Decision Trees and Boosting

Mengye Ren
NYU

Nov 14, 2023

Review: Decision Trees

- Non-linear, non-metric, and non-parametric.
- Regression or classification.
- Interpretable, up to certain depth.
- Greedy algorithm - maximizing the purity of nodes.
- Can overfit - need to limit the capacity.

Bagging and Random Forests

Recap: Statistics and Point Estimators

- We observe data $\mathcal{D}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ sampled i.i.d. from a parametric distribution $p(\cdot \mid \theta)$
- A statistic $s=s(\mathcal{D})$ is any function of the data:
- E.g., sample mean, sample variance, histogram, empirical data distribution
- A statistic $\hat{\theta}=\hat{\theta}(\mathcal{D})$ is a point estimator of θ if $\hat{\theta} \approx \theta$

Recap: Bias and Variance of an Estimator

- Statistics are random, so they have probability distributions.
- The distribution of a statistic is called a sampling distribution.
- The standard deviation of the sampling distribution is called the standard error.
- Some parameters of the sampling distribution we might be interested in:

$$
\begin{gathered}
\operatorname{Bias} \operatorname{Bias}(\hat{\theta}) \stackrel{\text { def }}{=} \mathbb{E}[\hat{\theta}]-\theta . \\
\text { Variance } \operatorname{Var}(\hat{\theta}) \stackrel{\text { def }}{=} \mathbb{E}\left[\hat{\theta}^{2}\right]-\mathbb{E}^{2}[\hat{\theta}] .
\end{gathered}
$$

- Why does variance matter if an estimator is unbiased?
- $\hat{\theta}(\mathcal{D})=x_{1}$ is an unbiased estimator of the mean of a Gaussian, but would be farther away from θ than the sample mean.

Variance of a Mean

- Let $\hat{\theta}(\mathcal{D})$ be an unbiased estimator with variance $\sigma^{2}: \mathbb{E}[\hat{\theta}]=\theta, \operatorname{Var}(\hat{\theta})=\sigma^{2}$.
- So far we have used a single statistic $\hat{\theta}=\hat{\theta}(\mathcal{D})$ to estimate θ.
- Its standard error is $\sqrt{\operatorname{Var}(\hat{\theta})}=\sigma$
- Consider a new estimator that takes the average of i.i.d. $\hat{\theta}_{1}, \ldots, \hat{\theta}_{n}$ where $\hat{\theta}_{i}=\hat{\theta}\left(\mathcal{D}^{i}\right)$.
- The average has the same expected value but smaller standard error (recall that $\operatorname{Var}(c X)=c^{2} \operatorname{Var}(X)$, and that the $\hat{\theta}_{i}$-s are uncorrelated):

$$
\begin{equation*}
\mathbb{E}\left[\frac{1}{n} \sum_{i=1}^{n} \hat{\theta}_{i}\right]=\theta \quad \operatorname{Var}\left[\frac{1}{n} \sum_{i=1}^{n} \hat{\theta}_{i}\right]=\frac{\sigma^{2}}{n} \tag{1}
\end{equation*}
$$

Averaging Independent Prediction Functions

- Suppose we have B independent training sets, all drawn from the same distribution ($\mathcal{D} \sim p(\cdot \mid \theta)$).
- Our learning algorithm gives us B prediction functions: $\hat{f}_{1}(x), \hat{f}_{2}(x), \ldots, \hat{f}_{B}(x)$
- We will define the average prediction function as:

$$
\begin{equation*}
\hat{f}_{\text {avg }} \stackrel{\text { def }}{=} \frac{1}{B} \sum_{b=1}^{B} \hat{f}_{b} \tag{2}
\end{equation*}
$$

Averaging Reduces Variance of Predictions

- The average prediction for x_{0} is

$$
\hat{f}_{\mathrm{avg}}\left(x_{0}\right)=\frac{1}{B} \sum_{b=1}^{B} \hat{f}_{b}\left(x_{0}\right) .
$$

- $\hat{f}_{\text {avg }}\left(x_{0}\right)$ and $\hat{f}_{b}\left(x_{0}\right)$ have the same expected value, but
- $\hat{f}_{\text {avg }}\left(x_{0}\right)$ has smaller variance:

$$
\operatorname{Var}\left(\hat{f}_{\mathrm{avg}}\left(x_{0}\right)\right)=\frac{1}{B} \operatorname{Var}\left(\hat{f}_{1}\left(x_{0}\right)\right)
$$

- Problem: in practice we don't have B independent training sets!

The Bootstrap Sample

How do we simulate multiple samples when we only have one?

- A bootstrap sample from $\mathcal{D}_{n}=\left(x_{1}, \ldots, x_{n}\right)$ is a sample of size n drawn with replacement from \mathcal{D}_{n}
- Some elements of \mathcal{D}_{n} will show up multiple times, and some won't show up at all
- Each x_{i} has a probability of $(1-1 / n)^{n}$ of not being included in a given bootstrap sample
- For large n,

$$
\begin{equation*}
\left(1-\frac{1}{n}\right)^{n} \approx \frac{1}{e} \approx .368 \tag{3}
\end{equation*}
$$

- So we expect ${ }^{\sim} 63.2 \%$ of elements of \mathcal{D}_{n} will show up at least once.

The Bootstrap Method

Definition

A bootstrap method simulates B independent samples from P by taking B bootstrap samples from the sample \mathcal{D}_{n}.

- Given original data \mathcal{D}_{n}, compute B bootstrap samples $D_{n}^{1}, \ldots, D_{n}^{B}$.
- For each bootstrap sample, compute some function

$$
\phi\left(D_{n}^{1}\right), \ldots, \phi\left(D_{n}^{B}\right)
$$

- Use these values as though $D_{n}^{1}, \ldots, D_{n}^{B}$ were i.i.d. samples from P.
- This often ends up being very close to what we'd get with independent samples from P !

