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Review: Decision Trees

Non-linear, non-metric, and non-parametric.

Regression or classification.

Interpretable, up to certain depth.

Greedy algorithm – maximizing the purity of nodes.

Can overfit – need to limit the capacity.
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Bagging and Random Forests
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Recap: Statistics and Point Estimators

We observe data D= (x1,x2, . . . ,xn) sampled i.i.d. from a parametric distribution p(· | θ)

A statistic s = s(D) is any function of the data:
E.g., sample mean, sample variance, histogram, empirical data distribution

A statistic θ̂= θ̂(D) is a point estimator of θ if θ̂≈ θ
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Recap: Bias and Variance of an Estimator

Statistics are random, so they have probability distributions.
The distribution of a statistic is called a sampling distribution.
The standard deviation of the sampling distribution is called the standard error.
Some parameters of the sampling distribution we might be interested in:

Bias Bias(θ̂) def
= E

[
θ̂
]
−θ.

Variance Var(θ̂) def
= E

[
θ̂2
]
−E2

[
θ̂
]
.

Why does variance matter if an estimator is unbiased?
θ̂(D) = x1 is an unbiased estimator of the mean of a Gaussian, but would be farther
away from θ than the sample mean.
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Variance of a Mean

Let θ̂(D) be an unbiased estimator with variance σ2: E
[
θ̂
]
= θ, Var(θ̂) = σ2.

So far we have used a single statistic θ̂= θ̂(D) to estimate θ.

Its standard error is
√

Var(θ̂) = σ

Consider a new estimator that takes the average of i.i.d. θ̂1, . . . , θ̂n where θ̂i = θ̂(Di ).

The average has the same expected value but smaller standard error (recall that
Var(cX ) = c2Var(X ), and that the θ̂i -s are uncorrelated):

E

[
1
n

n∑
i=1

θ̂i

]
= θ Var

[
1
n

n∑
i=1

θ̂i

]
=
σ2

n
(1)
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Averaging Independent Prediction Functions

Suppose we have B independent training sets, all drawn from the same distribution
(D ∼ p(· | θ)).

Our learning algorithm gives us B prediction functions: f̂1(x), f̂2(x), . . . , f̂B(x)

We will define the average prediction function as:

f̂avg
def
=

1
B

B∑
b=1

f̂b (2)
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Averaging Reduces Variance of Predictions

The average prediction for x0 is

f̂avg(x0) =
1
B

B∑
b=1

f̂b(x0).

f̂avg(x0) and f̂b(x0) have the same expected value, but

f̂avg(x0) has smaller variance:

Var(f̂avg(x0)) =
1
B

Var
(
f̂1(x0)

)

Problem: in practice we don’t have B independent training sets!
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The Bootstrap Sample

How do we simulate multiple samples when we only have one?

A bootstrap sample from Dn = (x1, . . . ,xn) is a sample of size n drawn with replacement
from Dn

Some elements of Dn will show up multiple times, and some won’t show up at all

Each xi has a probability of (1−1/n)n of not being included in a given bootstrap sample

For large n, (
1−

1
n

)n

≈ 1
e
≈ .368. (3)

So we expect ~63.2% of elements of Dn will show up at least once.
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The Bootstrap Method

Definition
A bootstrap method simulates B independent samples from P by taking B bootstrap
samples from the sample Dn.

Given original data Dn, compute B bootstrap samples D1
n , . . . ,D

B
n .

For each bootstrap sample, compute some function

φ(D1
n), . . . ,φ(D

B
n )

Use these values as though D1
n , . . . ,D

B
n were i.i.d. samples from P .

This often ends up being very close to what we’d get with independent samples from P!
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Independent Samples vs. Bootstrap Samples

Point estimator α̂= α̂(D100) for samples of size 100, for a synthetic case where the data
generating distribution is known

Histograms of α̂ based on
1000 independent samples of size 100 (left), vs.

