
CSCI-GA-2565 - Fall 2024 1

Homework 2: SVMs, Kernels & Logistic Regression

Due: Tuesday, Oct 15, 2024 at 11:59AM EST

Instructions: Your answers to the questions below, including plots and mathematical work,
should be submitted as a single PDF file. It’s preferred that you write your answers using
software that typesets mathematics (e.g.LaTeX, LyX, or MathJax via iPython), though if you
need to you may scan handwritten work. You may find the minted package convenient for
including source code in your LaTeX document. If you are using LyX, then the listings package
tends to work better.

1 Support Vector Machines: SVMs with Pegasos

In this first problem we will use Support Vector Machines to predict whether the sentiment of a
movie review was positive or negative. We will represent each review by a vector x ∈ Rd where
d is the size of the word dictionary and xi is equal to the number of occurrence of the i-th word
in the review x. The corresponding label is either y = 1 for a positive review or y = −1 for
a negative review. In class we have seen how to transform the SVM training objective into a
quadratic program using the dual formulation. Here we will use a gradient descent algorithm
instead.

Subgradients
Recall that a vector g ∈ Rd is a subgradient of f : Rd → R at x if for all z,

f(z) ≥ f(x) + gT (z − x).

There may be 0, 1, or infinitely many subgradients at any point. The subdifferential of f at a
point x, denoted ∂f(x), is the set of all subgradients of f at x. A good reference for subgradients
are the course notes on Subgradients by Boyd et al. Below we derive a property that will make
our life easier for finding a subgradient of the hinge loss.

1. Suppose f1, . . . , fm : Rd → R are convex functions, and f(x) = maxi=1,...,,m fi(x). Let k
be any index for which fk(x) = f(x), and choose g ∈ ∂fk((x) (a convex function on Rd

has a non-empty subdifferential at all points). Show that g ∈ ∂f(x).

2. Give a subgradient of the hinge loss objective J(w) = max
{
0, 1− ywTx

}
.

SVM with the Pegasos algorithm
You will train a Support Vector Machine using the Pegasos algorithm 1. Recall the SVM objective
using a linear predictor f(x) = wTx and the hinge loss:

min
w∈Rd

λ

2
∥w∥2 + 1

n

n∑
i=1

max
{
0, 1− yiw

Txi

}
,

where n is the number of training examples and d the size of the dictionary. Note that, for
simplicity, we are leaving off the bias term b. Note also that we are using ℓ2 regularization with
a parameter λ. Pegasos is stochastic subgradient descent using a step size rule ηt = 1/ (λt) for
iteration number t. The pseudocode is given below:

1Shalev-Shwartz et al. Pegasos: Primal Estimated sub-GrAdient SOlver for SVM.

https://github.com/gpoore/minted
https://en.wikibooks.org/wiki/LaTeX/Source_Code_Listings
https://stanford.edu/class/ee364b/lectures/subgradients_notes.pdf
http://ttic.uchicago.edu/~nati/Publications/PegasosMPB.pdf


CSCI-GA-2565 - Fall 2024 2

Input: λ > 0. Choose w1 = 0, t = 0
While termination condition not met
For j = 1, . . . , n (assumes data is randomly permuted)
t = t+ 1
ηt = 1/ (tλ);
If yjw

T
t xj < 1

wt+1 = (1− ηtλ)wt + ηtyjxj
Else
wt+1 = (1− ηtλ)wt

3. Consider the SVM objective function for a single training point2: Ji(w) = λ
2 ∥w∥2 +

max
{
0, 1− yiw

Txi

}
. The function Ji(w) is not differentiable everywhere. Specify where

the gradient of Ji(w) is not defined. Give an expression for the gradient where it is defined.

4. Show that a subgradient of Ji(w) is given by

gw =

{
λw − yixi for yiw

Txi < 1

λw for yiw
Txi ≥ 1.

You may use the following facts without proof: 1) If f1, . . . , fn : Rd → R are convex
functions and f = f1 + · · · + fn, then ∂f(x) = ∂f1(x) + · · · + ∂fn(x). 2) For α ≥ 0,
∂ (αf) (x) = α∂f(x). (Hint: Use the first part of this problem.)

Convince yourself that if your step size rule is ηt = 1/ (λt), then doing SGD with the subgradient
direction from the previous question is the same as given in the pseudocode.