Independent Samples vs. Bootstrap Samples

- Point estimator $\hat{\alpha}=\hat{\alpha}\left(\mathcal{D}_{100}\right)$ for samples of size 100 , for a synthetic case where the data generating distribution is known
- Histograms of $\hat{\alpha}$ based on
- 1000 independent samples of size 100 (left), vs.
- 1000 bootstrap samples of size 100 (right)

Figure 5.10 from ISLR (Springer, 2013) with permission from the authors: G. James, D. Witten, T. Hastie and R. Tibshirani.

Ensemble Methods

Key ideas:

- In general, ensemble methods combine multiple weak models into a single, more powerful model
- Averaging i.i.d. estimates reduces variance without changing bias
- We can use bootstrap to simulate multiple data samples and average them
- Parallel ensemble (e.g., bagging): models are built independently
- Sequential ensemble (e.g., boosting): models are built sequentially
- We try to find new learners that do well where previous learners fall short

Bagging: Bootstrap Aggregation

- We draw B bootstrap samples D^{1}, \ldots, D^{B} from original data \mathcal{D}
- Let $\hat{f}_{1}, \hat{f}_{2}, \ldots, \hat{f}_{B}$ be the prediction functions resulting from training on D^{1}, \ldots, D^{B}, respectively
- The bagged prediction function is a combination of these:

$$
\hat{f}_{\text {avg }}(x)=\operatorname{Combine}\left(\hat{f}_{1}(x), \hat{f}_{2}(x), \ldots, \hat{f}_{B}(x)\right)
$$

Bagging: Bootstrap Aggregation

- Bagging is a general method for variance reduction, but it is particularly useful for decision trees
- For classification, averaging doesn't make sense; we can take a majority vote instead
- Increasing the number of trees we use in bagging does not lead to overfitting
- Is there a downside, compared to having a single decision tree?
- Yes: if we have many trees, the bagged predictor is much less interpretable

Aside: Out-of-Bag Error Estimation

- Recall that each bagged predictor was trained on about 63% of the data.
- The remaining 37% are called out-of-bag (OOB) observations.
- For ith training point, let

$$
S_{i}=\left\{b \mid D^{b} \text { does not contain ith point }\right\}
$$

- The OOB prediction on x_{i} is

$$
\hat{f}_{\mathrm{OOB}}\left(x_{i}\right)=\frac{1}{\left|S_{i}\right|} \sum_{b \in S_{i}} \hat{f}_{b}\left(x_{i}\right)
$$

- The OOB error is a good estimate of the test error
- Similar to cross validation error: both are computed on the training set

Applying Bagging to Classification Trees

- Input space $X=R^{5}$ and output space $y=\{-1,1\}$. Sample size $n=30$.

- Each bootstrap tree is quite different: different splitting variable at the root!
- High variance: small perturbations of the training data lead to a high degree of model variability
- Bagging helps most when the base learners are relatively unbiased but have high variance (exactly the case for decision trees)

Motivating Random Forests: Correlated Prediction Functions

Recall the motivating principle of bagging:

- For $\hat{\theta}_{1}, \ldots, \hat{\theta}_{n}$ i.i.d. with $\mathbb{E}[\hat{\theta}]=\theta$ and $\operatorname{Var}[\hat{\theta}]=\sigma^{2}$,

$$
\mathbb{E}\left[\frac{1}{n} \sum_{i=1}^{n} \hat{\theta}_{i}\right]=\mu \quad \operatorname{Var}\left[\frac{1}{n} \sum_{i=1}^{n} \hat{\theta}_{i}\right]=\frac{\sigma^{2}}{n} .
$$

- What if $\hat{\theta}$'s are correlated?
- For large n, the covariance term dominates, limiting the benefits of averaging
- Bootstrap samples are
- independent samples from the training set, but
- not independent samples from $P_{x \times y}$
- Can we reduce the dependence between \hat{f}_{i} 's?

Random Forests

Key idea

Use bagged decision trees, but modify the tree-growing procedure to reduce the dependence between trees.

- Build a collection of trees independently (in parallel), as before
- When constructing each tree node, restrict choice of splitting variable to a randomly chosen subset of features of size m
- This prevents a situation where all trees are dominated by the same small number of strong features (and are therefore too similar to each other)
- We typically choose $m \approx \sqrt{p}$, where p is the number of features (or we can choose m using cross validation)
- If $m=p$, this is just bagging

Random Forests: Effect of m

From An Introduction to Statistical Learning, with applications in R (Springer, 2013) with permission from the authors: G. James, D. Witten, T. Hastie and R. Tibshirani.

Review

- The usual approach is to build very deep trees-low bias but high variance
- Ensembling many models reduces variance
- Motivation: Mean of i.i.d. estimates has smaller variance than single estimate
- Use bootstrap to simulate many data samples from one dataset
- \Longrightarrow Bagged decision trees
- But bootstrap samples (and the induced models) are correlated
- Ensembling works better when we combine a diverse set of prediction functions
- \Longrightarrow Random forests: select a random subset of features for each decision tree

Boosting

Boosting: Overview

Bagging Reduce variance of a low bias, high variance estimator by ensembling many estimators trained in parallel (on different datasets obtained through sampling).
Boosting Reduce the error rate of a high bias estimator by ensembling many estimators trained in sequence (without bootstrapping).