1000 bootstrap samples of size 100 (right)

0.4 0.5 0.6 0.7 0.8 0.9

0
5

0
1

0
0

1
5

0
2

0
0

0.3 0.4 0.5 0.6 0.7 0.8 0.9

0
5

0
1

0
0

1
5

0
2

0
0

True Bootstrap

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

αα

α

Figure 5.10 from ISLR (Springer, 2013) with permission from the authors: G. James, D. Witten, T. Hastie and R. Tibshirani.
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Ensemble Methods

Key ideas:

In general, ensemble methods combine multiple weak models into a single, more
powerful model

Averaging i.i.d. estimates reduces variance without changing bias

We can use bootstrap to simulate multiple data samples and average them

Parallel ensemble (e.g., bagging): models are built independently

Sequential ensemble (e.g., boosting): models are built sequentially
We try to find new learners that do well where previous learners fall short
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Bagging: Bootstrap Aggregation

We draw B bootstrap samples D1, . . . ,DB from original data D

Let f̂1, f̂2, . . . , f̂B be the prediction functions resulting from training on D1, . . . ,DB ,
respectively

The bagged prediction function is a combination of these:

f̂avg(x) = Combine
(
f̂1(x), f̂2(x), . . . , f̂B(x)

)
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Bagging: Bootstrap Aggregation

Bagging is a general method for variance reduction, but it is particularly useful for decision
trees

For classification, averaging doesn’t make sense; we can take a majority vote instead

Increasing the number of trees we use in bagging does not lead to overfitting

Is there a downside, compared to having a single decision tree?

Yes: if we have many trees, the bagged predictor is much less interpretable
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Aside: Out-of-Bag Error Estimation

Recall that each bagged predictor was trained on about 63% of the data.

The remaining 37% are called out-of-bag (OOB) observations.

For ith training point, let

Si =
{
b | Db does not contain ith point

}
The OOB prediction on xi is

f̂OOB(xi ) =
1
|Si |

∑
b∈Si

f̂b(xi )

The OOB error is a good estimate of the test error

Similar to cross validation error: both are computed on the training set
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Applying Bagging to Classification Trees

Input space X= R5 and output space Y= {−1,1}. Sample size n = 30.

Each bootstrap tree is quite different: different
splitting variable at the root!

High variance: small perturbations of the training
data lead to a high degree of model variability

Bagging helps most when the base learners are
relatively unbiased but have high variance (exactly
the case for decision trees)

From HTF Figure 8.9
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Motivating Random Forests: Correlated Prediction Functions

Recall the motivating principle of bagging:

For θ̂1, . . . , θ̂n i.i.d. with E
[
θ̂
]
= θ and Var

[
θ̂
]
= σ2,

E

[
1
n

n∑
i=1

θ̂i

]
= µ Var

[
1
n

n∑
i=1

θ̂i

]
=
σ2

n
.

What if θ̂’s are correlated?

For large n, the covariance term dominates, limiting the benefits of averaging

Bootstrap samples are
independent samples from the training set, but

not independent samples from PX×Y

Can we reduce the dependence between f̂i ’s?
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Random Forests

Key idea
Use bagged decision trees, but modify the tree-growing procedure to reduce the dependence
between trees.

Build a collection of trees independently (in parallel), as before

When constructing each tree node, restrict choice of splitting variable to a randomly
chosen subset of features of size m

This prevents a situation where all trees are dominated by the same small number of
strong features (and are therefore too similar to each other)

We typically choose m ≈√p, where p is the number of features (or we can choose m
using cross validation)

If m = p, this is just bagging
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Random Forests: Effect of m

From An Introduction to Statistical Learning, with applications in R (Springer, 2013) with permission from the authors: G. James, D. Witten,
T. Hastie and R. Tibshirani.
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Review

The usual approach is to build very deep trees—low bias but high variance

Ensembling many models reduces variance
Motivation: Mean of i.i.d. estimates has smaller variance than single estimate

Use bootstrap to simulate many data samples from one dataset
=⇒ Bagged decision trees

But bootstrap samples (and the induced models) are correlated

Ensembling works better when we combine a diverse set of prediction functions
=⇒ Random forests: select a random subset of features for each decision tree
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Boosting
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Boosting: Overview

Bagging Reduce variance of a low bias, high variance estimator by ensembling many
estimators trained in parallel (on different datasets obtained through sampling).

