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Homework 3: Bayesian ML & Multiclass

Due: Tuesday, November 12, 2024 at 12 pm EST (noon)

Instructions: Your answers to the questions below, including plots and mathematical work,
should be submitted as a single PDF file. It’s preferred that you write your answers using
software that typesets mathematics (e.g.LaTeX, LyX, or MathJax via iPython), though if you
need to you may scan handwritten work.

Code Submission: Please submit your solutions in the following two files provided for the cod-
ing questions: multiclass-skeleton-code.ipynb and skeleton code.py without changing the
file names. Questions marked with [coding] requires completing the corresponding functions in
the skeleton code.py file. The multiclass-skeleton-code.ipynb file import functions writ-
ten in the skeleton code.py. Please do not import additional libraries in skeleton code.py,
otherwise the autograder may crash and no credit will be given. You should compress the
files into a ZIP archive in the current directory and submit the ZIP file. We also provided
two test files test one vs all classifier.py and test multiclass svm.py to test your code.
It’s meant to ensure that the output shapes are correctly specified. You can use the following
commands python -m unittest test one vs all classifier.py and python -m unittest

test multiclass svm.py to run the scripts. You don’t need to submit these two test files.

Bayesian Logistic Regression with Gaussian Priors
Recall from previous homework and consider a binary classification setting with input space
X = Rd, outcome space Y± = {−1, 1}, and a dataset D =

(
(x(1), y(1)), · · · , (x(n), y(n))

)
. p(y =

1 | x;w) = 1/(1 + exp(−xTw)).

Let’s consider logistic regression in the Bayesian setting, where we introduce a prior p(w) on
w ∈ Rd.

1. For the dataset D, give an expression for the posterior density p(w | D) in terms of the neg-
ative log-likelihood function NLLD(w) and the prior density p(w)(up to a proportionality
constant is fine).

2. Show that there exist a covariance matrix Σ such that MAP (maximum a posteriori)
estimate for w after observing data D is the same as the minimizer of the regularized
logistic regression function defined in Regularized Logistic Regression paragraph above,
and give its value. [Hint: Consider minimizing the negative log posterior of w. Also,
remember you can drop any terms from the objective function that don’t depend on w.
You may freely use results of previous problems.]

3. In the Bayesian approach, the prior should reflect your beliefs about the parameters before
seeing the data and, in particular, should be independent on the eventual size of your
dataset. Imagine choosing a prior distribution w ∼ N (0, I). For a dataset D of size n,
how should you choose λ in our regularized logistic regression objective function so that
the ERM is equal to the mode of the posterior distribution of w (i.e. is equal to the MAP
estimator).

Coin Flipping with Partial Observability
Consider flipping a biased coin where p(z = H | θ1) = θ1. However, we cannot directly observe
the result z. Instead, someone reports the result to us, which we denotey by x. Further,
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there is a chance that the result is reported incorrectly if it’s a head. Specifically, we have
p(x = H | z = H, θ2) = θ2 and p(x = T | z = T ) = 1.

4. Show that p(x = H | θ1, θ2) = θ1θ2.

5. Given a set of reported results Dr of size Nr, where the number of heads is nh and the
number of tails is nt, what is the likelihood of Dr as a function of θ1 and θ2.

6. Can we estimate θ1 and θ2 using MLE? Explain your judgment.

7. We additionally obtained a set of clean results Dc of size Nc, where x is directly observed
without the reporter in the middle. Given that there are ch heads and ct tails, estimate
θ1 and θ2 by MLE taking the two data sets into account. Note that the likelihood is
L(θ1, θ2) = p(Dr,Dc | θ1, θ2).

8. Since the clean results are expensive, we only have a small number of those and we are
worried that we may overfit the data. To mitigate overfitting we can use a prior distribution
on θ1 if available. Let’s imagine that an oracle gave use the prior p(θ1) = Beta(h, t). Derive
the MAP estimates for θ1 and θ2.

Suppose our output space and our action space are given as follows: Y = A = {1, . . . , k}. Given
a non-negative class-sensitive loss function ∆ : Y × A → [0,∞) and a class-sensitive feature
mapping Ψ : X × Y → Rd. Our prediction function f : X → Y is given by

fw(x) = argmax
y∈Y

⟨w,Ψ(x, y)⟩ .

For training data (x1, y1), . . . , (xn, yn) ∈ X × Y, let J(w) be the ℓ2-regularized empirical risk
function for the multiclass hinge loss. We can write this as

J(w) = λ∥w∥2 + 1

n

n∑
i=1

max
y∈Y

[∆ (yi, y) + ⟨w,Ψ(xi, y)−Ψ(xi, yi)⟩]

for some λ > 0.

9. Show that J(w) is a convex function of w. You may use any of the rules about convex
functions described in our notes on Convex Optimization, in previous assignments, or
in the Boyd and Vandenberghe book, though you should cite the general facts you are
using. [Hint: If f1, . . . , fm : Rn → R are convex, then their pointwise maximum f(x) =
max {f1(x), . . . , fm(x)} is also convex.]

10. Since J(w) is convex, it has a subgradient at every point. Give an expression for a subgra-
dient of J(w). You may use any standard results about subgradients, including the result
from an earlier homework about subgradients of the pointwise maxima of functions. (Hint:
It may be helpful to refer to ŷi = argmaxy∈Y [∆ (yi, y) + ⟨w,Ψ(xi, y)−Ψ(xi, yi)⟩].)

11. Give an expression for the stochastic subgradient based on the point (xi, yi).

12. Give an expression for a minibatch subgradient, based on the points (xi, yi), . . . , (xi+m−1, yi+m−1).

Hinge Loss is a Special Case of Generalized Hinge Loss

https://davidrosenberg.github.io/mlcourse/Notes/convex-optimization.pdf
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Let Y = {−1, 1}. Let ∆(y, ŷ) = 1y ̸= ŷ. If g(x) is the score function in our binary classification
setting, then define our compatibility function as

h(x, 1) = g(x)/2

h(x,−1) = −g(x)/2.

Show that for this choice of h, the multiclass hinge loss reduces to hinge loss:

ℓ (h, (x, y)) = max
y′∈Y

[∆ (y, y′)) + h(x, y′)− h(x, y)] = max {0, 1− yg(x)}

In this problem we will work on a simple three-class classification example. The data is generated
and plotted for you in the skeleton code.

One-vs-All (also known as One-vs-Rest)

First we will implement one-vs-all multiclass classification. Our approach will assume we have
a binary base classifier that returns a score, and we will predict the class that has the highest
score.

13. [coding] Complete the methods fit, decision function and predict from OneVsAllClassifier

in skeleton code.py. Following the OneVsAllClassifier code is a cell that extracts the
results of the fit and plots the decision region. You can have a look at it first to make sure
you understand how the class will be used.

14. Include the results of the test cell in multiclass-skeleton-code.ipynb in your submis-
sion.

Multiclass SVM

In this question, we will implement stochastic subgradient descent for the linear multiclass SVM,
as described in class and in this problem set. We will use the class-sensitive feature mapping
approach with the “multivector construction”, as described in the multiclass lecture.

15. [coding] Complete the function featureMap in skeleton code.py.

16. [coding] Complete the function sgd in skeleton code.py.

17. [coding] Complete the methods subgradient, decision function and predict from the
class MulticlassSVM in skeleton code.py.

18. Following the multiclass SVM implementation, we have included another block of test code
in multiclass-skeleton-code.ipynb. Make sure to include the results from these tests
in your assignment.