- Like bagging, boosting is a general method that is particularly popular with decision trees.
- Main intuition: instead of fitting the data very closely using a large decision tree, train gradually, using a sequence of simpler trees

Boosting: Overview

- A weak/base learner is a classifier that does slightly better than chance.
- Weak learners are like rules of thumb:
- "Inheritance" \Longrightarrow spam
- From a friend \Longrightarrow not spam
- Key idea:
- Each weak learner focuses on different training examples (reweighted data)
- Weak learners make different contributions to the final prediction (reweighted classifier)
- A set of smaller, simpler trees may improve interpretability
- We'll focus on a specific implementation, AdaBoost (Freund \& Schapire, 1997)

AdaBoost: Setting

- Binary classification: $y=\{-1,1\}$
- Base hypothesis space $\mathcal{H}=\{h: \mathcal{X} \rightarrow\{-1,1\}\}$.
- Typical base hypothesis spaces:
- Decision stumps (tree with a single split)
- Trees with few terminal nodes
- Linear decision functions

Weighted Training Set

Each base learner is trained on weighted data.

- Training set $\mathcal{D}=\left(\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)\right)$.
- Weights $\left(w_{1}, \ldots, w_{n}\right)$ associated with each example.
- Weighted empirical risk:

$$
\hat{R}_{n}^{w}(f) \stackrel{\text { def }}{=} \frac{1}{W} \sum_{i=1}^{n} w_{i} \ell\left(f\left(x_{i}\right), y_{i}\right) \quad \text { where } W=\sum_{i=1}^{n} w_{i}
$$

- Examples with larger weights affect the loss more.

AdaBoost: Schematic

Final Classifier

AdaBoost: Sketch of the Algorithm

- Start with equal weights for all training points: $w_{1}=\cdots=w_{n}=1$
- Repeat for $m=1, \ldots, M$ (where M is the number of classifiers we plan to train):
- Train base classifier $G_{m}(x)$ on the weighted training data; this classifier may not fit the data well
- Increase the weight of the points misclassified by $G_{m}(x)$ (this is the key idea of boosting!)
- Our final prediction is $G(x)=\operatorname{sign}\left[\sum_{m=1}^{M} \alpha_{m} G_{m}(x)\right]$

AdaBoost: Classifier Weights

- Our final prediction is $G(x)=\operatorname{sign}\left[\sum_{m=1}^{M} \alpha_{m} G_{m}(x)\right]$.
- We would like α_{m} to be:
- Nonnegative
- Larger when G_{m} fits its weighted training data well
- The weighted 0-1 error of $G_{m}(x)$ is

$$
\operatorname{err}_{m}=\frac{1}{W} \sum_{i=1}^{n} w_{i} \mathbb{1}\left[y_{i} \neq G_{m}\left(x_{i}\right)\right] \quad \text { where } W=\sum_{i=1}^{n} w_{i} .
$$

- $\operatorname{err}_{m} \in[0,1]$

AdaBoost: Classifier Weights

- The weight of classifier $G_{m}(x)$ is $\alpha_{m}=\ln \left(\frac{1-\operatorname{err}_{m}}{\operatorname{err}_{m}}\right)$

- Higher weighted error \Longrightarrow lower weight

AdaBoost: Example Reweighting

- We train G_{m} to minimize weighted error; the resulting error rate is err_{m}
- Then $\alpha_{m}=\ln \left(\frac{1-\mathrm{err}_{m}}{\operatorname{err}_{m}}\right)$ is the weight of G_{m} in the final ensemble

We want the next base learner to focus more on examples misclassified by the previous learner.

- Suppose w_{i} is the weight of example x_{i} before training:
- If G_{m} classifies x_{i} correctly, keep w_{i} as is
- Otherwise, increase w_{i} :

$$
\begin{aligned}
w_{i} & \leftarrow w_{i} e^{\alpha_{m}} \\
& =w_{i}\left(\frac{1-\mathrm{err}_{m}}{\operatorname{err}_{m}}\right)
\end{aligned}
$$

- If G_{m} is a strong classifier overall, then its α_{m} will be large; this means that if x_{i} is misclassified, w_{i} will increase to a greater extent

AdaBoost: Algorithm

Given training set $\mathcal{D}=\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)\right\}$.
(1) Initialize observation weights $w_{i}=1, i=1,2, \ldots, n$.
(2) For $m=1$ to M :
(1) Base learner fits weighted training data and returns $G_{m}(x)$
(2) Compute weighted empirical 0-1 risk:

$$
\operatorname{err}_{m}=\frac{1}{W} \sum_{i=1}^{n} w_{i} \mathbb{1}\left[y_{i} \neq G_{m}\left(x_{i}\right)\right] \quad \text { where } W=\sum_{i=1}^{n} w_{i}
$$

(3 Compute classifier weight: $\alpha_{m}=\ln \left(\frac{1-\mathrm{err}_{m}}{\mathrm{err}_{m}}\right)$.
(1) Update example weight: $w_{i} \leftarrow w_{i} \cdot \exp \left[\alpha_{m} \mathbb{1}\left[y_{i} \neq G_{m}\left(x_{i}\right)\right]\right]$
(3) Return voted classifier: $G(x)=\operatorname{sign}\left[\sum_{m=1}^{M} \alpha_{m} G_{m}(x)\right]$.

AdaBoost with Decision Stumps

- After 1 round:

Figure: Size of plus sign represents weight of example. Blackness represents preference for red class; whiteness represents preference for blue class.

AdaBoost with Decision Stumps

- After 3 rounds:

Figure: Size of plus sign represents weight of example. Blackness represents preference for red class; whiteness represents preference for blue class.

AdaBoost with Decision Stumps

- After 120 rounds:

Figure: Size of plus sign represents weight of example. Blackness represents preference for red class; whiteness represents preference for blue class.

Does AdaBoost overfit?

- Does a large number of rounds of boosting lead to overfitting?
- If we were overfitting, the learning curves would look like:

Learning Curves for AdaBoost

- AdaBoost is usually quite resistant to overfitting
- The test error continues to decrease even after the training error drops to zero!