Boosting Reduce the error rate of a high bias estimator by ensembling many estimators
trained in sequence (without bootstrapping).

Like bagging, boosting is a general method that is particularly popular with
decision trees.

Main intuition: instead of fitting the data very closely using a large decision
tree, train gradually, using a sequence of simpler trees
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Boosting: Overview

A weak/base learner is a classifier that does slightly better than chance.

Weak learners are like rules of thumb:
“Inheritance” =⇒ spam

From a friend =⇒ not spam

Key idea:
Each weak learner focuses on different training examples (reweighted data)

Weak learners make different contributions to the final prediction (reweighted
classifier)

A set of smaller, simpler trees may improve interpretability

We’ll focus on a specific implementation, AdaBoost (Freund & Schapire, 1997)
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AdaBoost: Setting

Binary classification: Y= {−1,1}

Base hypothesis space H = {h : X→ {−1,1}}.

Typical base hypothesis spaces:
Decision stumps (tree with a single split)

Trees with few terminal nodes

Linear decision functions
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Weighted Training Set

Each base learner is trained on weighted data.

Training set D= ((x1,y1) , . . . ,(xn,yn)).

Weights (w1, . . . ,wn) associated with each example.

Weighted empirical risk:

R̂w
n (f )

def
=

1
W

n∑
i=1

wi `(f (xi ),yi ) whereW =

n∑
i=1

wi

Examples with larger weights affect the loss more.
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AdaBoost: Schematic

From ESL Figure 10.1
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AdaBoost: Sketch of the Algorithm

Start with equal weights for all training points: w1 = · · ·= wn = 1

Repeat for m = 1, . . . ,M (where M is the number of classifiers we plan to train):
Train base classifier Gm(x) on the weighted training data; this classifier may not fit
the data well

Increase the weight of the points misclassified by Gm(x) (this is the key idea of
boosting!)

Our final prediction is G (x) = sign
[∑M

m=1αmGm(x)
]
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AdaBoost: Classifier Weights

Our final prediction is G (x) = sign
[∑M

m=1αmGm(x)
]
.

We would like αm to be:
Nonnegative

Larger when Gm fits its weighted training data well

The weighted 0-1 error of Gm(x) is

errm =
1
W

n∑
i=1

wi1[yi 6= Gm(xi )] where W =

n∑
i=1

wi .

errm ∈ [0,1]
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AdaBoost: Classifier Weights

The weight of classifier Gm(x) is αm = ln
(
1−errm
errm

)

Higher weighted error =⇒ lower weight
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AdaBoost: Example Reweighting

We train Gm to minimize weighted error; the resulting error rate is errm

Then αm = ln
(
1−errm
errm

)
is the weight of Gm in the final ensemble

We want the next base learner to focus more on examples misclassified by the previous learner.

Suppose wi is the weight of example xi before training:
If Gm classifies xi correctly, keep wi as is

Otherwise, increase wi :

wi ← wie
αm

= wi

(
1− errm
errm

)
If Gm is a strong classifier overall, then its αm will be large; this means that if xi is
misclassified, wi will increase to a greater extent
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AdaBoost: Algorithm

Given training set D= {(x1,y1) , . . . ,(xn,yn)}.

1 Initialize observation weights wi = 1, i = 1,2, . . . ,n.
2 For m = 1 to M:

1 Base learner fits weighted training data and returns Gm(x)
2 Compute weighted empirical 0-1 risk:

errm =
1
W

n∑
i=1

wi1[yi 6= Gm(xi )] where W =

n∑
i=1

wi .

3 Compute classifier weight: αm = ln
(
1−errm
errm

)
.

4 Update example weight: wi ← wi · exp [αm1[yi 6= Gm(xi )]]

3 Return voted classifier: G (x) = sign
[∑M

m=1αmGm(x)
]
.
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AdaBoost with Decision Stumps

After 1 round:

Figure: Size of plus sign represents weight of example. Blackness represents preference for red class; whiteness
represents preference for blue class.

KPM Figure 16.10
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AdaBoost with Decision Stumps

After 3 rounds:

Figure: Size of plus sign represents weight of example. Blackness represents preference for red class; whiteness
represents preference for blue class.

