CSCI-GA 2565 - Fall 2023 1

Homework 4: Decision Trees, Boosting, and Neural Networks

Due: Tuesday, Dec 3rd, 2024 at 11:59AM EST

Instructions: Your answers to the questions below, including plots and mathematical work,
should be submitted as a single PDF file. It’s preferred that you write your answers using
software that typesets mathematics (e.g.LaTeX, LyX, or MathJax via iPython), though if you
need to you may scan handwritten work. You may find the minted package convenient for
including source code in your LaTeX document. If you are using LyX, then the listings package
tends to work better. The optional problems should not take you too much time and
help you navigate the material, consider taking a shot at them.

1 Decision Tree Implementation

In this problem we’ll implement decision trees for both classification and regression. The strategy
will be to implement a generic class, called Decision_Tree, which we’ll supply with the loss
function we want to use to make node splitting decisions, as well as the estimator we’ll use to
come up with the prediction associated with each leaf node. For classification, this prediction
could be a vector of probabilities, but for simplicity we’ll just consider hard classifications here.
We’ll work with the classification and regression data sets from previous assignments.

1. Complete either the compute_entropy or compute_gini functions.

2. Complete the class Decision _Tree, given in the skeleton code. The intended implemen-
tation is as follows: Each object of type Decision_Tree represents a single node of the
tree. The depth of that node is represented by the variable self.depth, with the root node
having depth 0. The main job of the fit function is to decide, given the data provided,
how to split the node or whether it should remain a leaf node. If the node will split, then
the splitting feature and splitting value are recorded, and the left and right subtrees are
fit on the relevant portions of the data. Thus tree-building is a recursive procedure. We
should have as many Decision_Tree objects as there are nodes in the tree. We will not
implement pruning here. Some additional details are given in the skeleton code.

3. Run the code provided that builds trees for the two-dimensional classification data. Include
the results. For debugging, you may want to compare results with sklearn’s decision tree
(code provided in the skeleton code). For visualization, you’ll need to install graphviz.

4. Complete the function mean_absolute_deviation_around median (MAE). Use the code
provided to fit the Regression_Tree to the krr dataset using both the MAE loss and
median predictions. Include the plots for the 6 fits with max depth varying from 1 to 6.

2 Ensembling

Recall the general gradient boosting algorithm , for a given loss function ¢ and a hypothesis
space F of regression functions (i.e. functions mapping from the input space to R):

0: Initialize fo(x) = 0.


https://github.com/gpoore/minted
https://en.wikibooks.org/wiki/LaTeX/Source_Code_Listings

CSCI-GA 2565 - Fall 2023 2

1: Form =1 to M:

(a) Compute:

i=1

8m = (81%81(%) >y, fm—l(xi))>

j=1

(b) Fit regression model to —g,,:
By = argminz ((—8m); — h(z:))?.
(¢) Choose fixed step size v, = v € (0,1], or take

U = arg;xginZé (Yis frn—1(xs) + vhm(x;)) .
v i=1

(d) Take the step:
fm(ZC) = fm—l(x) + thm(x)

3: Return fy,.

This method goes by many names, including gradient boosting machines (GBM), generalized
boosting models (GBM), AnyBoost, and gradient boosted regression trees (GBRT), among oth-
ers. One of the nice aspects of gradient boosting is that it can be applied to any problem with
a subdifferentiable loss function.

Gradient Boosting Regression Implementation

First we’ll keep things simple and consider the standard regression setting with square loss. In
this case, we have ) = R, our loss function is given by £(9,y) = 1/2 (¢ — y)z, and at the m’th
round of gradient boosting, we have

=ar minn i — fm—1(x;)) — h(x; Z
hm = g ;[(yz fm—1(z:)) — h(z;)]

You can derive the above equation using (a) and (b).

5. Complete the gradient boosting class. As the base regression algorithm to compute the
argmin, you should use sklearn’s regression tree. You should use the square loss for the tree
splitting rule (criterion keyword argument) and use the default sklearn leaf prediction
rule from the predict method El We will also use a constant step size v.