AdaBoost for Face Detection

- Famous application of boosting: detecting faces in images (Viola \& Jones, 2001)
- A few twists on standard algorithm
- Pre-define weak classifiers, so optimization=selection
- Smart way to do inference in real-time (in 2001 hardware)

Harr wavelet basis functions

- A simple way to generate rectangular weights.
- Over 180,000 filters on a small image (subwindow) of 24×24.

Figure 1: Example rectangle features shown relative to the enclosing detection window. The sum of the pixels which lie within the white rectangles are subtracted from the sum of pixels in the grey rectangles. Two-rectangle features are shown in (A) and (B). Figure (C) shows a three-rectangle feature, and (D) a four-rectangle feature.

Integral image

- How to efficiently compute [image * weights] (hint: the sum of an area of the image).
- Compute an "integral image"
- Store a 2-D array: $S[i, j]=$ Sum of the image from $(0,0)$ to (i, j).
- $D=A B C D-A B-A C+A$

Learning Procedure (AdaBoost)

- Review AdaBoost again here, with a slightly different but equivalent setup.
- Given example images $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)$ where $y_{i}=0,1$ for negative and positive.
- Initialize example weights $w_{1, i}=\frac{1}{2 m}, \frac{1}{2 l}$ for $y_{i}=0,1$ respectively, where m and $/$ are the number of negatives and positives.
- For $t=1, \ldots, T$:
(1) Normalize the example weights, $w_{t, i} \leftarrow \frac{w_{t, i}}{\sum_{i^{\prime}=1}^{n} w_{t, i^{\prime}}}$
(2) For each feature j, train a classifier h_{j}. Evaluate weighted error $\epsilon_{j}=\sum_{i} w_{i}\left|h_{j}\left(x_{i}\right)-y_{i}\right|$.
(3) Choose the classifier h_{t}, with the lowest error ϵ_{t}.
(9) Update the example weights: $w_{t+1}=w_{t, i} \beta_{t}^{1-e_{i}}, \beta_{t}=\frac{\epsilon_{t}}{1-\epsilon_{t}}, e_{i}=0$ if correct else 1 ,
(6) Final classifier $h(x)=\left\{\begin{array}{l}1 \text { if } \sum_{t} \alpha_{t} h_{t}(x)>\frac{1}{2} \Sigma_{t} \alpha_{t} \\ 0 \text { otherwise, }\end{array} \alpha_{t}=-\log \beta_{t}\right.$

Cascaded Processing for Faster Speed

- Object detection: A large number of subwindows to process.
- Do we need to run all the weak classifiers at test time?
- Threshold can be adjusted so that there is almost no false negative.
- False positive is ok. We can reject the windows later.
- Stop processing if one weak classifier says no.

AdaBoost Face Detection Results

Interim Summary

- Boosting is used to reduce bias from shallow decision trees
- Each classifier is trained to reduce errors of its previous ensemble.
- AdaBoost is a very powerful off-the-self classifier.
- A real-time face detection algorithm made by AdaBoost.
- What is the objective function of AdaBoost?
- Generalizations to other loss functions
- Gradient Boosting

Gradient Boosting

- Another way to get non-linear models in a linear form-adaptive basis function models.
- A general algorithm for greedy function approximation-gradient boosting machine.
- Adaboost is a special case.

Motivation

Recap: Adaboost

Final Classifier

AdaBoost: Algorithm

Given training set $\mathcal{D}=\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)\right\}$.
(1) Initialize observation weights $w_{i}=1, i=1,2, \ldots, n$.
(2) For $m=1$ to M :
(1) Base learner fits weighted training data and returns $G_{m}(x)$
(2) Compute weighted empirical 0-1 risk:

$$
\operatorname{err}_{m}=\frac{1}{W} \sum_{i=1}^{n} w_{i} \mathbb{1}\left[y_{i} \neq G_{m}\left(x_{i}\right)\right] \quad \text { where } W=\sum_{i=1}^{n} w_{i}
$$

(3) Compute classifier weight: $\alpha_{m}=\ln \left(\frac{1-\mathrm{err}_{m}}{\mathrm{err}_{m}}\right)$.
(1) Update example weight: $w_{i} \leftarrow w_{i} \cdot \exp \left[\alpha_{m} \mathbb{1}\left[y_{i} \neq G_{m}\left(x_{i}\right)\right]\right]$
(3) Return voted classifier: $G(x)=\operatorname{sign}\left[\sum_{m=1}^{M} \alpha_{m} G_{m}(x)\right]$.

Why not learn $G(x)$ directly?

Nonlinear Regression

- How do we fit the following data?

Linear Model with Basis Functions

- Fit a linear combination of transformations of the input:

$$
f(x)=\sum_{m=1}^{M} v_{m} h_{m}(x)
$$

where h_{m} 's are called basis functions (or feature functions in ML):

$$
h_{1}, \ldots, h_{M}: X \rightarrow \mathrm{R}
$$

- Example: polynomial regression where $h_{m}(x)=x^{m}$.
- Can we use this model for classification?
- Can fit this using standard methods for linear models (e.g. least squares, lasso, ridge, etc.)
- Note that h_{m} 's are fixed and known, i.e. chosen ahead of time.

Adaptive Basis Function Model

- What if we want to learn the basis functions? (hence adaptive)
- Base hypothesis space \mathcal{H} consisting of functions $h: \mathcal{X} \rightarrow \mathrm{R}$.
- An adaptive basis function expansion over \mathcal{H} is an ensemble model:

$$
\begin{equation*}
f(x)=\sum_{m=1}^{M} v_{m} h_{m}(x) \tag{4}
\end{equation*}
$$

where $v_{m} \in \mathrm{R}$ and $h_{m} \in \mathcal{H}$.