KPM Figure 16.10
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AdaBoost with Decision Stumps

After 120 rounds:

Figure: Size of plus sign represents weight of example. Blackness represents preference for red class; whiteness
represents preference for blue class.

KPM Figure 16.10
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Does AdaBoost overfit?

Does a large number of rounds of boosting lead to overfitting?

If we were overfitting, the learning curves would look like:

From Rob Schapire’s NIPS 2007 Boosting tutorial.
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Learning Curves for AdaBoost

AdaBoost is usually quite resistant to overfitting

The test error continues to decrease even after the training error drops to zero!

From Rob Schapire’s NIPS 2007 Boosting tutorial.
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AdaBoost for Face Detection

Famous application of boosting: detecting faces in images (Viola & Jones, 2001)

A few twists on standard algorithm
Pre-define weak classifiers, so optimization=selection

Smart way to do inference in real-time (in 2001 hardware)
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Harr wavelet basis functions

A simple way to generate rectangular weights.

Over 180,000 filters on a small image (subwindow) of 24x24.
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Integral image

How to efficiently compute [image * weights] (hint: the sum of an area of the image).

Compute an “integral image”

Store a 2-D array: S[i, j] = Sum of the image from (0,0) to (i,j).

D = ABCD - AB - AC + A
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Learning Procedure (AdaBoost)

Review AdaBoost again here, with a slightly different but equivalent setup.

Given example images (x1,y1), . . . ,(xn,yn) where yi = 0,1 for negative and positive.

Initialize example weights w1,i =
1
2m , 1

2l for yi = 0,1 respectively, where m and l are the
number of negatives and positives.

For t = 1, . . . ,T :
1 Normalize the example weights, wt,i ← wt,i∑n

i ′=1wt,i ′
2 For each feature j , train a classifier hj . Evaluate weighted error εj =

∑
i wi |hj(xi )−yi |.

3 Choose the classifier ht , with the lowest error εt .
4 Update the example weights: wt+1 = wt,iβ

1−ei
t , βt =

εt
1−εt

,ei = 0 if correct else 1,

5 Final classifier h(x) =

{
1 if
∑

t αtht(x)>
1
2
∑

t αt

0 otherwise,
αt =− logβt
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Cascaded Processing for Faster Speed

Object detection: A large number of subwindows to process.

Do we need to run all the weak classifiers at test time?

Threshold can be adjusted so that there is almost no false negative.

False positive is ok. We can reject the windows later.

Stop processing if one weak classifier says no.
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AdaBoost Face Detection Results
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Interim Summary

Boosting is used to reduce bias from shallow decision trees

Each classifier is trained to reduce errors of its previous ensemble.

AdaBoost is a very powerful off-the-self classifier.

A real-time face detection algorithm made by AdaBoost.
What is the objective function of AdaBoost?

Generalizations to other loss functions

Gradient Boosting
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Gradient Boosting

Another way to get non-linear models in a linear form—adaptive basis function models.

A general algorithm for greedy function approximation—gradient boosting machine.
Adaboost is a special case.
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Motivation
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Recap: Adaboost

From ESL Figure 10.1
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AdaBoost: Algorithm

Given training set D= {(x1,y1) , . . . ,(xn,yn)}.

1 Initialize observation weights wi = 1, i = 1,2, . . . ,n.
2 For m = 1 to M:

1 Base learner fits weighted training data and returns Gm(x)
2 Compute weighted empirical 0-1 risk:

errm =
1
W

n∑
i=1

wi1[yi 6= Gm(xi )] where W =

n∑
i=1

wi .

3 Compute classifier weight: αm = ln
(
1−errm
errm

)
.

4 Update example weight: wi ← wi · exp [αm1[yi 6= Gm(xi )]]

3 Return voted classifier: G (x) = sign
[∑M

m=1αmGm(x)
]
. Why not learn G (x) directly?
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Nonlinear Regression

How do we fit the following data?
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Linear Model with Basis Functions

Fit a linear combination of transformations of the input:

f (x) =
M∑

m=1

vmhm(x),

where hm’s are called basis functions (or feature functions in ML):

h1, . . . ,hM : X→ R

Example: polynomial regression where hm(x) = xm.

