural nets smashed records in speech-to-text and object recognition

Increasing adoption by the tech industry, many downstream problems

2014 — GANs and generative AI

2016 — AlphaGo defeated the human Go champion

2018–2020 — AlphaFold predicts protein structure

2022 — ChatGPT, chatbot, general intelligence

Mengye Ren (NYU) CSCI-GA 2565 September 3, 2024 33 / 63

00



History of machine learning

Top ML conferences attendance over year:
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Supervised Learning Setup
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ML problems

In supervised learning problems, we generally need to:

Make a decision:
Move email to spam folder?

Take an action:
In a self-driving car, make a right turn

Reject the hypothesis that ✓= 0 (classical statistics)

Produce some output:
Whose face is it in the image?

The Hindi translation of a Japanese input sentence

Predicting where a storm will be in an hour (what forms of output are possible here?)
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Outcome

Inputs are often paired with labels.

Examples of labels
Whether or not the picture actually contains an animal

The storm’s location one hour after they query

Which, if any, of the suggested URLs were selected
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Evaluation Criterion

Finding “optimal” outputs, under various definitions of optimality.

Examples of Evaluation Criteria
Is the classification correct?

Does the transcription exactly match the spoken words?
Should we give partial credit (for getting only some of the words right)? How?

How far is the storm from the predicted location? (If we’re producing a point estimate)

How likely is the storm’s actual location under the predicted distribution? (If we’re doing
density prediction)
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Typical Sequence of Events

Many problem domains can be formalized as follows:

1 Observe input x .
2 Predict an output ŷ .
3 Observe label y .
4 Evaluate output in relation to the label.
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Formalization

Prediction Function
A prediction function gets input x 2 X and produces an output y 2 Y.

Loss Function
A loss function evaluates the output ŷ in the context of the true outcome y .
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Evaluating a Prediction Function

Goal: Find the optimal prediction function.

Intuition: If we can evaluate how good a prediction function is, we can turn this into an
optimization problem.

The loss function ` evaluates a single output

How do we evaluate the prediction function as a whole?
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Loss Function

Define a space where the prediction function is applicable

Assume there is a data generating distribution PX⇥Y.

All input/output pairs (x ,y) are generated i.i.d. from PX⇥Y.

One common desideratum is to have a prediction function f (x) that “does well on average”:

`(f (x),y) is usually small, in some sense

How can we formalize this?
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Risk

Definition
The risk of a prediction function f : X! Y is

R(f ) = E(x ,y)⇠PX⇥Y
[`(f (x),y)] .

In words, it’s the expected loss of f over PX⇥Y.

Since we don’t know PX⇥Y, we cannot compute the expectation.

But we can estimate it.
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The Bayes Prediction Function

Definition
A Bayes prediction function f ⇤ : X! Y is a function that achieves the minimal risk among
all possible functions:

f ⇤ 2 argmin
f

R(f ),

where the minimum is taken over all functions from X to Y.

The risk of a Bayes prediction function is called the Bayes risk.

A Bayes prediction function is often called the “target function”, since it’s the best
prediction function we can possibly produce.
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Example: Multiclass Classification

Spaces: Y= {1, . . . ,k}

0-1 loss:

`(ŷ ,y) = [ŷ 6= y ] :=

�
1 if ŷ 6= y

0 otherwise.

Risk:

R(f ) = E [ [f (x) 6= y ]] = 0 ·P(f (x) = y)+1 ·P(f (x) 6= y)

= P(f (x) 6= y) ,

which is just the misclassification error rate.

The Bayes prediction function returns the most likely class:

f ⇤(x) 2 argmax
16c6k

P(y = c | x)
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But we can’t compute the risk!

Can’t compute R(f ) = E [`(f (x),y)] because we don’t know PX⇥Y.

One thing we can do in ML/statistics/data science is estimate it:

Assume we have sample data:
Let Dn = ((x1,y1), . . . ,(xn,yn)) be drawn i.i.d. from PX⇥Y.

We draw inspiration from the strong law of large numbers:
If z1, . . . ,zn are i.i.d. with expected value Ez , then

lim
n!1

1
n

nX

i=1

zi = Ez ,

with probability 1.
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The Empirical Risk

Let Dn = ((x1,y1), . . . ,(xn,yn)) be drawn i.i.d. from PX⇥Y.

Definition
The empirical risk of f : X! Y with respect to Dn is

R̂n(f ) =
1
n

nX

i=1

`(f (xi ),yi ).

By the strong law of large numbers,

lim
n!1

R̂n(f ) = R(f ),

almost surely.
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Empirical Risk Minimization

Definition

A function f̂ is an empirical risk minimizer if

f̂ 2 argmin
f

R̂n(f ),

where the minimum is taken over all functions f : X! Y.

In an ideal world we’d want to find the risk minimizer.

Is the empirical risk minimizer close enough?

In practice, we always only have a finite sample...
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Empirical Risk Minimization

PX = Uniform[0,1], Y ⌘ 1 (i.e. Y is always 1).

