CSCI-GA-2565: Machine Learning (Fall 2024) Midterm Exam (4:55pm–6:55pm, Oct 22)

- Answer the questions in the spaces provided. If you run out of room for an answer, use the blank page at the end of the test.
- Do not turn the front page until the instructor has signaled the beginning of the exam.
- Stop writing immediately after the time is up, or otherwise your exam will not be collected.
- Do not forget to write your name and student ID below.

Name: _

NYU NetID: _____

Question	Points	Score
Introduction	4	
Optimization	5	
Regularization	7	
SVM	6	
Probabilistic ML	8	
Total:	30	

1. Introduction.

Supposed that you have chosen a large hypothesis space H_1 that is more flexible in modeling different functions than a rather fixed hypothesis space H_2 .

- (a) (1 point) You will likely need
 - A. A smaller number of training examples
 - B. A larger number of training examples
 - C. Equal number of training examples
- (b) (1 point) You will likely have
 - A. A higher approximation error
 - B. A higher estimation error
 - C. A higher optimization error
 - D. None of the above
 - E. All of the above
- (c) (1 point) Describe a real-world application where regression is useful.

(d) (1 point) Describe a real-world application where classification is useful.

2. Optimization.

- (a) (2 points) In what situation would stochastic gradient descent be a good choice for optimization compared to full batch gradient descent? Select all correct choice(s).
 - A. When there is no closed form solution.
 - B. When there is a lot of variance in the training distribution.
 - C. When the training set is too large to fit in the memory.
 - D. When the example vectors have a large norm.

Explain you answer:

(b) (1 point) Why do you need to decrease your step size for stochastic gradient descent?

- (c) (2 points) Which of the following statements is/are true? Select all correct choice(s).
 - A. Early stopping reduces optimization error and therefore is often applied in practice.
 - B. Subgradients may not exist for non-convex functions, but pointwise nondifferentiability is usually tolerable in practice.
 - C. Stochastic gradient descent converges at the same rate as gradient descent.
 - D. Gradient of f points at the direction where the function decreases the fastest.

3. Regularization.

(a) (2 points) Write the following optimization into Ivanov form:

$$w^* = \operatorname*{arg\,min}_{w} \frac{1}{2} \|Xw - y\|_2^2 + \frac{\lambda}{2} \|w\|_2^2. \tag{1}$$

(b) (1 point) What is the role of λ ? What happens to the weight vector when λ grows bigger towards ∞ ?

(c) (1 point) How do you choose the best λ ?

(d) (3 points) Show that the ridge regression estimate is the mean (and mode) of the posterior distribution, under a Gaussian prior $\mathbf{w} \sim \mathcal{N}(0, \tau I)$, and a model $\hat{y} \sim \mathcal{N}(\mathbf{x}^{\top}\mathbf{w}, \sigma^2)$. Write the regularization parameter λ in terms of the variances τ and σ^2 .

4. Support Vector Machines. Recall the (soft-margin) SVM primal problem:

minimize
$$\begin{aligned} &\frac{1}{2} ||w||^2 + \frac{c}{n} \sum_{i=1}^n \xi_i \\ &\text{subject to} \quad -\xi_i \leq 0 \quad \text{for } i = 1, \dots, n \\ & \left(1 - y_i \left[w^T \varphi(x_i) + b\right]\right) - \xi_i \leq 0 \quad \text{for } i = 1, \dots, n \end{aligned}$$

and its dual problem:

maximize
$$\sum_{i=1}^{n} \alpha_{i} - \frac{1}{2} \sum_{i,j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} \varphi(x_{j})^{T} \varphi(x_{i})$$
subject to
$$\sum_{i=1}^{n} \alpha_{i} y_{i} = 0$$
$$\alpha_{i} \in \left[0, \frac{c}{n}\right] \text{ for } i = 1, \dots, n$$

- (a) (1 point) When is it more advantageous to optimize the dual objective than the primal objective? Select all conditions that are relevant:
 - A. When the inner product computation can be simplified.
 - B. When you have more examples violating the margin constraint.
 - C. When the dual variables are sparse.
 - D. When you have high dimensional features but relatively less data points $(d \gg n)$
 - E. When you apply a polynomial kernel.
- (b) (1 point) When $\alpha_i = \frac{c}{n}$, which of the following conditions can occur? Select all correct choice(s).
 - A. Margin > 1
 - B. Margin = 1
 - C. $0 \leq \text{Margin} < 1$
 - D. Margin < 0
- (c) (1 point) When $\xi_i > 0$, which of the following conditions can occur? Select all correct choice(s).
 - A. Margin > 1
 - B. Margin = 1
 - C. $0 \leq \text{Margin} < 1$
 - D. Margin < 0
- (d) (1 point) Explain the meaning of (functional) margin. What happens when the margin is positive or negative?

(e) (1 point) Explain why when the data is linearly separable, then $\xi_i = 0$ for all *i*.

- (f) (1 point) Which of the following statements about optimization are true? Select all correct choice(s).
 - A. The dual objective is always convex, even when the primal objective is not convex.
 - B. Complementary slackness means that either the Lagrange multiplier is zero for the constraint or the constraint function f_i is evaluated to be zero.
 - C. The primal objective is always greater than or equal to the dual objective.
 - D. The number of dual variables is always equal to the primal variables.

- 5. **Probabilistic ML.** Imagine you are the instructor of a college class and you have assigned a homework essay. Some students have used chat bots in producing the writing, while others have not. You wish to use the writings as training data to produce a machine learning model that can predict whether an essay was written by a chat bot. One simple strategy is to look at the word choices that are used by chat bots vs. humans.
 - (a) (1 point) If you only look at the words individually and treat them independently, what kind of assumption are you making and why?

(b) (2 points) Let y = 1 denote that the essay is generated by a chat bot and y = 0 human. Now let's suppose that the probability of generating word j in an essay, given a label $y = \{1, 0\}$ follows a Bernoulli distribution, i.e. the probabilities are $\theta_{j,0}$ and $\theta_{j,1}$. Given the assumption above, write down the probability p(x, y) of entire dataset of size N in terms of $\theta_{j,0}, \theta_{j,1}$ and $p(y_i)$.

(c) (3 points) Apply the maximum likelihood principle and derive the optimal value for $\theta_{j,1}$.

(d) (1 point) Explain what is the intuition behind the optimal value? What does it represent?

- (e) (1 point) If you follow the Bayesian principle of adding a "prior" distribution on θ_j , which of the following situation can a prior on θ help improve the performance? Select all correct choice(s).
 - A. When the assumption in part a) does not hold.
 - B. When there is a lack of training samples to estimate θ_i .
 - C. When word j often appear in both categories of essays.
 - D. When the count of word j is zero.

Congratulations! You have reached the end of the exam.

You can use the additional space below.

You can use the additional space below.