Can we use this model for classification?

Can fit this using standard methods for linear models (e.g. least squares, lasso, ridge, etc.)
Note that hm’s are fixed and known, i.e. chosen ahead of time.
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Adaptive Basis Function Model

What if we want to learn the basis functions? (hence adaptive)

Base hypothesis space H consisting of functions h : X→ R.

An adaptive basis function expansion over H is an ensemble model:

f (x) =
M∑

m=1

vmhm(x), (4)

where vm ∈ R and hm ∈H.

Combined hypothesis space:

FM =

{
M∑

m=1

vmhm(x) | vm ∈ R, hm ∈H, m = 1, . . . ,M

}
What are the learnable?
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Empirical Risk Minimization

What’s our learning objective?

f̂ = argmin
f∈FM

1
n

n∑
i=1

`(yi , f (xi )) ,

for some loss function `.

Write ERM objective function as

J(v1, . . . ,vM ,h1, . . . ,hM) =
1
n

n∑
i=1

`

(
yi ,

M∑
m=1

vmhm(x)

)
.

How to optimize J? i.e. how to learn?
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Gradient-Based Methods

Suppose our base hypothesis space is parameterized by Θ= Rb:

J(v1, . . . ,vM ,θ1, . . . ,θM) =
1
n

n∑
i=1

`

(
yi ,

M∑
m=1

vmh(x ;θm)

)
.

Can we optimize it with SGD?
Can we differentiate J w.r.t. vm’s and θm’s?

For some hypothesis spaces and typical loss functions, yes!
Neural networks fall into this category! (h1, . . . ,hM are neurons of last hidden layer.)
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What if Gradient Based Methods Don’t Apply?

What if base hypothesis space H consists of decision trees?

Can we even parameterize trees with Θ= Rb?

Even if we could, predictions would not change continuously w.r.t. θ ∈Θ, so certainly not
differentiable.

What about a greedy algorithm similar to Adaboost?
Applies to non-parametric or non-differentiable basis functions.

But is it optimizing our objective using some loss function?
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Today we’ll discuss gradient boosting.
Gradient descent in the function space.

It applies whenever
our loss function is [sub]differentiable w.r.t. training predictions f (xi ), and

we can do regression with the base hypothesis space H.
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Forward Stagewise Additive Modeling
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Forward Stagewise Additive Modeling (FSAM)

Goal fit model f (x) =
∑M

m=1 vmhm(x) given some loss function.
Approach Greedily fit one function at a time without adjusting previous functions, hence

“forward stagewise”.

After m−1 stages, we have

fm−1 =

m−1∑
i=1

vihi .

In m’th round, we want to find hm ∈H (i.e. a basis function) and vm > 0 such that

fm = fm−1︸︷︷︸
fixed

+vmhm

improves objective function value by as much as possible.
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Forward Stagewise Additive Modeling for ERM

Let’s plug in our objective function.

1 Initialize f0(x) = 0.
2 For m = 1 to M:

1 Compute:

(vm,hm) = argmin
v∈R,h∈H

1
n

n∑
i=1

`

yi , fm−1(xi )+vh(xi )︸ ︷︷ ︸
new piece

 .

2 Set fm = fm−1+ vmhm.
3 Return: fM .

Mengye Ren (NYU) CSCI-2565 Nov 14, 2023 57 / 92



Exponential Loss

Introduce the exponential loss: `(y , f (x)) = exp

−yf (x)︸ ︷︷ ︸
margin

 .
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Forward Stagewise Additive Modeling with exponential loss

Recall that we want to do FSAM with exponential loss.

1 Initialize f0(x) = 0.
2 For m = 1 to M:

1 Compute:

(vm,hm) = argmin
v∈R,h∈H

1
n

n∑
i=1

`exp

yi , fm−1(xi )+vh(xi )︸ ︷︷ ︸
new piece

 .

2 Set fm = fm−1+ vmhm.
3 Return: fM .
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FSAM with Exponential Loss: objective function

Base hypothesis: H = {h : X→ {−1,1}}.