6. Use the Decision_Tree code provided to build gradient boosting models on the regression
data sets krr-train.txt, and include the plots generated. For debugging you can use the
sklearn implementation of GradientBoostingRegressorﬂ

IExamples of usage are given in the skeleton code to debug previous problems, and you can check the docs
https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeRegressor.html

“https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingRegressor.
html


https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeRegressor.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingRegressor.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingRegressor.html

CSCI-GA 2565 - Fall 2023 3

3 Neural Network Introduction

There is no doubt that neural networks are a very important class of machine learning models.
Given the sheer number of people who are achieving impressive results with neural networks,
one might think that it’s relatively easy to get them working. This is a partly an illusion. One
reason so many people have success is that, thanks to GitHub, they can copy the exact settings
that others have used to achieve success. In fact, in most cases they can start with “pre-trained”
models that already work for a similar problem, and “fine-tune” them for their own purposes.
It’s far easier to tweak and improve a working system than to get one working from scratch. If
you create a new model, you're kind of on your own to figure out how to get it working: there’s
not much theory to guide you and the rules of thumb do not always work. Understanding even
the most basic questions, such as the preferred variant of SGD to use for optimization, is still a
very active area of research.

One thing is clear, however: If you do need to start from scratch, or debug a neural network model
that doesn’t seem to be learning, it can be immensely helpful to understand the low-level details
of how your neural network works — specifically, back-propagation. With this assignment, you’ll
have the opportunity to linger on these low-level implementation details. Every major neural
network type (RNNs, CNNs, Resnets, etc.) can be implemented using the basic framework we’ll
develop in this assignment.

To help things along, Philipp Meerkamp, Pierre Garapon, and David Rosenberg have designed a
minimalist framework for computation graphs and put together some support code. The intent is
for you to read, or at least skim, every line of code provided, so that you’ll know you understand
all the crucial components and could, in theory, create your own from scratch. In fact, creating
your own computation graph framework from scratch is highly encouraged — you’ll learn a lot.

4 Computation Graph Framework

To get started, please read the {tutorial on the computation graph framework we’ll be working
with. (Note that it renders better if you view it locally.) The use of computation graphs is not
specific to machine learning or neural networks. Computation graphs are just a way to represent
a function that facilitates efficient computation of the function’s values and its gradients with
respect to inputs. The tutorial takes this perspective, and there is very little in it about machine
learning, per se.

To see how the framework can be used for machine learning tasks, we’'ve provided a full imple-
mentation of linear regression. You should start by working your way through the __init__ of the
LinearRegression class in linear regression.py. From there, you’ll want to review the node
class definitions in nodes.py, and finally the class ComputationGraphFunction in graph.py.
ComputationGraphFunction is where we repackage a raw computation graph into something
that’s more friendly to work with for machine learning. The rest of linear_regression.py is
fairly routine, but it illustrates how to interact with the ComputationGraphFunction.

As we’ve noted earlier in the course, getting gradient calculations correct can be difficult. To
help things along, we’ve provided two functions that can be used to test the backward method
of a node and the overall gradient calculation of a ComputationGraphFunction. The functions
are in test_utils.py, and it’s recommended that you review the tests provided for the lin-
ear regression implementation in linear regression.t.py. (You can run these tests from the
command line with python3 linear regression.t.py.) The functions actually doing the test-
ing, test_node_backward and test_ComputationGraphFunction, may seem a bit intricate, but


https://github.com/davidrosenberg/mlcourse/blob/gh-pages/Notebooks/computation-graph/computation-graph-framework.ipynb

CSCI-GA 2565 - Fall 2023 4

they’re implementing the exact same gradient_checker logic we saw in the second homework
assignment.

Once you've understood how linear regression works in our framework, you're ready to start
implementing your own algorithms. To help you get started, please make sure you are able to
execute the following commands:

e cd /path/to/hw4
e python3 linear_regression.py

e python3 linear_regression.t.py

5 Ridge Regression

When moving to a new system, it’s always good to start with something familiar. But that’s not
the only reason we’re doing ridge regression in this homework. In ridge regression the parameter
vector is “shared”, in the sense that it’s used twice in the objective function. In the computation
graph, this can be seen in the fact that the node for the parameter vector has two outgoing
edges. This sharing is common many popular neural networks (RNNs and CNNs), where it is
often referred to as parameter tying.

ridge regression.py provides a skeleton code and ridge regression.t.py is a test code,
which you should eventually be able to pass.