Dataset and sparse representation
We will be using the Polarity Dataset v2.0, constructed by Pang and Lee, provided in the
data reviews folder. It has the full text from 2000 movies reviews: 1000 reviews are classified
as positive and 1000 as negative. Our goal is to predict whether a review has positive or negative
sentiment from the text of the review. Each review is stored in a separate file: the positive
reviews are in a folder called “pos”, and the negative reviews are in “neg”. We have provided
some code in utils svm reviews.py to assist with reading these files. The code removes some
special symbols from the reviews and shuffles the data. Load all the data to have an idea of
what it looks like.

A usual method to represent text documents in machine learning is with bag-of-words. As hinted
above, here every possible word in the dictionary is a feature, and the value of a word feature
for a given text is the number of times that word appears in the text. As most words will not
appear in any particular document, many of these counts will be zero. Rather than storing many
zeros, we use a sparse representation, in which only the nonzero counts are tracked. The counts
are stored in a key/value data structure, such as a dictionary in Python. For example, “Harry
Potter and Harry Potter II” would be represented as the following Python dict: x={’Harry’:2,
’Potter’:2, ’and’:1, ’II’:1}.

5. Write a function that converts an example (a list of words) into a sparse bag-of-words

2Recall that if i is selected uniformly from the set {1, . . . , n}, then this objective function has the same expected
value as the full SVM objective function.

https://www.cs.cornell.edu/people/pabo/movie-review-data/


CSCI-GA-2565 - Fall 2024 3

representation. You may find Python’s Counter3 class to be useful here. Note that a
Counter is itself a dictionary.

6. Load all the data and split it into 1500 training examples and 500 validation examples.
Format the training data as a list X train of dictionaries and y train as the list of corre-
sponding 1 or -1 labels. Format the test set similarly.

We will be using linear classifiers of the form f(x) = wTx, and we can store the w vec-
tor in a sparse format as well, such as w={’minimal’:1.3, ’Harry’:-1.1, ’viable’:-4.2,

’and’:2.2, ’product’:9.1}. The inner product between w and x would only involve the fea-
tures that appear in both x and w, since whatever doesn’t appear is assumed to be zero. For this
example, the inner product would be x(Harry) * w(Harry) + x(and) * w(and) = 2*(-1.1)

+ 1*(2.2). To help you along, utils svm reviews.py includes two functions for working with
sparse vectors: 1) a dot product between two vectors represented as dictionaries and 2) a func-
tion that increments one sparse vector by a scaled multiple of another vector, which is a very
common operation. It is worth reading the code, even if you intend to implement it yourself.
You may get some ideas on how to make things faster.

7. Implement the Pegasos algorithm to run on a sparse data representation. The output
should be a sparse weight vector w represented as a dictionary. Note that our Pegasos
algorithm starts at w = 0, which corresponds to an empty dictionary. Terminate the
algorithm when the classification error is within a tolerance of 0.001. Note: With this
problem, you will need to take some care to code things efficiently. In particular, be aware
that making copies of the weight dictionary can slow down your code significantly. If you
want to make a copy of your weights (e.g. for checking for convergence), make sure you
don’t do this more than once per epoch. Also: If you normalize your data in some way,
be sure not to destroy the sparsity of your data. Anything that starts as 0 should stay at 0.

Note that in every step of the Pegasos algorithm, we rescale every entry of wt by the factor
(1 − ηtλ). Implementing this directly with dictionaries is very slow. We can make things
significantly faster by representing w as w = sW , where s ∈ R and W ∈ Rd. You can start
with s = 1 and W all zeros (i.e. an empty dictionary). Note that both updates (i.e. whether
or not we have a margin error) start with rescaling wt, which we can do simply by setting
st+1 = (1− ηtλ) st.

8. If the update is wt+1 = (1 − ηtλ)wt + ηtyjxj , then verify that the Pegasos update step is
equivalent to:

st+1 = (1− ηtλ) st

Wt+1 = Wt +
1

st+1
ηtyjxj .