Objective function in the m’th round:

J(v ,h) =
n∑

i=1

exp [−yi (fm−1(xi )+ vh(xi ))] (5)

=

n∑
i=1

wm
i exp [−yivh(xi )] wm

i
def
= exp [−yi fm−1(xi )] (6)

=

n∑
i=1

wm
i

[
I(yi = h(xi ))e

−v + I(yi 6= h(xi ))e
v
]

h(xi ) ∈ {1,−1} (7)

=

n∑
i=1

wm
i

[
(ev − e−v )I(yi 6= h(xi ))+ e−v

]
I(yi = h(xi )) = 1− I(yi 6= h(xi ))

(8)
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FSAM with Exponential Loss: basis function

Objective function in the m’th round:

J(v ,h) =
n∑

i=1

wm
i

[
(ev − e−v )I(yi 6= h(xi ))+ e−v

]
. (9)

If v > 0, then

argmin
h∈H

J(v ,h) = argmin
h∈H

n∑
i=1

wm
i I(yi 6= h(xi )) (10)

hm = argmin
h∈H

n∑
i=1

wm
i I(yi 6= h(xi )) (11)

= argmin
h∈H

1∑n
i=1w

m
i

n∑
i=1

wm
i I(yi 6= h(xi )) multiply by a positive constant

(12)

i.e. hm is the minimizer of the weighted zero-one loss.
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FSAM with Exponential Loss: classifier weights

Define the weighted zero-one error:

errm =

∑n
i=1w

m
i I(yi 6= h(xi ))∑n
i=1w

m
i

. (13)

Exercise: show that the optimal v is:

vm =
1
2
log

1− errm
errm

(14)

Same as the classifier weights in Adaboost (differ by a constant).

If errm < 0.5 (better than chance), then vm > 0.
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FSAM with Exponential Loss: example weights

Weights in the next round:

wm+1
i

def
= exp [−yi fm(xi )] (15)
= wm

i exp [−yivmhm(xi )] fm(xi ) = fm−1(xi )+ vmhm(xi ) (16)
= wm

i exp [−vmI(yi = hm(xi ))+ vmI(yi 6= hm(xi ))] (17)
= wm

i exp [2vmI(yi 6= hm(xi ))]exp
−vm︸ ︷︷ ︸

scaler

(18)

The constant scaler will cancel out during normalization.

2vm = αm in Adaboost.
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Why Exponential Loss

`exp(y , f (x)) = exp(−yf (x)).

Exercise: show that the optimal estimate is

f ∗(x) =
1
2
log

p(y = 1 | x)
p(y = 0 | x)

. (19)

How is it different from other losses?
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AdaBoost / Exponential Loss: Robustness Issues

Exponential loss puts a high penalty on misclassified examples.
=⇒ not robust to outliers / noise.

Empirically, AdaBoost has degraded performance in situations with
high Bayes error rate (intrinsic randomness in the label)

Logistic/Log loss performs better in settings with high Bayes error.

Exponential loss has some computational advantages over log loss though.
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Review

We’ve seen

Use basis function to obtain nonlinear models: f (x) =
∑M

i=1 vmhm(x) with known hm’s.

Adaptive basis function models: f (x) =
∑M

i=1 vmhm(x) with unknown hm’s.

Forward stagewise additive modeling: greedily fit hm’s to minimize the average loss.

But,

We only know how to do FSAM for certain loss functions.

Need to derive new algorithms for different loss functions.

Next, how to do FSAM in general.
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Gradient Boosting / “Anyboost”
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FSAM with squared loss

Objective function at m’th round:

J(v ,h) =
1
n

n∑
i=1

yi −

fm−1(xi )+vh(xi )︸ ︷︷ ︸
new piece




2

If H is closed under rescaling (i.e. if h ∈H, then vh ∈H for all h ∈ R), then don’t need v .

Take v = 1 and minimize

J(h) =
1
n

n∑
i=1

yi − fm−1(xi )︸ ︷︷ ︸
residual

−h(xi )

2

This is just fitting the residuals with least-squares regression!

