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Margin for Multiclass

Binary Margin for (x(n),y (n)):

y (n)wT x(n) (1)

Want margin to be large and positive (wT x(n) has same sign as y (n))
Multiclass Class-specific margin for (x(n),y (n)):

h(x(n),y (n))−h(x(n),y). (2)

Difference between scores of the correct class and each other class

Want margin to be large and positive for all y 6= y (n).
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Multiclass SVM: separable case

Binary

min
w

1
2
‖w‖2 (3)

s.t. y (n)wT x(n)︸ ︷︷ ︸
margin

> 1 ∀(x(n),y (n)) ∈D (4)

Multiclass As in the binary case, take 1 as our target margin.

mn,y (w)
def
=
〈
w ,Ψ(x(n),y (n))

〉
︸ ︷︷ ︸
score of correct class

−
〈
w ,Ψ(x(n),y)

〉
︸ ︷︷ ︸
score of other class

(5)

min
w

1
2
‖w‖2 (6)

s.t. mn,y (w)> 1 ∀(x(n),y (n)) ∈D, y 6= y (n) (7)

Exercise: write the objective for the non-separable case
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Recap: hingle loss for binary classification

Hinge loss: a convex upperbound on the 0-1 loss

`hinge(y , ŷ) =max(0,1− yh(x)) (8)
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Generalized hinge loss

What’s the zero-one loss for multiclass classification?

∆(y ,y ′) = I
{
y 6= y ′} (9)

In general, can also have different cost for each class.

Upper bound on ∆(y ,y ′).

ŷ
def
= argmax

y ′∈Y

〈
w ,Ψ(x ,y ′)

〉
(10)

=⇒ 〈w ,Ψ(x ,y)〉6 〈w ,Ψ(x , ŷ)〉 (11)
=⇒ ∆(y , ŷ)6 ∆(y , ŷ)− 〈w ,(Ψ(x ,y)−Ψ(x , ŷ))〉 When are they equal? (12)

Generalized hinge loss:

`hinge(y ,x ,w)
def
= max

y ′∈Y

(
∆(y ,y ′)−

〈
w ,
(
Ψ(x ,y)−Ψ(x ,y ′))〉) (13)
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Multiclass SVM with Hinge Loss

Recall the hinge loss formulation for binary SVM (without the bias term):

min
w∈Rd

1
2
||w ||2+C

N∑
n=1

max

0,1− y (n)wT x(n)︸ ︷︷ ︸
margin

 .

The multiclass objective:

min
w∈Rd

1
2
||w ||2+C

N∑
n=1

max
y ′∈Y

∆(y ,y ′)−
〈
w ,
(
Ψ(x ,y)−Ψ(x ,y ′))〉︸ ︷︷ ︸

margin


∆(y ,y ′) as target margin for each class.

If margin mn,y ′(w) meets or exceeds its target ∆(y (n),y ′) ∀y ∈ Y, then no loss on
example n.
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Recap: What Have We Got?

Problem: Multiclass classification Y= {1, . . . ,k}

Solution 1: One-vs-All
Train k models: h1(x), . . . ,hk(x) : X→ R.

Predict with argmaxy∈Y hy (x).

Gave simple example where this fails for linear classifiers

Solution 2: Multiclass loss
Train one model: h(x ,y) : X×Y→ R.

Prediction involves solving argmaxy∈Y h(x ,y).
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Does it work better in practice?

Paper by Rifkin & Klautau: “In Defense of One-Vs-All Classification” (2004)
Extensive experiments, carefully done

albeit on relatively small UCI datasets

Suggests one-vs-all works just as well in practice
(or at least, the advantages claimed by earlier papers for multiclass methods were not
compelling)

Compared
many multiclass frameworks (including the one we discuss)

one-vs-all for SVMs with RBF kernel

one-vs-all for square loss with RBF kernel (for classification!)

All performed roughly the same
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Why Are We Bothering with Multiclass?