7. Complete the class L2NormPenaltyNode in nodes.py. If your code is correct, you should
be able to pass test_L2NormPenaltyNode in ridge regression.t.py. Please attach a
screenshot that shows the test results for this question.

8. Complete the class SumNode in nodes.py. If your code is correct, you should be able to
pass test_SumNode in ridge_regression.t.py. Please attach a screenshot that shows the
test results for this question.

9. Implement ridge regression with w regularized and b unregularized. Do this by completing
the __init__ method in ridge regression.py, using the classes created above. When
complete, you should be able to pass the tests in ridge regression.t.py. Report the
average square error on the training set for the parameter settings given in the main()
function.

6 Multilayer Perceptron

Let’s now turn to a multilayer perceptron (MLP) with a single hidden layer and a square loss.
We'll implement the computation graph illustrated below:



CSCI-GA 2565 - Fall 2023 5

Multilayer Perceptron, 1 hidden layer, square loss

@a{ om 6’\'6 S

?YQA\L*" on

DO‘ 0 Ob‘}gg\'\ve,\/olmﬁ

The crucial new piece here is the nonlinear hidden layer, which is what makes the multilayer
perceptron a significantly larger hypothesis space than linear prediction functions.

6.1 The standard non-linear layer

The multilayer perceptron consists of a sequence of “layers” implementing the following non-
linear function

hz) =0 (Wz+b),

where z € R?, W € R™? and b € R™, and where m is often referred to as the number
of hidden units or hidden nodes. ¢ is some non-linear function, typically tanh or ReLU,
applied element-wise to the argument of 0. Referring to the computation graph illustration
above, we will implement this nonlinear layer with two nodes, one implementing the affine
transform L = Wiz + by, and the other implementing the nonlinear function h = tanh(L). In
this problem, we’ll work out how to implement the backward method for each of these nodes.

The Affine Transformation

In a general neural network, there may be quite a lot of computation between any given affine
transformation Wz + b and the final objective function value J. We will capture all of that in
a function f : R™ — R, for which J = f(Wz + ). Our goal is to find the partial derivative of
J with respect to each element of W, namely 0.J/0W;;, as well as the partials 9.J/0b;, for each
element of b. For convenience, let y = Wa + b, so we can write J = f(y). Suppose we have

already computed the partial derivatives of J with respect to the entries of y = (y1,... 7ym)T,
namely a%]- for i =1,...,m. Then by the chain rule, we have

0 = 9J Oy,
8Wij o - 8yr 8Ww

=1




CSCI-GA 2565 - Fall 2023 6

10. Show that Efzv—‘]] = g; xj, where x = (x1,... 7a:d)T. [Hint: Although not necessary, you
might find it helpful to use the notation §;; = {(1) il:ej' So, for examples, 0, (31, %) =
26,5 = 2z,

11. Now let’s vectorize this. Let’s write Q R™*! for the column vector whose ith entry
is 37;]1" Let’s also define the matrix W € R™*? whose ij’th entry is aa—‘] Generally

speaking, we’ll always take g—i to be an array of the same size (° shape in numpy) as A.

Give a vectorized expression for 2 8W in terms of the column vectors 4 Em 7 and z. [Hint: Outer
product.]

12. In the usual way, define 22 € R?, whose i’th entry is g—gi. Show that

(’9;] =w7T g

ox dy
[Note, if z is just data, technically we won’t need this derivative. However, in a multilayer
perceptron, x may actually be the output of a previous hidden layer, in which case we will
need to propagate the derivative through = as well.]