Example base hypothesis space: regression stumps.
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L2 Boosting with Decision Stumps: Demo

Consider FSAM with L2 loss (i.e. L2 Boosting)

For base hypothesis space of regression stumps

x

y

Plot courtesy of Brett Bernstein.
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L2 Boosting with Decision Stumps: Results

Plots and code courtesy of Brett Bernstein.
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L2 Boosting with Decision Stumps: Results

Plots and code courtesy of Brett Bernstein.
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L2 Boosting with Decision Stumps: Results

Plots and code courtesy of Brett Bernstein.
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Interpret the residual

Objective: J(f ) = 1
n

∑n
i=1 (yi − f (xi ))

2.

What is the residual at x = xi?

∂

∂f (xi )
J(f ) = −2(yi − f (xi )) (20)

Gradient w.r.t. f : how should the output of f change to minimize the squared loss.

Residual is the negative gradient (differ by some constant).

At each boosting round, we learn a function h ∈H to fit the residual.

f ← f + vh FSAM / boosting (21)
f ← f −α∇f J(f ) gradient descent (22)

h approximates the gradient (step direction), v is the step size.
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“Functional” Gradient Descent

We want to minimize

J(f ) =
n∑

i=1

`(yi , f (xi )) .

In some sense, we want to take the gradient w.r.t. f .

J(f ) only depends on f at the n training points.

Define “parameters”
f = (f (x1), . . . , f (xn))

T

and write the objective function as

J(f) =
n∑

i=1

`(yi ,fi ) .
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Functional Gradient Descent: Unconstrained Step Direction

Consider gradient descent on

J(f) =
n∑

i=1

`(yi ,fi ) .

The negative gradient step direction at f is

−g = −∇f J(f)
= −(∂f1`(y1, f1) , . . . ,∂fn`(yn, fn))

which we can easily calculate.

−g ∈ Rn is the direction we want to change each of our n predictions on training data.

With gradient descent, our final predictor will be an additive model: f0+
∑M

m=1 vt(−gt).
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Functional Gradient Descent: Projection Step

Unconstrained step direction is

−g =−∇f J(f) = −(∂f1`(y1, f1) , . . . ,∂fn`(yn, fn)) .

Also called the “pseudo-residuals”. (For squared loss, they’re exactly the residuals.)

Problem: only know how to update at n points. How do we take a gradient step in H?

Solution: approximate by the closest base hypothesis h ∈H (in the `2 sense):

min
h∈H

n∑
i=1

(−gi −h(xi ))
2 . least square regression (23)

Take the h ∈H that best approximates −g as our step direction.
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Recap

Objective function:

J(f ) =
n∑

i=1

`(yi , f (xi )). (24)

Unconstrained gradient g ∈ Rn w.r.t. f = (f (x1), . . . , f (xn))
T :

g =∇f J(f) = (∂f1`(y1, f1) , . . . ,∂fn`(yn, fn)) . (25)

Projected negative gradient h ∈H:

h = argmin
h∈H

n∑
i=1

(−gi −h(xi ))
2 . (26)

Gradient descent:

f ← f + vh (27)
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Functional Gradient Descent: hyperparameters

Choose a step size by line search.

vm = argmin
v

n∑
i=1

` {yi , fm−1(xi )+ vhm(xi )} .

Not necessary. Can also choose a fixed hyperparameter v .

Regularization through shrinkage:

fm← fm−1+λvmhm where λ ∈ [0,1] . (28)

Typically choose λ= 0.1.

Choose M, i.e. when to stop.
Tune on validation set.
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Gradient boosting algorithm

1 Initialize f to a constant: f0(x) = argminγ
∑n

i=1 `(yi ,γ).
2 For m from 1 to M:

1 Compute the pseudo-residuals (negative gradient):

rim =−

[
∂

∂f (xi )
`(yi , f (xi )

]
f (xi)=fm−1(xi)

(29)

2 Fit a base learner hm with squared loss using the dataset {(xi , rim)}
n
i=1.

3 [Optional] Find the best step size vm = argminv
∑n

i=1 `(yi , fm−1(xi )+ vhm(xi )) .
4 Update fm = fm−1+λvmhm

3 Return fM(x).
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The Gradient Boosting Machine Ingredients (Recap)

Take any loss function [sub]differentiable w.r.t. the prediction f (xi )

Choose a base hypothesis space for regression.