The framework we have developed for multiclass
compatibility features / scoring functions

multiclass margin

target margin / multiclass loss

Generalizes to situations where k is very large and one-vs-all is intractable.

Key idea is that we can generalize across outputs y by using features of y .
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Introduction to Structured Prediction
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Example: Part-of-speech (POS) Tagging

Given a sentence, give a part of speech tag for each word:

x [START]︸ ︷︷ ︸
x0

He︸︷︷︸
x1

eats︸︷︷︸
x2

apples︸ ︷︷ ︸
x3

y [START]︸ ︷︷ ︸
y0

Pronoun︸ ︷︷ ︸
y1

Verb︸︷︷︸
y2

Noun︸ ︷︷ ︸
y3

V= {all English words}∪ {[START],”.”}

X= Vn, n = 1,2,3, . . . [Word sequences of any length]

P= {START,Pronoun,Verb,Noun,Adjective}

Y= Pn, n = 1,2,3, . . .[Part of speech sequence of any length]
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Multiclass Hypothesis Space

Discrete output space: Y(x)
Very large but has structure, e.g., linear chain (sequence labeling), tree (parsing)

Size depends on input x

Base Hypothesis Space: H = {h : X×Y→ R}
h(x ,y) gives compatibility score between input x and output y

Multiclass hypothesis space

F =

{
x 7→ argmax

y∈Y

h(x ,y) | h ∈H

}

Final prediction function is an f ∈ F.

For each f ∈ F there is an underlying compatibility score function h ∈H.
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Structured Prediction

Part-of-speech tagging
x : he eats apples
y : pronoun verb noun

Multiclass hypothesis space:

h(x ,y) = wTΨ(x ,y) (14)

F =

{
x 7→ argmax

y∈Y

h(x ,y) | h ∈H

}
(15)

A special case of multiclass classification

How to design the feature map Ψ? What are the considerations?
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Unary features

A unary feature only depends on
the label at a single position, yi , and x

Example:

φ1(x ,yi ) = 1[xi = runs]1[yi = Verb]
φ2(x ,yi ) = 1[xi = runs]1[yi = Noun]
φ3(x ,yi ) = 1[xi−1 = He]1[xi = runs]1[yi = Verb]
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Markov features

A markov feature only depends on
two adjacent labels, yi−1 and yi , and x

Example:

θ1(x ,yi−1,yi ) = 1[yi−1 = Pronoun]1[yi = Verb]
θ2(x ,yi−1,yi ) = 1[yi−1 = Pronoun]1[yi = Noun]

Reminiscent of Markov models in the output space

Possible to have higher-order features
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Local Feature Vector and Compatibility Score

At each position i in sequence, define the local feature vector (unary and markov):

Ψi (x ,yi−1,yi ) = (φ1(x ,yi ),φ2(x ,yi ), . . . ,

θ1(x ,yi−1,yi ),θ2(x ,yi−1,yi ), . . .)

And local compatibility score at position i : 〈w ,Ψi (x ,yi−1,yi )〉.

The compatibility score for (x ,y) is the sum of local compatibility scores:

∑
i

〈w ,Ψi (x ,yi−1,yi )〉=

〈
w ,
∑
i

Ψi (x ,yi−1,yi )

〉
= 〈w ,Ψ(x ,y)〉 , (16)

where we define the sequence feature vector by

Ψ(x ,y) =
∑
i

Ψi (x ,yi−1,yi ). decomposable
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Structured perceptron

Given a dataset D= {(x ,y)};
Initialize w ← 0;
for iter = 1,2, . . . ,T do

for (x ,y) ∈D do
ŷ = argmaxy ′∈Y(x)w

Tψ(x ,y ′);
if ŷ 6= y then // We’ve made a mistake

w ← w +Ψ(x ,y) ; // Move the scorer towards ψ(x ,y)
w ← w −Ψ(x , ŷ) ; // Move the scorer away from ψ(x , ŷ)

end
end

end

Identical to the multiclass perceptron algorithm except the argmax is now over the structured
output space Y(x).
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Structured hinge loss

Recall the generalized hinge loss

`hinge(y , ŷ)
def
= max

y ′∈Y(x)

(
∆(y ,y ′)+

〈
w ,
(
Ψ(x ,y ′)−Ψ(x ,y

)
)
〉)

(17)

What is ∆(y ,y ′) for two sequences?

