
CSCI-GA 2565 - Fall 2024 1

Homework 1: Linear Regression & Gradient Descent

Due: Tuesday, October 1, 2024 at 12 pm EST (noon)

Instructions: Your answers to the questions below, including plots and mathematical work,
should be submitted as a single PDF file. It’s preferred that you write your answers using
software that typesets mathematics (e.g.LaTeX, LyX, or MathJax via iPython), though if you
need to you may scan handwritten work. If you are using LyX, then the listings package tends
to work better.

Code Submission: Please submit all of your code in a single zip file on Gradescope.

Overall Submission: Please submit both a single PDF file and a zip file containing code to
Gradescope.

1 Polynomial regression as linear least squares

In practice, PX×Y is usually unknown and we use the empirical risk minimizer (ERM). We will
reformulate the problem as a d-dimensional linear regression problem. First note that functions
in Hd are parametrized by a vector b = [b0, b1, · · · bd]⊤, we will use the notation fb. Similarly we
will note a ∈ R3 the vector parametrizing g(x) = fa(x). We will also gather data points from
the training sample in the following matrix and vector:

X =


1 x1 · · · xd

1

1 x2 · · · xd
2

...
...

...
...

1 xN · · · xN

 , y = [y1, y2, · · · yN ]⊤. (1)

These notations allow us to take advantage of the very effective linear algebra formalism. X is
called the design matrix.

1. Show that the empirical risk minimizer (ERM) b̂ is given by the following minimization

b̂ = argmin
b

∥Xb− y∥22.

2. If N > d and X is full rank, show that b̂ = (X⊤X)−1X⊤y. (Hint: you should take the
gradients of the loss above with respect to b 1). Why do we need to use the conditions
N > d and X full rank?

2 Gradient descent for ridge/linear regression

Dataset

We have provided you with a file called ridge regression dataset.csv. Columns x0 through
x47 correspond to the input and column y corresponds to the output. We are trying to fit the
data using a linear model and gradient based methods. Please also check the supporting code in
skeleton code.py. Throughout this problem, we refer to particular blocks of code to help you
step by step.

1You can check the linear algebra review here if needed http://cs229.stanford.edu/section/cs229-linalg.

pdf

https://en.wikibooks.org/wiki/LaTeX/Source_Code_Listings
http://cs229.stanford.edu/section/cs229-linalg.pdf
http://cs229.stanford.edu/section/cs229-linalg.pdf


CSCI-GA 2565 - Fall 2024 2

Feature normalization

When feature values differ greatly, we can get much slower rates of convergence of gradient-
based algorithms. Furthermore, when we start using regularization, features with larger values
are treated as “more important”, which is not usually desired.

One common approach to feature normalization is perform an affine transformation (i.e. shift
and rescale) on each feature so that all feature values in the training set are in [0, 1]. Each feature
gets its own transformation. We then apply the same transformations to each feature on the
validation set or test set. Importantly, the transformation is “learned” on the training set, and
then applied to the test set. It is possible that some transformed test set values will lie outside
the [0, 1] interval.

1. Modify function feature normalization to normalize all the features to [0, 1]. Can you
use numpy’s broadcasting here? Often broadcasting can help to simplify and/or speed up
your code. Note that a feature with constant value cannot be normalized in this way. Your
function should discard features that are constant in the training set.

At the end of the skeleton code, the function load data loads, split into a training and test set,
and normalize the data using your feature normalization.

Linear regression

In linear regression, we consider the hypothesis space of linear functions hθ : Rd → R, where

hθ(x) = θTx,

for θ,x ∈ Rd, and we choose θ that minimizes the following “average square loss” objective
function:

J(θ) =
1

m

m∑
i=1

(hθ(xi)− yi)
2
,

where (x1, y1), . . . , (xm, ym) ∈ Rd × R is our training data.

While this formulation of linear regression is very convenient, it’s more standard to use a hy-
pothesis space of affine functions:

hθ,b(x) = θTx+ b,

which allows a nonzero intercept term b – sometimes called a “bias” term. The standard way to
achieve this, while still maintaining the convenience of the first representation, is to add an extra
dimension to x that is always a fixed value, such as 1, and use θ, x ∈ Rd+1. Convince yourself
that this is equivalent. We will assume this representation.