Choose number of steps (or a stopping criterion).

Choose step size methodology.

Then you’re good to go!
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BinomialBoost: Gradient Boosting with Logistic Loss

Recall the logistic loss for classification, with Y= {−1,1}:

`(y , f (x)) = log
(
1+ e−yf (x)

)
Pseudoresidual for i ’th example is negative derivative of loss w.r.t. prediction:

ri =−
∂

∂f (xi )
`(yi , f (xi )) (30)

=−
∂

∂f (xi )

[
log
(
1+ e−yi f (xi)

)]
(31)

=
yie

−yi f (xi)

1+ e−yi f (xi)
(32)

=
yi

1+ eyi f (xi)
(33)
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BinomialBoost: Gradient Boosting with Logistic Loss

Pseudoresidual for ith example:

ri = −
∂

∂f (xi )

[
log
(
1+ e−yi f (xi)

)]
=

yi
1+ eyi f (xi)

So if fm−1(x) is prediction after m−1 rounds, step direction for m’th round is

hm = argmin
h∈H

n∑
i=1

[(
yi

1+ eyi fm−1(xi)

)
−h(xi )

]2
.

And fm(x) = fm−1(x)+ vhm(x).
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Gradient Tree Boosting

One common form of gradient boosting machine takes

H = {regression trees of size S} ,

where S is the number of terminal nodes.

S = 2 gives decision stumps

HTF recommends 46 S 6 8 (but more recent results use much larger trees)

Software packages:
Gradient tree boosting is implemented by the gbm package for R

as GradientBoostingClassifier and GradientBoostingRegressor in sklearn

xgboost and lightGBM are state of the art for speed and performance
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Sinc Function: Our Dataset

From Natekin and Knoll’s "Gradient boosting machines, a tutorial"
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Minimizing Square Loss with Ensemble of Decision Stumps

Decision stumps with 1,10,50, and 100 steps, shrinkage λ= 1.
Figure 3 from Natekin and Knoll’s "Gradient boosting machines, a tutorial"
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Gradient Boosting in Practice
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Prevent overfitting

Boosting is resistant to overfitting. Some explanations:
Implicit feature selection: greedily selects the best feature (weak learner)

As training goes on, impact of change is localized.

But it can of course overfit. Common regularization methods:
Shrinkage (small learning rate)

Stochastic gradient boosting (row subsampling)

Feature subsampling (column subsampling)

Mengye Ren (NYU) CSCI-2565 Nov 14, 2023 87 / 92



Step Size as Regularization

(continued) sinc function regression

Performance vs rounds of boosting and shrinkage. (Left is training set, right is validation
set)

Figure 5 from Natekin and Knoll’s "Gradient boosting machines, a tutorial"
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Rule of Thumb

The smaller the step size, the more steps you’ll need.

But never seems to make results worse, and often better.

So set your step size as small as you have patience for.
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Stochastic Gradient Boosting

For each stage,
choose random subset of data for computing projected gradient step.

Why do this?
Introduce randomization thus may help overfitting.

Faster; often better than gradient descent given the same computation resource.

We can view this is a minibatch method.
Estimate the “true” step direction using a subset of data.

Introduced by Friedman (1999) in Stochastic Gradient Boosting.
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Column / Feature Subsampling

Similar to random forest, randomly choose a subset of features for each round.

XGBoost paper says: “According to user feedback, using column sub-sampling prevents
overfitting even more so than the traditional row sub-sampling.”

Speeds up computation.
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Summary

Motivating idea of boosting: combine weak learners to produce a strong learner.

The statistical view: boosting is fitting an additive model (greedily).

The numerical optimization view: boosting makes local improvement iteratively—gradient
descent in the function space.

Gradient boosting is a generic framework
Any differentiable loss function

Classification, regression, ranking, multiclass etc.

Scalable, e.g., XGBoost
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