Hamming loss is common:

∆(y ,y ′) =
1
L

L∑
i=1

1[yi 6= y ′
i ]

where L is the sequence length.
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Structured SVM

Exercise:

Write down the objective of structured SVM using the structured hinge loss.

Stochastic sub-gradient descent for structured SVM

Compare with the structured perceptron algorithm
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The argmax problem for sequences

Problem To compute predictions, we need to find argmaxy∈Y(x) 〈w ,Ψ(x ,y)〉, and |Y(x)| is
exponentially large.

Observation Ψ(x ,y) decomposes to
∑

i Ψi (x ,y).
Solution Dynamic programming (similar to the Viterbi algorithm)

Figure by Daumé III. A course in machine learning. Figure 17.1.
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Structured SVM inference (linear chain)

Initiate αj(1) = w>ψ(y1 = j ,x1)

Recursion αj(t) =maxi αi (t−1)+w>ψ(yt = j ,yt−1 = i ,xt)

Pointer γ(t, j) = argmaxi αi (t−1)+w>ψ(yt = j ,yt−1 = i ,xt)

Backtrack: r(T ) = argmaxi αi (T ), r(t) = γ(t, r(t+1))

What’s the running time?
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The argmax problem in general

Efficient problem-specific algorithms:

problem structure algorithm

constituent parsing binary trees with context-free features CYK
dependency parsing spanning trees with edge features Chu-Liu-Edmonds
image segmentation 2d with adjacent-pixel features graph cuts

General algorithm:

Integer linear programming (ILP)

max
z

aT z s.t. linear constraints on z (18)

z : indicator of substructures, e.g., I {yi = article and yi+1 = noun}

constraints: z must correspond to a valid structure
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Conditional random field (CRF)

Recall that we can write logistic regression in a general form:

p(y |x) =
1

Z (x)
exp(w>ψ(x ,y)).

Z is normalization constant: Z (x) =
∑

y∈Y exp(w>ψ(x ,y)).

Example: linear chain {yt }

We can incorporate unary and Markov features: p(y |x) = 1
Z(x) exp(

∑
t w

>ψ(x ,yt ,yt−1))
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Conditional random field (CRF)

Compared to Structured SVM, CRF has a probabilistic interpretation.

We can draw samples in the output space.

How do we learn w? Maximum log likelihood, and regularization term: λ‖w‖2.

p(y |x) = 1
Z(x) exp(w

>ψ(x ,y)).

Loss function:

l(w) = −
1
N

N∑
i=1

logp(y (i)|x(i))+
1
2
λ‖w‖2

=−
1
N

∑
i

∑
t

∑
k

wkψk(y
(i)
t ,y

(i)
t−1)+

1
N

∑
i

logZ (x(i))+
1
2

∑
k

λw2
k
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Conditional random field (CRF)

Loss function:

l(w) = −
1
N

∑
i

∑
t

∑
k

wkψk(x
(i),y

(i)
t ,y

(i)
t−1)+

1
N

∑
i

logZ (x(i))+
1
2

∑
k

λw2
k

Gradient:

∂l(w)

∂wk
=−

1
N

∑
i

∑
t

∑
k

ψk(x
(i),y

(i)
t ,y

(i)
t−1) (19)

+
1
N

∑
i

∂

∂wk
log
∑
y ′∈Y

exp(
∑
t

∑
k ′

wk ′ψk ′(x(i),y ′
t ,y

′
t−1))+

∑
k

λwk (20)
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Conditional random field (CRF)

What is 1
N

∑
i

∑
t

∑
kψk(x

(i),y
(i)
t ,y

(i)
t−1)?