2. Let X ∈ Rm×(d+1) be the design matrix, where the i’th row of X is xi. Let y =
(y1, . . . , ym)

T ∈ Rm×1 be the response. Write the objective function J(θ) as a ma-
trix/vector expression, without using an explicit summation sign. 2

3. Write down an expression for the gradient of J without using an explicit summation sign.

4. Write down the expression for updating θ in the gradient descent algorithm for a step size
η.

2Being able to write expressions as matrix/vector expressions without summations is crucial to making im-
plementations that are useful in practice, since you can use numpy (or more generally, an efficient numerical
linear algebra library) to implement these matrix/vector operations orders of magnitude faster than naively
implementing with loops in Python.

https://docs.scipy.org/doc/numpy/user/basics.broadcasting.html


CSCI-GA 2565 - Fall 2024 3

5. Modify the function compute square loss, to compute J(θ) for a given θ. You might
want to create a small dataset for which you can compute J(θ) by hand, and verify that
your compute square loss function returns the correct value.

6. Modify the function compute square loss gradient, to compute ∇θJ(θ). You may again
want to use a small dataset to verify that your compute square loss gradient function
returns the correct value.

Gradient checker

We can numerically check the gradient calculation. If J : Rd → R is differentiable, then for any
vector h ∈ Rd, the directional derivative of J at θ in the direction h is given by

lim
ϵ→0

J(θ + ϵh)− J(θ − ϵh)

2ϵ
.

It is also given by the more standard definition of directional derivative,

lim
ϵ→0

1

ϵ
[J(θ + ϵh)− J(θ)] .

The former form gives a better approximation to the derivative when we are using small (but not
infinitesimally small) ϵ. We can approximate this directional derivative by choosing a small value
of ϵ > 0 and evaluating the quotient above. We can get an approximation to the gradient by
approximating the directional derivatives in each coordinate direction and putting them together
into a vector. In other words, take h = (1, 0, 0, . . . , 0) to get the first component of the gradient.
Then take h = (0, 1, 0, . . . , 0) to get the second component, and so on.

7. Complete the function grad checker according to the documentation of the function given
in the skeleton code.py. Alternatively, you may complete the function generic grad checker

so which can work for any objective function.

You should be able to check that the gradients you computed above remain correct throughout
the learning below.

Batch gradient descent

We will now finish the job of running regression on the training set.

8. Complete batch gradient descent. Note the phrase batch gradient descent distinguishes
between stochastic gradient descent or more generally minibatch gradient descent.

9. Now let’s experiment with the step size. Note that if the step size is too large, gradient
descent may not converge. Starting with a step-size of 0.1, try various different fixed step
sizes to see which converges most quickly and/or which diverge. As a minimum, try step
sizes 0.5, 0.1, .05, and .01. Plot the average square loss on the training set as a function of
the number of steps for each step size. Briefly summarize your findings.

10. For the learning rate you selected above, plot the average test loss as a function of the
iterations. You should observe overfitting: the test error first decreases and then increases.

Ridge Regression

We will add ℓ2 regularization to linear regression. When we have a large number of features
compared to instances, regularization can help control overfitting. Ridge regression is linear



CSCI-GA 2565 - Fall 2024 4

regression with ℓ2 regularization. The regularization term is sometimes called a penalty term.
The objective function for ridge regression is

Jλ(θ) =
1

m

m∑
i=1

(hθ(xi)− yi)
2
+ λθT θ,

where λ is the regularization parameter, which controls the degree of regularization. Note that
the bias term (which we included as an extra dimension in θ) is being regularized as well as the
other parameters. Sometimes it is preferable to treat this term separately.

11. Compute the gradient of Jλ(θ) and write down the expression for updating θ in the gradient
descent algorithm. (Matrix/vector expression, without explicit summation)

12. Implement compute regularized square loss gradient.

13. Implement regularized grad descent.

Our goal is to find λ that gives the minimum average square loss on the test set. So you
should start your search very broadly, looking over several orders of magnitude. For example,
λ ∈

{
10−7, 10−5, 10−3, 10−1, 1, 10, 100

}
. Then you can zoom in on the best range. Follow the

steps below to proceed.