- Combined hypothesis space:

$$
\mathcal{F}_{M}=\left\{\sum_{m=1}^{M} v_{m} h_{m}(x) \mid v_{m} \in \mathrm{R}, h_{m} \in \mathcal{H}, m=1, \ldots, M\right\}
$$

- What are the learnable?

Empirical Risk Minimization

- What's our learning objective?

$$
\hat{f}=\underset{f \in \mathcal{F}_{M}}{\arg \min } \frac{1}{n} \sum_{i=1}^{n} \ell\left(y_{i}, f\left(x_{i}\right)\right),
$$

for some loss function ℓ.

- Write ERM objective function as

$$
J\left(v_{1}, \ldots, v_{M}, h_{1}, \ldots, h_{M}\right)=\frac{1}{n} \sum_{i=1}^{n} \ell\left(y_{i}, \sum_{m=1}^{M} v_{m} h_{m}(x)\right) .
$$

- How to optimize J? i.e. how to learn?

Gradient-Based Methods

- Suppose our base hypothesis space is parameterized by $\Theta=R^{b}$:

$$
J\left(v_{1}, \ldots, v_{M}, \theta_{1}, \ldots, \theta_{M}\right)=\frac{1}{n} \sum_{i=1}^{n} \ell\left(y_{i}, \sum_{m=1}^{M} v_{m} h\left(x ; \theta_{m}\right)\right)
$$

- Can we optimize it with SGD?
- Can we differentiate J w.r.t. v_{m} 's and θ_{m} 's?
- For some hypothesis spaces and typical loss functions, yes!
- Neural networks fall into this category! $\left(h_{1}, \ldots, h_{M}\right.$ are neurons of last hidden layer.)

What if Gradient Based Methods Don't Apply?

What if base hypothesis space \mathcal{H} consists of decision trees?

- Can we even parameterize trees with $\Theta=R^{b}$?
- Even if we could, predictions would not change continuously w.r.t. $\theta \in \Theta$, so certainly not differentiable.

What about a greedy algorithm similar to Adaboost?

- Applies to non-parametric or non-differentiable basis functions.
- But is it optimizing our objective using some loss function?

Today we'll discuss gradient boosting.

- Gradient descent in the function space.
- It applies whenever
- our loss function is [sub]differentiable w.r.t. training predictions $f\left(x_{i}\right)$, and
- we can do regression with the base hypothesis space \mathcal{H}.

Forward Stagewise Additive Modeling

Forward Stagewise Additive Modeling (FSAM)

Goal fit model $f(x)=\sum_{m=1}^{M} v_{m} h_{m}(x)$ given some loss function.
Approach Greedily fit one function at a time without adjusting previous functions, hence "forward stagewise".

- After $m-1$ stages, we have

$$
f_{m-1}=\sum_{i=1}^{m-1} v_{i} h_{i}
$$

- In m 'th round, we want to find $h_{m} \in \mathcal{H}$ (i.e. a basis function) and $v_{m}>0$ such that

$$
f_{m}=\underbrace{f_{m-1}}_{\text {fixed }}+v_{m} h_{m}
$$

improves objective function value by as much as possible.

Forward Stagewise Additive Modeling for ERM

Let's plug in our objective function.
(1) Initialize $f_{0}(x)=0$.
(2) For $m=1$ to M :
(1) Compute:

$$
\left(v_{m}, h_{m}\right)=\underset{v \in \mathrm{R}, h \in \mathcal{H}}{\arg \min } \frac{1}{n} \sum_{i=1}^{n} \ell(y_{i}, f_{m-1}\left(x_{i}\right) \underbrace{+v h\left(x_{i}\right)}_{\text {new piece }}) .
$$

(2) Set $f_{m}=f_{m-1}+v_{m} h_{m}$.
(3) Return: f_{M}.

Exponential Loss

- Introduce the exponential loss: $\ell(y, f(x))=\exp (-\underbrace{y f(x)}_{\text {margin }})$.

Forward Stagewise Additive Modeling with exponential loss

Recall that we want to do FSAM with exponential loss.
(1) Initialize $f_{0}(x)=0$.
(2) For $m=1$ to M :
(1) Compute:

$$
\left(v_{m}, h_{m}\right)=\underset{v \in \mathrm{R}, h \in \mathcal{H}}{\arg \min } \frac{1}{n} \sum_{i=1}^{n} \ell_{\exp }(y_{i}, f_{m-1}\left(x_{i}\right) \underbrace{+v h\left(x_{i}\right)}_{\text {new piece }}) .
$$

(2) Set $f_{m}=f_{m-1}+v_{m} h_{m}$.
(3) Return: f_{M}.

FSAM with Exponential Loss: objective function

- Base hypothesis: $\mathcal{H}=\{h: \mathcal{X} \rightarrow\{-1,1\}\}$.
- Objective function in the m 'th round:

$$
\begin{array}{rlrl}
J(v, h) & =\sum_{i=1}^{n} \exp \left[-y_{i}\left(f_{m-1}\left(x_{i}\right)+v h\left(x_{i}\right)\right)\right] \\
& =\sum_{i=1}^{n} w_{i}^{m} \exp \left[-y_{i} v h\left(x_{i}\right)\right] \\
& =\sum_{i=1}^{n} w_{i}^{m}\left[\mathbb{I}\left(y_{i}=h\left(x_{i}\right)\right) e^{-v}+\mathbb{I}\left(y_{i} \neq h\left(x_{i}\right)\right) e^{v}\right] & & h\left(x_{i}\right) \in\{1,-1\} \\
& =\sum_{i=1}^{n} w_{i}^{m}\left[\left(e^{v}-e^{-v}\right) \mathbb{I}\left(y_{i} \neq h\left(x_{i}\right)\right)+e^{-v}\right] \tag{8}
\end{array}
$$