It is the expectation ψk(x
(i),yt ,yt−1) under the empirical distribution

p̃(x ,y) = 1
N

∑
i 1[x = x(i)]1[y = y (i)].
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Conditional random field (CRF)

What is 1
N

∑
i

∂
∂wk

log
∑

y ′∈Y exp(
∑

t

∑
k ′ wk ′ψk ′(x(i),y ′

t ,y
′
t−1))?

1
N

∑
i

∂

∂wk
log
∑
y ′∈Y

exp(
∑
t

∑
k ′

wk ′ψk ′(x(i),y ′
t ,y

′
t−1)) (21)

=
1
N

∑
i

∑
y ′∈Y

exp(
∑
t

∑
k ′

wk ′ψk ′(x(i),y ′
t ,y

′
t−1))

−1

(22)

∑
y ′∈Y

exp(
∑
t

∑
k ′

wk ′ψk ′(x(i),y
(i)
t ,y

(i)
t−1))

∑
t

ψk(x
(i),y ′

t ,y
′
t−1)

 (23)

=
1
N

∑
i

∑
t

∑
y ′∈Y

p(y ′
t ,y

′
t−1|x)ψk(x

(i),y ′
t ,y

′
t−1) (24)

It is the expectation of ψk(x
(i),y ′

t ,y
′
t−1) under the model distribution p(y ′

t ,y
′
t−1|x).
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Conditional random field (CRF)

To compute the gradient, we need to infer expectation under the model distribution p(y |x).

Compare the learning algorithms: in structured SVM we need to compute the argmax,
whereas in CRF we need to compute the model expectation.

Both problems are NP-hard for general graphs.
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CRF Inference

In the linear chain structure, we can use the forward-backward algorithm for inference,
similar to Viterbi.

Initiate αj(1) = exp(w>ψ(y1 = j ,x1))

Recursion: αj(t) =
∑

i αi (t−1)exp(w>ψ(yt = j ,yt−1 = i ,xt))

Result: Z (x) =
∑

j αj(T )

Similar for the backward direction.

Test time, again use Viterbi algorithm to infer argmax.

The inference algorithm can be generalized to belief propagation (BP) in a tree structure
(exact inference).

In general graphs, we rely on approximate inference (e.g. loopy belief propagation).
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Examples

POS tag Relationship between constituents, e.g. NP is likely to be followed by a VP.

Semantic segmentation
Relationship between pixels, e.g. a grass pixel is likely to be next to another grass pixel,
and a sky pixel is likely to be above a grass pixel.

Multi-label learning
An image may contain multiple class labels, e.g. a bus is likely to co-occur with a car.
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Conclusion

Multiclass algorithms

Reduce to binary classification, e.g., OvA, AvA
Good enough for simple multiclass problems

They don’t scale and have simplified assumptions

Generalize binary classification algorithms using multiclass loss
Multi-class perceptron, multi-class logistics regression, multi-class SVM

Structured prediction: Structured SVM, CRF. Data containing structure. Extremely large
output space. Text and image applications. More in-depth content in a probabilistic
graphical model (PGM) course.
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Decision Trees
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Overview: Decision Trees

Our first inherently non-linear classifier: decision trees.

Ensemble methods: bagging and boosting.
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Decision Trees
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Regression trees: Predicting basketball players’ salaries
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Classification trees

0 2 4 6 8 10
x1

0

2

4

6

8

10

x2

Can we classify these points using a linear classifier?