14. Choosing a reasonable step-size, plot training average square loss and the test average
square loss (just the average square loss part, without the regularization, in each case) as
a function of the training iterations for various values of λ. What do you notice in terms
of overfitting?

15. Plot the training average square loss and the test average square loss at the end of training
as a function of λ. You may want to have log(λ) on the x-axis rather than λ. Which value
of λ would you choose ?

3 Image classification with regularized logistic regression

Dataset

We will examine a classification problem. To do so we will use the MNIST dataset3 which is one
of the traditional image benchmark for machine learning algorithms. We will only load the data
from the 0 and 1 class, and try to predict the class from the image. You will find the support code
for this problem in mnist classification source code.py. Before starting, take a little time
to inspect the data. Load X train, y train, X test, y test with pre process mnist 01().
Using the function plt.imshow from matplotlib visualize some data points from X train by
reshaping the 764 dimensional vectors into 28× 28 arrays. Note how the class labels ‘0’ and ‘1’
have been encoded in y train. No need to report these steps in your submission.

Logistic regression

We will use here again a linear model, meaning that we will fit an affine function,

hθ,b(x) = θTx+ b,

with x ∈ R764, θ ∈ R764 and b ∈ R. This time we will use the logistic loss instead of the squared
loss. Instead of coding everything from scratch, we will also use the package scikit learn and

3http://yann.lecun.com/exdb/mnist/

http://yann.lecun.com/exdb/mnist/


CSCI-GA 2565 - Fall 2024 5

study the effects of ℓ1 regularization. You may want to check that you have a version of the
package up to date (0.24.1).

16. Recall the definition of the logistic loss between target y and a prediction hθ,b(x) as a
function of the margin m = yhθ,b(x). Show that given that we chose the convention
yi ∈ {−1, 1}, our objective function over the training data {xi, yi}mi=1 can be re-written as

L(θ) =
1

2m

m∑
i=1

(1 + yi) log(1 + e−hθ,b(xi)) + (1− yi) log(1 + ehθ,b(xi)).

17. What will become the loss function if we regularize the coefficients of θ with an ℓ1 penalty
using a regularization parameter α ?

We are going to use the module SGDClassifier from scikit learn. In the code provided we
have set a little example of its usage. By checking the online documentation4, make sure you
understand the meaning of all the keyword arguments that were specified. We will keep the
learning rate schedule and the maximum number of iterations fixed to the given values for all
the problem. Note that scikit learn is actually implementing a fancy version of SGD to deal with
the ℓ1 penalty which is not differentiable everywhere, but we will not enter these details here.

18. To evaluate the quality of our model we will use the classification error, which corresponds
to the fraction of incorrectly labeled examples. For a given sample, the classification error
is 1 if no example was labeled correctly and 0 if all examples were perfectly labeled. Using
the method clf.predict() from the classifier write a function that takes as input an
SGDClassifier which we will call clf, a design matrix X and a target vector y and returns
the classification error. You should check that your function returns the same value as
1 - clf.score(X, y).

To speed up computations we will subsample the data. Using the function sub sample, restrict
X train and y train to N train = 100.

19. Report the test classification error achieved by the logistic regression as a function of the
regularization parameters α (taking 10 values between 10−4 and 10−1). You should make a
plot with α as the x-axis in log scale. For each value of α, you should repeat the experiment
10 times so has to finally report the mean value and the standard deviation. You should
use plt.errorbar to plot the standard deviation as error bars.

20. Which source(s) of randomness are we averaging over by repeating the experiment?

21. What is the optimal value of the parameter α among the values you tested?

22. Finally, for one run of the fit for each value of α plot the value of the fitted θ. You can
access it via clf.coef , and should reshape the 764 dimensional vector to a 28×28 arrray
to visualize it with plt.imshow. Defining scale = np.abs(clf.coef ).max(), you can
use the following keyword arguments (cmap=plt.cm.RdBu, vmax=scale, vmin=-scale)
which will set the colors nicely in the plot. You should also use a plt.colorbar() to
visualize the values associated with the colors.

23. What can you note about the pattern in θ? What can you note about the effect of the
regularization?

4https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.SGDClassifier.html

https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.SGDClassifier.html

	Polynomial regression as linear least squares
	Gradient descent for ridge/linear regression
	Image classification with regularized logistic regression