FSAM with Exponential Loss: basis function

- Objective function in the m 'th round:

$$
\begin{equation*}
J(v, h)=\sum_{i=1}^{n} w_{i}^{m}\left[\left(e^{v}-e^{-v}\right) \mathbb{I}\left(y_{i} \neq h\left(x_{i}\right)\right)+e^{-v}\right] . \tag{9}
\end{equation*}
$$

- If $v>0$, then

$$
\begin{align*}
\underset{h \in \mathcal{H}}{\arg \min } J(v, h) & =\underset{h \in \mathcal{H}}{\arg \min } \sum_{i=1}^{n} w_{i}^{m} \mathbb{I}\left(y_{i} \neq h\left(x_{i}\right)\right) \tag{10}\\
h_{m} & =\underset{h \in \mathcal{H}}{\arg \min } \sum_{i=1}^{n} w_{i}^{m} \mathbb{I}\left(y_{i} \neq h\left(x_{i}\right)\right) \tag{11}\\
& =\underset{h \in \mathcal{H}}{\arg \min } \frac{1}{\sum_{i=1}^{n} w_{i}^{m}} \sum_{i=1}^{n} w_{i}^{m} \mathbb{I}\left(y_{i} \neq h\left(x_{i}\right)\right) \quad \text { multiply by a positive constant } \tag{12}
\end{align*}
$$

i.e. h_{m} is the minimizer of the weighted zero-one loss.

FSAM with Exponential Loss: classifier weights

- Define the weighted zero-one error:

$$
\begin{equation*}
\operatorname{err}_{m}=\frac{\sum_{i=1}^{n} w_{i}^{m} \mathbb{I}\left(y_{i} \neq h\left(x_{i}\right)\right)}{\sum_{i=1}^{n} w_{i}^{m}} \tag{13}
\end{equation*}
$$

- Exercise: show that the optimal v is:

$$
\begin{equation*}
v_{m}=\frac{1}{2} \log \frac{1-\mathrm{err}_{m}}{\mathrm{err}_{m}} \tag{14}
\end{equation*}
$$

- Same as the classifier weights in Adaboost (differ by a constant).
- If $\mathrm{err}_{m}<0.5$ (better than chance), then $v_{m}>0$.

FSAM with Exponential Loss: example weights

- Weights in the next round:

$$
\begin{align*}
w_{i}^{m+1} & \stackrel{\text { def }}{=} \exp \left[-y_{i} f_{m}\left(x_{i}\right)\right] \tag{15}\\
& =w_{i}^{m} \exp \left[-y_{i} v_{m} h_{m}\left(x_{i}\right)\right] \quad f_{m}\left(x_{i}\right)=f_{m-1}\left(x_{i}\right)+v_{m} h_{m}\left(x_{i}\right) \tag{16}\\
& =w_{i}^{m} \exp \left[-v_{m} \mathbb{I}\left(y_{i}=h_{m}\left(x_{i}\right)\right)+v_{m} \mathbb{I}\left(y_{i} \neq h_{m}\left(x_{i}\right)\right)\right] \tag{17}\\
& =w_{i}^{m} \exp \left[2 v_{m} \mathbb{I}\left(y_{i} \neq h_{m}\left(x_{i}\right)\right)\right] \underbrace{\exp ^{-v_{m}}}_{\text {scaler }} \tag{18}
\end{align*}
$$

- The constant scaler will cancel out during normalization.
- $2 v_{m}=\alpha_{m}$ in Adaboost.

Why Exponential Loss

- $\ell_{\exp }(y, f(x))=\exp (-y f(x))$.
- Exercise: show that the optimal estimate is

$$
\begin{equation*}
f^{*}(x)=\frac{1}{2} \log \frac{p(y=1 \mid x)}{p(y=0 \mid x)} . \tag{19}
\end{equation*}
$$

- How is it different from other losses?

AdaBoost / Exponential Loss: Robustness Issues

- Exponential loss puts a high penalty on misclassified examples.
- \Longrightarrow not robust to outliers / noise.
- Empirically, AdaBoost has degraded performance in situations with - high Bayes error rate (intrinsic randomness in the label)
- Logistic/Log loss performs better in settings with high Bayes error.
- Exponential loss has some computational advantages over log loss though.

Review

We've seen

- Use basis function to obtain nonlinear models: $f(x)=\sum_{i=1}^{M} v_{m} h_{m}(x)$ with known h_{m} 's.
- Adaptive basis function models: $f(x)=\sum_{i=1}^{M} v_{m} h_{m}(x)$ with unknown h_{m} 's.
- Forward stagewise additive modeling: greedily fit h_{m} 's to minimize the average loss.

But,

- We only know how to do FSAM for certain loss functions.
- Need to derive new algorithms for different loss functions.

Next, how to do FSAM in general.

Gradient Boosting / "Anyboost"

FSAM with squared loss

- Objective function at m 'th round:

$$
J(v, h)=\frac{1}{n} \sum_{i=1}^{n}(y_{i}-[f_{m-1}\left(x_{i}\right) \underbrace{+v h\left(x_{i}\right)}_{\text {new piece }}])^{2}
$$

- If \mathcal{H} is closed under rescaling (i.e. if $h \in \mathcal{H}$, then $v h \in \mathcal{H}$ for all $h \in \mathrm{R}$), then don't need v.
- Take $v=1$ and minimize

$$
J(h)=\frac{1}{n} \sum_{i=1}^{n}([\underbrace{y_{i}-f_{m-1}\left(x_{i}\right)}_{\text {residual }}]-h\left(x_{i}\right))^{2}
$$

- This is just fitting the residuals with least-squares regression!
- Example base hypothesis space: regression stumps.