A plot of PX⇥Y:
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Empirical Risk Minimization

PX = Uniform[0,1], Y ⌘ 1 (i.e. Y is always 1).
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A sample of size 3 from PX⇥Y.
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Empirical Risk Minimization

PX = Uniform[0,1], Y ⌘ 1 (i.e. Y is always 1).

● ● ●

● ● ●● ● ●0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
x

y

A proposed prediction function:

f̂ (x) = [x 2 {0.25,0.5,0.75}] =

�
1 if x 2 {0.25, .5, .75}
0 otherwise
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Empirical Risk Minimization

PX = Uniform[0,1], Y ⌘ 1 (i.e. Y is always 1).

● ● ●
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0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
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y

Under either the square loss or the 0/1 loss, f̂ has Empirical Risk = 0 and Risk = 1.
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Empirical Risk Minimization

In this case, ERM led to a function f that just memorized the data.

How can we improve generalization from the training inputs to new inputs?

We need to smooth things out somehow!
A lot of modeling is about spreading and extrapolating information from one part of
the input space X into unobserved parts of the space.

One approach is constrained ERM:
Instead of minimizing empirical risk over all prediction functions,

We constrain our search to a particular subset of the space of functions, called a
hypothesis space.
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Hypothesis Spaces

Definition
A hypothesis space F is a set of prediction functions X! Y that we consider when applying
ERM.

Desirable properties of a hypothesis space:

Includes only those functions that have the desired “regularity”, e.g. smoothness, simplicity

Easy to work with (e.g., we have efficient algorithms to find the best function within the
space)

Most applied work is about designing good hypothesis spaces for specific tasks.
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Constrained Empirical Risk Minimization

Given a hypothesis space F, a set of prediction functions mapping X! Y,

An empirical risk minimizer (ERM) in F is a function f̂n such that

f̂n 2 argmin
f2F

1
n

nX

i=1

`(f (xi ),yi ).

A risk minimizer in F is a function f ⇤F 2 F such that

f ⇤F 2 argmin
f2F

E [`(f (x),y)] .
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Excess Risk Decomposition

f ⇤ =argmin
f

E [`(f (x),y)]

fF =argmin
f2F

E [`(f (x),y)]

f̂n =argmin
f2F

1
n

nX

i=1

`(f (xi ),yi )

Approximation error (of F) = R(fF)-R(f ⇤)

Estimation error (of f̂n in F) = R(f̂n)-R(fF)
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Excess Risk Decomposition for ERM

Definition
The excess risk compares the risk of f to the Bayes optimal f ⇤:

Excess Risk(f ) = R(f )-R(f ⇤)

Can excess risk ever be negative?

The excess risk of the ERM f̂n can be decomposed:

Excess Risk(f̂n) = R(f̂n)-R(f ⇤)

= R(f̂n)-R(fF)| {z }
estimation error

+ R(fF)-R(f ⇤)| {z }
approximation error

.

There is a tradeoff between estimation error and approximation error
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Approximation Error

Approximation error R(fF)-R(f ⇤) is

a property of the class F

the penalty for restricting to F (rather than considering all possible functions)

Bigger F mean smaller approximation error.

Concept check: Is approximation error a random or non-random variable?
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Estimation Error

Estimation error R(f̂n)-R(fF)

is the performance hit for choosing f using finite training data

is the performance hit for minimizing empirical risk rather than true risk

With smaller F we expect smaller estimation error.

Under typical conditions: “With infinite training data, estimation error goes to zero.”

Concept check: Is estimation error a random or non-random variable?
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ERM in Practice

What have we been glossing over by writing “argmin”?

In practice, we need a method to find f̂n 2 F: this can be very difficult!

For nice choices of loss functions and classes F, we can get arbitrarily close to the exact
minimizer

But that takes time – is it always worth it?

For some hypothesis spaces (e.g. neural networks), we don’t know how to find f̂n 2 F.
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Optimization Error

In practice, we don’t find the ERM f̂n 2 F.

We find f̃n 2 F that we hope is good enough.

Optimization error: If f̃n is the function our optimization method returns, and f̂n is the
empirical risk minimizer, then

Optimization Error = R(f̃n)-R(f̂n).
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Error Decomposition in Practice

Excess risk decomposition for function f̃n returned by an optimization algorithm in practice:

Excess Risk(f̃n) = R(f̃n)-R(f ⇤)

= R(f̃n)-R(f̂n)| {z }
optimization error

+R(f̂n)-R(fF)| {z }
estimation error

+ R(fF)-R(f ⇤)| {z }
approximation error

How would we address each type of error?
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ERM Overview

Given a loss function `,

Choose a hypothesis space F.

Use an optimization method to find an empirical risk minimizer f̂n 2 F:

f̂n = argmin
f2F

1
n

nX

i=1

`(f (xi ),yi ).

Or find a f̃n that comes close to f̂n

The machine learning scientist’s job:
Choose F that balances approximation and estimation error.

As we get more training data, we can use a bigger F.
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