Implement the Pegasos algorithm with the (s,W ) representation described above. 4

3https://docs.python.org/2/library/collections.html
4There is one subtle issue with the approach described above: if we ever have 1− ηtλ = 0, then st+1 = 0, and

we’ll have a divide by 0 in the calculation for Wt+1. This only happens when ηt = 1/λ. With our step-size rule
of ηt = 1/ (λt), it happens exactly when t = 1. So one approach is to just start at t = 2. More generically, note
that if st+1 = 0, then wt+1 = 0. Thus an equivalent representation is st+1 = 1 and W = 0. Thus if we ever get
st+1 = 0, simply set it back to 1 and reset Wt+1 to zero, which is an empty dictionary in a sparse representation.

https://docs.python.org/2/library/collections.html


CSCI-GA-2565 - Fall 2024 4

9. Run both implementations of Pegasos on the training data for a couple epochs. Make sure
your implementations are correct by verifying that the two approaches give essentially the
same result. Report on the time taken to run each approach.

10. Write a function classification error that takes a sparse weight vector w, a list of sparse
vectors X and the corresponding list of labels y, and returns the fraction of errors when
predicting yi using sign(wTxi). In other words, the function reports the 0-1 loss of the
linear predictor f(x) = wTx.

11. Search for the regularization parameter that gives the minimal percent error on your test
set. You should now use your faster Pegasos implementation, and run it to convergence. A
good search strategy is to start with a set of regularization parameters spanning a broad
range of orders of magnitude. Then, continue to zoom in until you’re convinced that addi-
tional search will not significantly improve your test performance. Plot the test errors you
obtained as a function of the parameters λ you tested. (Hint: the error you get with the
best regularization should be closer to 15% than 20%. If not, maybe you did not train to
convergence.)

Error Analysis
Recall that the score is the value of the prediction f(x) = wTx. We like to think that the
magnitude of the score represents the confidence of the prediction. This is something we can
directly verify or refute.

12. Break the predictions on the test set into groups based on the score (you can play with
the size of the groups to get a result you think is informative). For each group, examine
the percentage error. You can make a table or graph. Summarize the results. Is there a
correlation between higher magnitude scores and accuracy?

2 Kernel Methods

2.1 Kernelization review

Consider the following optimization problem on a data set (x1, y1) , . . . (xn, yn) ∈ Rd × Y:

min
w∈Rd

R
(√

⟨w,w⟩
)
+ L (⟨w,x1⟩ , . . . , ⟨w,xn⟩) ,

where w,x1, . . . ,xn ∈ Rd, and ⟨·, ·⟩ is the standard inner product on Rd. The function R :
[0,∞) → R is nondecreasing and gives us our regularization term, while L : Rn → R is arbitrary5

and gives us our loss term. We noted in lecture that this general form includes soft-margin SVM
and ridge regression, though not lasso regression. Using the representer theorem, we showed if
the optimization problem has a solution, there is always a solution of the form w =

∑n
i=1αixi,

5You may be wondering “Where are the yi’s?”. They’re built into the function L. For example, a square loss

on a training set of size 3 could be represented as L(s1, s2, s3) =
1
3

[
(s1 − y1)

2 + (s2 − y2)
2 + (s3 − y3)

3
]
, where

each si stands for the ith prediction ⟨w,xi⟩.



CSCI-GA-2565 - Fall 2024 5

for some α ∈ Rn. Plugging this into the our original problem, we get the following “kernelized”
optimization problem:

min
α∈Rn

R
(√
αTKα

)
+ L (Kα) ,

where K ∈ Rn×n is the Gram matrix (or “kernel matrix”) defined by Kij = k(xi,xj) = ⟨xi,xj⟩.
Predictions are given by

f(x) =

n∑
i=1

αik(xi,x),

and we can recover the original w ∈ Rd by w =
∑n

i=1 αixi.

The kernel trick is to swap out occurrences of the kernel k (and the corresponding Gram matrix
K) with another kernel. For example, we could replace k(xi, xj) = ⟨xi, xj⟩ by k′(xi, xj) =
⟨ψ(xi), ψ(xj)⟩ for an arbitrary feature mapping ψ : Rd → RD. In this case, the recovered
w ∈ RD would be w =

∑n
i=1 αiψ(xi) and predictions would be ⟨w,ψ(xi)⟩.

More interestingly, we can replace k by another kernel k′′(xi,xj) for which we do not even know
or cannot explicitly write down a corresponding feature map ψ. Our main example of this is the
RBF kernel

k(x, x′) = exp

(
−∥x− x′∥2

2σ2

)
,

for which the corresponding feature map ψ is infinite dimensional. In this case, we cannot
recover w since it would be infinite dimensional. Predictions must be done using α ∈ Rn, with
f(x) =

∑n
i=1 αik(xi,x).