L^{2} Boosting with Decision Stumps: Demo

- Consider FSAM with L^{2} loss (i.e. L^{2} Boosting)
- For base hypothesis space of regression stumps

L^{2} Boosting with Decision Stumps: Results

L^{2} Boosting with Decision Stumps: Results

L^{2} Boosting with Decision Stumps: Results

Interpret the residual

- Objective: $J(f)=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-f\left(x_{i}\right)\right)^{2}$.
- What is the residual at $x=x_{i}$?

$$
\begin{equation*}
\frac{\partial}{\partial f\left(x_{i}\right)} J(f)=-2\left(y_{i}-f\left(x_{i}\right)\right) \tag{20}
\end{equation*}
$$

- Gradient w.r.t. f : how should the output of f change to minimize the squared loss.
- Residual is the negative gradient (differ by some constant).
- At each boosting round, we learn a function $h \in \mathcal{H}$ to fit the residual.

$$
\begin{align*}
& f \leftarrow f+v h \tag{21}\\
& f \leftarrow f-\alpha \nabla_{f} J(f) \tag{22}
\end{align*}
$$

FSAM / boosting
gradient descent

- h approximates the gradient (step direction), v is the step size.

"Functional" Gradient Descent

- We want to minimize

$$
J(f)=\sum_{i=1}^{n} \ell\left(y_{i}, f\left(x_{i}\right)\right)
$$

- In some sense, we want to take the gradient w.r.t. f.
- $J(f)$ only depends on f at the n training points.
- Define "parameters"

$$
\mathrm{f}=\left(f\left(x_{1}\right), \ldots, f\left(x_{n}\right)\right)^{T}
$$

and write the objective function as

$$
J(f)=\sum_{i=1}^{n} \ell\left(y_{i}, f_{i}\right)
$$

Functional Gradient Descent: Unconstrained Step Direction

- Consider gradient descent on

$$
J(\mathrm{f})=\sum_{i=1}^{n} \ell\left(y_{i}, \mathrm{f}_{i}\right)
$$

- The negative gradient step direction at f is

$$
\begin{aligned}
-\mathrm{g} & =-\nabla_{\boldsymbol{f}} J(\mathrm{f}) \\
& =-\left(\partial_{\mathrm{f}_{1}} \ell\left(y_{1}, \mathrm{f}_{1}\right), \ldots, \partial_{\mathrm{f}_{n}} \ell\left(y_{n}, \mathrm{f}_{n}\right)\right)
\end{aligned}
$$

which we can easily calculate.

- $-\mathrm{g} \in \mathrm{R}^{n}$ is the direction we want to change each of our n predictions on training data.
- With gradient descent, our final predictor will be an additive model: $f_{0}+\sum_{m=1}^{M} v_{t}\left(-g_{t}\right)$.

Functional Gradient Descent: Projection Step

- Unconstrained step direction is

$$
-\mathrm{g}=-\nabla_{\boldsymbol{f}} J(\mathrm{f})=-\left(\partial_{\mathrm{f}_{1}} \ell\left(y_{1}, \mathrm{f}_{1}\right), \ldots, \partial_{\mathrm{f}_{n}} \ell\left(y_{n}, \mathrm{f}_{n}\right)\right) .
$$

- Also called the "pseudo-residuals". (For squared loss, they're exactly the residuals.)
- Problem: only know how to update at n points. How do we take a gradient step in \mathcal{H} ?
- Solution: approximate by the closest base hypothesis $h \in \mathcal{H}$ (in the ℓ^{2} sense):

$$
\begin{equation*}
\min _{h \in \mathcal{H}} \sum_{i=1}^{n}\left(-g_{i}-h\left(x_{i}\right)\right)^{2} . \quad \text { least square regression } \tag{23}
\end{equation*}
$$

- Take the $h \in \mathcal{H}$ that best approximates -g as our step direction.

Recap

- Objective function:

$$
\begin{equation*}
J(f)=\sum_{i=1}^{n} \ell\left(y_{i}, f\left(x_{i}\right)\right) \tag{24}
\end{equation*}
$$

- Unconstrained gradient $\mathrm{g} \in \mathrm{R}^{n}$ w.r.t. $\boldsymbol{f}=\left(f\left(x_{1}\right), \ldots, f\left(x_{n}\right)\right)^{T}$:

$$
\begin{equation*}
\mathrm{g}=\nabla_{\boldsymbol{f}} J(\mathrm{f})=\left(\partial_{\mathrm{f}_{1}} \ell\left(y_{1}, \mathrm{f}_{1}\right), \ldots, \partial_{\mathrm{f}_{n}} \ell\left(y_{n}, \mathrm{f}_{n}\right)\right) . \tag{25}
\end{equation*}
$$

- Projected negative gradient $h \in \mathcal{H}$:

$$
\begin{equation*}
h=\underset{h \in \mathcal{H}}{\arg \min } \sum_{i=1}^{n}\left(-\mathrm{g}_{i}-h\left(x_{i}\right)\right)^{2} . \tag{26}
\end{equation*}
$$

- Gradient descent:

$$
\begin{equation*}
f \leftarrow f+v h \tag{27}
\end{equation*}
$$

Functional Gradient Descent: hyperparameters

- Choose a step size by line search.

$$
v_{m}=\underset{v}{\arg \min } \sum_{i=1}^{n} \ell\left\{y_{i}, f_{m-1}\left(x_{i}\right)+v h_{m}\left(x_{i}\right)\right\} .
$$

- Not necessary. Can also choose a fixed hyperparameter v.
- Regularization through shrinkage:

$$
\begin{equation*}
f_{m} \leftarrow f_{m-1}+\lambda v_{m} h_{m} \quad \text { where } \lambda \in[0,1] . \tag{28}
\end{equation*}
$$

- Typically choose $\lambda=0.1$.
- Choose M, i.e. when to stop.
- Tune on validation set.