13. Show that % g] Where is defined in the usual way.

Element-wise Transformers

Our nonlinear activation function nodes take an array (e.g. a vector, matrix, higher-order tensor,
etc), and apply the same nonlinear transformation o : R — R to every element of the array.
Let’s abuse notation a bit, as is usually done in this context, and write o(A) for the array that
results from applying o(-) to each element of A. If ¢ is differentiable at = € R, then we’ll write
o'(z) for the derivative of o at z, with ¢’/(A) defined analogously to o(A).

Suppose the objective function value J is written as J = f(o(A)), for some function f: S +— R,
where S is an array of the same dimensions as o(A) and A. As before, we Want to find the
array af‘ for any A. Suppose for some A we have already computed the array = BJ;(SS) for
S = o(A). At this point, we’ll want to use the chain rule to figure out g;]l. However, because
we're dealing with arrays of arbitrary shapes, it can be tricky to write down the chain rule.
Appropriately, we’ll use a tricky convention: We’ll assume all entries of an array A are indexed
by a single variable. So, for example, to sum over all entries of an array A, we’ll just write >, A;.

14. Show that g—j = % ® ¢'(A), where we're using © to represent the Hadamard product.
If A and B are arrays of the same shape, then their Hadamard product A ® B is an array
with the same shape as A and B, and for which (A ® B), = A;B;. That is, it’s just the
array formed by multiplying corresponding elements of A and B. Conveniently, in numpy
if A and B are arrays of the same shape, then A*B is their Hadamard product.

6.2 MLP Implementation

15. Complete the class AffineNode in nodes.py. Be sure to propagate the gradient with
respect to x as well, since when we stack these layers, x will itself be the output of another



CSCI-GA 2565 - Fall 2023 7

node that depends on our optimization parameters. If your code is correct, you should
be able to pass test_AffineNode in mlp_regression.t.py. Please attach a screenshot that
shows the test results for this question.

16. Complete the class TanhNode in nodes.py. As you'll recall, % tanh(z) =1 —tanh? z. Note
that in the forward pass, we’ll already have computed tanh of the input and stored it in
self.out. So make sure to use self.out and not recalculate it in the backward pass. If
your code is correct, you should be able to pass test_TanhNode in mlp_regression.t.py.
Please attach a screenshot that shows the test results for this question.

17. Implement an MLP by completing the skeleton code in mlp_regression.py and making
use of the nodes above. Your code should pass the tests provided in mlp_regression.t.py.
Note that to break the symmetry of the problem, we initialize our weights to small random
values, rather than all zeros, as we often do for convex optimization problems. Run the
MLP for the two settings given in the main() function and report the average training
error. Note that with an MLP, we can take the original scalar as input, in the hopes that
it will learn nonlinear features on its own, using the hidden layers. In practice, it is quite
challenging to get such a neural network to fit as well as one where we provide features.

6.3 Multiclass classification with an MLP [Optional]

We consider a generic classification problem with K classes over inputs x of dimension d. Using
a MLP we will compute a K-dimensional vector z representing scores,

z = W2 tanh(Wlx + bl) + bg,

with Wy € R™*4 b € R™ Wy € REX™ and b, € RE. Our model assumes that = belongs to
class k with probability
K
e/ Z er,
k=1

which corresponds to applying a Softmax to the scores. Given this probabilistic model we can
train the model by minimizing the negative log-likelihood.

18. Implement a Softmax node. We provided skeleton code for class SoftmaxNode in nodes. py.
If your code is correct, you should be able to pass test_SoftmaxNode in multiclass.t.py.
Please attach a screenshot that shows the test results for this question.

19. Implement a negative log-likelihood loss node for multiclass classification. We provided
skeleton code for class NLLNode in nodes.py. The test code for this question is combined
with the test code for the next question.

20. Implement a MLP for multiclass classification by completing the skeleton code in multiclass.py.
Your code should pass the tests in test_multiclass provided in multiclass.t.py. Please attach
a screenshot that shows the test results for this question.



	Decision Tree Implementation
	Ensembling
	Neural Network Introduction
	Computation Graph Framework 
	Ridge Regression
	Multilayer Perceptron
	The standard non-linear layer
	MLP Implementation
	Multiclass classification with an MLP [Optional]