Your implementation of kernelized methods below should not make any reference to w or to
a feature map ψ. Your learning routine should return α, rather than w, and your prediction
function should also use α rather thanw. This will allow us to work with kernels that correspond
to infinite-dimensional feature vectors.

Kernels and Kernel Machines
There are many different families of kernels. So far we spoken about linear kernels, RBF/Gaussian
kernels, and polynomial kernels. The last two kernel types have parameters. In this section, we’ll
implement these kernels in a way that will be convenient for implementing our kernelized ridge
regression later on. For simplicity, we will assume that our input space is X = R . This allows
us to represent a collection of n inputs in a matrix X ∈ Rn×1. You should now refer to the
jupyter notebook skeleton code kernels.ipynb.

13. Write functions that compute the RBF kernel kRBF(σ)(x, x
′) = exp

(
−∥x− x′∥2/

(
2σ2

))
and the polynomial kernel kpoly(a,d)(x, x

′) = (a+ ⟨x, x′⟩)d. The linear kernel klinear(x, x′) =
⟨x, x′⟩, has been done for you in the support code. Your functions should take as input
two matrices W ∈ Rn1×d and X ∈ Rn2×d and should return a matrix M ∈ Rn1×n2 where
Mij = k(Wi·, Xj·). In words, the (i, j)’th entry of M should be kernel evaluation between
wi (the ith row of W ) and xj (the jth row of X). For the RBF kernel, you may use the
scipy function cdist(X1,X2,’sqeuclidean’) in the package scipy.spatial.distance.

14. Use the linear kernel function defined in the code to compute the kernel matrix on the set
of points x0 ∈ DX = {−4,−1, 0, 2}. Include both the code and the output.

15. Suppose we have the data set DX,y = {(−4, 2), (−1, 0), (0, 3), (2, 5)} (in each set of paren-
theses, the first number is the value of xi and the second number the corresponding value



CSCI-GA-2565 - Fall 2024 6

of the target yi). Then by the representer theorem, the final prediction function will be in
the span of the functions x 7→ k(x0, x) for x0 ∈ DX = {−4,−1, 0, 2}. This set of functions
will look quite different depending on the kernel function we use. The set of functions
x 7→ klinear(x0, x) for x0 ∈ DX and for x ∈ [−6, 6] has been provided for the linear kernel.

(a) Plot the set of functions x 7→ kpoly(1,3)(x0, x) for x0 ∈ DX and for x ∈ [−6, 6].

(b) Plot the set of functions x 7→ kRBF(1)(x0, x) for x0 ∈ DX and for x ∈ [−6, 6].

Note that the values of the parameters of the kernels you should use are given in their
definitions in (a) and (b).

16. By the representer theorem, the final prediction function will be of the form f(x) =∑n
i=1 αik(xi, x), where x1, . . . , xn ∈ X are the inputs in the training set. We will use

the class Kernel Machine in the skeleton code to make prediction with different kernels.
Complete the predict function of the class Kernel Machine. Construct a Kernel Machine

object with the RBF kernel (sigma=1), with prototype points at −1, 0, 1 and correspond-
ing weights αi 1,−1, 1. Plot the resulting function.

Note: It may be helpful to use partial application on your kernel functions. For example, if your
polynomial kernel function has signature polynomial kernel(W, X, offset, degree), you
can write k = functools. partial(polynomial kernel, offset=2, degree=2), and then
a call to k(W,X) is equivalent to polynomial kernel(W, X, offset=2, degree=2), the advan-
tage being that the extra parameter settings are built into k(W,X). This can be convenient so
that you can have a function that just takes a kernel function k(W,X) and doesn’t have to worry
about the parameter settings for the kernel.

3 Logistic Regression

Consider a binary classification setting with input space X = Rd, outcome space Y± = {−1, 1},
and a dataset D =

(
(x(1), y(1)), · · · , (x(n), y(n))

)
.