Gradient boosting algorithm

(1) Initialize f to a constant: $f_{0}(x)=\arg \min _{\gamma} \sum_{i=1}^{n} \ell\left(y_{i}, \gamma\right)$.
(2) For m from 1 to M :

- Compute the pseudo-residuals (negative gradient):

$$
\begin{equation*}
r_{i m}=-\left[\frac{\partial}{\partial f\left(x_{i}\right)} \ell\left(y_{i}, f\left(x_{i}\right)\right]_{f\left(x_{i}\right)=f_{m-1}\left(x_{i}\right)}\right. \tag{29}
\end{equation*}
$$

(2) Fit a base learner h_{m} with squared loss using the dataset $\left\{\left(x_{i}, r_{i m}\right)\right\}_{i=1}^{n}$.
(0 [Optional] Find the best step size $v_{m}=\arg \min _{v} \sum_{i=1}^{n} \ell\left(y i, f_{m-1}\left(x_{i}\right)+v h_{m}\left(x_{i}\right)\right)$.

- Update $f_{m}=f_{m-1}+\lambda v_{m} h_{m}$
(0) Return $f_{M}(x)$.

The Gradient Boosting Machine Ingredients (Recap)

- Take any loss function [sub]differentiable w.r.t. the prediction $f\left(x_{i}\right)$
- Choose a base hypothesis space for regression.
- Choose number of steps (or a stopping criterion).
- Choose step size methodology.
- Then you're good to go!

BinomialBoost: Gradient Boosting with Logistic Loss

- Recall the logistic loss for classification, with $y=\{-1,1\}$:

$$
\ell(y, f(x))=\log \left(1+e^{-y f(x)}\right)
$$

- Pseudoresidual for i'th example is negative derivative of loss w.r.t. prediction:

$$
\begin{align*}
r_{i} & =-\frac{\partial}{\partial f\left(x_{i}\right)} \ell\left(y_{i}, f\left(x_{i}\right)\right) \tag{30}\\
& =-\frac{\partial}{\partial f\left(x_{i}\right)}\left[\log \left(1+e^{-y_{i} f\left(x_{i}\right)}\right)\right] \tag{31}\\
& =\frac{y_{i} e^{-y_{i} f\left(x_{i}\right)}}{1+e^{-y_{i} f\left(x_{i}\right)}} \tag{32}\\
& =\frac{y_{i}}{1+e^{y_{i} f\left(x_{i}\right)}} \tag{33}
\end{align*}
$$

BinomialBoost: Gradient Boosting with Logistic Loss

- Pseudoresidual for ith example:

$$
r_{i}=-\frac{\partial}{\partial f\left(x_{i}\right)}\left[\log \left(1+e^{-y_{i} f\left(x_{i}\right)}\right)\right]=\frac{y_{i}}{1+e^{y_{i} f\left(x_{i}\right)}}
$$

- So if $f_{m-1}(x)$ is prediction after $m-1$ rounds, step direction for m 'th round is

$$
h_{m}=\underset{h \in \mathcal{H}}{\arg \min } \sum_{i=1}^{n}\left[\left(\frac{y_{i}}{1+e^{y_{i} f_{m-1}\left(x_{i}\right)}}\right)-h\left(x_{i}\right)\right]^{2}
$$

- And $f_{m}(x)=f_{m-1}(x)+v h_{m}(x)$.

Gradient Tree Boosting

- One common form of gradient boosting machine takes

$$
\mathcal{H}=\{\text { regression trees of size } S\},
$$

where S is the number of terminal nodes.

- $S=2$ gives decision stumps
- HTF recommends $4 \leqslant S \leqslant 8$ (but more recent results use much larger trees)
- Software packages:
- Gradient tree boosting is implemented by the gbm package for R
- as GradientBoostingClassifier and GradientBoostingRegressor in sklearn
- xgboost and lightGBM are state of the art for speed and performance

Sinc Function: Our Dataset

Minimizing Square Loss with Ensemble of Decision Stumps

Decision stumps with $1,10,50$, and 100 steps, shrinkage $\lambda=1$.

Gradient Boosting in Practice

Prevent overfitting

- Boosting is resistant to overfitting. Some explanations:
- Implicit feature selection: greedily selects the best feature (weak learner)
- As training goes on, impact of change is localized.
- But it can of course overfit. Common regularization methods:
- Shrinkage (small learning rate)
- Stochastic gradient boosting (row subsampling)
- Feature subsampling (column subsampling)

Step Size as Regularization

- (continued) sinc function regression
- Performance vs rounds of boosting and shrinkage. (Left is training set, right is validation set)

Rule of Thumb

- The smaller the step size, the more steps you'll need.
- But never seems to make results worse, and often better.
- So set your step size as small as you have patience for.

Stochastic Gradient Boosting

- For each stage,
- choose random subset of data for computing projected gradient step.
- Why do this?
- Introduce randomization thus may help overfitting.
- Faster; often better than gradient descent given the same computation resource.
- We can view this is a minibatch method.
- Estimate the "true" step direction using a subset of data.

Column / Feature Subsampling

- Similar to random forest, randomly choose a subset of features for each round.
- XGBoost paper says: "According to user feedback, using column sub-sampling prevents overfitting even more so than the traditional row sub-sampling."
- Speeds up computation.

Summary

- Motivating idea of boosting: combine weak learners to produce a strong learner.
- The statistical view: boosting is fitting an additive model (greedily).
- The numerical optimization view: boosting makes local improvement iteratively—gradient descent in the function space.
- Gradient boosting is a generic framework
- Any differentiable loss function
- Classification, regression, ranking, multiclass etc.
- Scalable, e.g., XGBoost