Equivalence of ERM and probabilistic approaches
ERM with logistic loss.
Consider a linear scoring function in the space Fscore =

{
x 7→ xTw | w ∈ Rd

}
. A simple way to

make predictions (similar to what we’ve seen with the perceptron algorithm) is to predict ŷ = 1
if xTw > 0, or ŷ = sign(xTw). Accordingly, we consider margin-based loss functions that relate
the loss with the margin, yxTw. A positive margin means that xTw has the same sign as y,
i.e. a correct prediction. Specifically, let’s consider the logistic loss function ℓlogistic(y, w) =
log

(
1 + exp(−ywTx)

)
. This is a margin-based loss function that you have now encountered

several times. Given the logistic loss, we can now minimize the empirical risk on our dataset D
to obtain an estimate of the parameters, ŵ.

MLE with a Bernoulli response distribution and the logistic link function.
As discussed in the lecture, given that p(y = 1 | x;w) = 1/(1+exp(−xTw)), we can estimate w by
maximizing the likelihood, or equivalently, minimizing the negative log-likelihood (NLLD(w) in
short) of the data.

https://en.wikipedia.org/wiki/Partial_application


CSCI-GA-2565 - Fall 2024 7

17. Show that the two approaches are equivalent, i.e. they will produce the same solution for
w.

Linearly Separable Data
In this problem, we will investigate the behavior of MLE for logistic regression when the data is
linearly separable.

18. Show that the decision boundary of logistic regression is given by
{
x : xTw = 0

}
. Note

that the set will not change if we multiply the weights by some constant c.

19. Suppose the data is linearly separable and by gradient descent/ascent we have reached
a decision boundary defined by ŵ where all examples are classified correctly. Show that
we can always increase the likelihood of the data by multiplying a scalar c on ŵ, which
means that MLE is not well-defined in this case. (Hint: You can show this by taking the
derivative of L(cŵ) with respect to c, where L is the likelihood function.)

Regularized Logistic Regression As we’ve shown in above, when the data is linearly sepa-
rable, MLE for logistic regression may end up with weights with very large magnitudes. Such a
function is prone to overfitting. In this part, we will apply regularization to fix the problem.

The ℓ2 regularized logistic regression objective function can be defined as

Jlogistic(w) = R̂n(w) + λ∥w∥2

=
1

n

n∑
i=1

log
(
1 + exp

(
−y(i)wTx(i)

))
+ λ∥w∥2.

20. Prove that the objective function Jlogistic(w) is convex. You may use any facts mentioned
in the convex optimization notes.

21. Complete the f objective function in the skeleton code, which computes the objective
function for Jlogistic(w). (Hint: you may get numerical overflow when computing the
exponential literally, e.g. try e1000 in Numpy. Make sure to read about the log-sum-exp
trick and use the numpy function logaddexp to get accurate calculations and to prevent
overflow.

22. Complete the fit logistic regression function in the skeleton code using the minimize
function from scipy.optimize. Use this function to train a model on the provided data.
Make sure to take the appropriate preprocessing steps, such as standardizing the data and
adding a column for the bias term.

23. Find the ℓ2 regularization parameter that minimizes the log-likelihood on the validation
set. Plot the log-likelihood for different values of the regularization parameter.

24. [Optional] It seems reasonable to interpret the prediction f(x) = ϕ(wTx) = 1/(1+ e−wT x)
as the probability that y = 1, for a randomly drawn pair (x, y). Since we only have a finite
sample (and we are regularizing, which will bias things a bit) there is a question of how
well “calibrated” our predicted probabilities are. Roughly speaking, we say f(x) is well
calibrated if we look at all examples (x, y) for which f(x) ≈ 0.7 and we find that close to

https://davidrosenberg.github.io/mlcourse/Notes/convex-optimization.pdf
https://blog.feedly.com/tricks-of-the-trade-logsumexp/
https://blog.feedly.com/tricks-of-the-trade-logsumexp/
https://docs.scipy.org/doc/numpy/reference/generated/numpy.logaddexp.html
https://en.wikipedia.org/wiki/Calibration_(statistics)


CSCI-GA-2565 - Fall 2024 8

70% of those examples have y = 1, as predicted... and then we repeat that for all predicted
probabilities in (0, 1). To see how well-calibrated our predicted probabilities are, break the
predictions on the validation set into groups based on the predicted probability (you can
play with the size of the groups to get a result you think is informative). For each group,
examine the percentage of positive labels. You can make a table or graph. Summarize the
results. You may get some ideas and references from scikit-learn’s discussion.

http://scikit-learn.org/stable/modules/calibration.html

	Support Vector Machines: SVMs with Pegasos
	Kernel Methods
	Kernelization review

	Logistic Regression