Partition the data into axis-aligned regions recursively (on the board)
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Decision trees setup

We focus on binary trees (as opposed to
multiway trees where nodes can have more
than two children)

Each node contains a subset of data points

The data splits created by each node
involve only a single feature

For continuous variables, the splits are
always of the form xi 6 t

For discrete variables, we partition values
into two sets (not covered today)

Predictions are made in terminal nodes
From Criminisi et al. MSR-TR-2011-114, 28 October 2011.
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Constructing the tree

Goal Find boxes R1, . . . ,RJ that minimize
J∑

j=1

∑
i∈Rj

(yi − ŷRj
)2, subject to complexity

constraints.
Problem Finding the optimal binary tree is computationally intractable.
Solution Greedy algorithm: starting from the root, and repeating until a stopping criterion

is reached (e.g., max depth), find the non-terminal node that results in the “best”
split

We only split regions defined by previous non-terminal nodes
Prediction Our prediction is the mean value of a terminal node: ŷRm =mean(yi | xi ∈ Rm)

A greedy algorithm is the one that make the best local decisions, without
lookahead to evaluate their downstream consequences

This procedure is not very likely to result in the globally optimal tree
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Prediction in a Regression Tree
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Finding the Best Split Point

We enumerate all features and all possible split points for each feature. There are infinitely
many split points, but...

Suppose we are now considering splitting on the j-th feature xj , and let xj(1), . . . ,xj(n) be
the sorted values of the j-th feature.

We only need to consider split points between two adjacent values, and any split point in
the interval (xj(r),x(j(r+1)) will result in the same loss

It is common to split half way between two adjacent values:

sj ∈
{
1
2
(
xj(r)+ xj(r+1)

)
| r = 1, . . . ,n−1

}
. n−1 splits (25)
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Decision Trees and Overfitting

What will happen if we keep splitting the data into more and more regions?
Every data point will be in its own region—overfitting.

When should we stop splitting? (Controlling the complexity of the hypothesis space)
Limit total number of nodes.

Limit number of terminal nodes.

Limit tree depth.

Require minimum number of data points in a terminal node.
Backward pruning (the approach used in CART; Breiman et al 1984):

1 Build a really big tree (e.g. until all regions have 6 5 points).
2 Prune the tree back greedily, potentially all the way to the root, until validation performance

starts decreasing.
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Pruning: Example
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What Makes a Good Split for Classification?

Our plan is to predict the majority label in each region.

Which of the following splits is better?

Split 1 R1 : 8+/2− R2 : 2+/8−
Split 2 R1 : 6+/4− R2 : 4+/6−

How about here?
Split 1 R1 : 8+/2− R2 : 2+/8−
Split 2 R1 : 6+/4− R2 : 0+/10−

Intuition: we want to produce pure nodes, i.e. nodes where most instances have the same class.
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Misclassification error in a node

Let’s consider the multiclass classification case: Y= {1,2, . . . ,K }.

Let node m represent region Rm, with Nm observations

We denote the proportion of observations in Rm with class k by

p̂mk =
1
Nm

∑
{i :xi∈Rm}

1[yi = k ].

We predict the majority class in node m:

k(m) = argmax
k

p̂mk
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Node Impurity Measures

Three measures of node impurity for leaf node m:
Misclassification error

1− p̂mk(m).

The Gini index encourages p̂mk to be close to 0 or 1

K∑
k=1

p̂mk(1− p̂mk).

Entropy / Information gain

−

K∑
k=1

p̂mk log p̂mk .

The Gini index and entropy are numerically similar to each other, and both work better in
practice than the misclassification error.
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Impurity Measures for Binary Classification

(p is the relative frequency of class 1)

HTF Figure 9.3
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Quantifying the Impurity of a Split

Scoring a potential split that produces the nodes RL and RR :

Suppose we have NL points in RL and NR points in RR .

Let Q(RL) and Q(RR) be the node impurity measures for each node.

We aim to find a split that minimizes the weighted average of node impurities:

NLQ(RL)+NRQ(RR)

NL+NR
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Discussion: Interpretability of Decision Trees

Trees are easier to visualize and explain than other classifiers (even linear regression)

Small trees are interpretable – large trees, maybe not so much
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Discussion: Trees vs. Linear Models

Trees may have to work hard to capture linear decision boundaries, but can easily capture
certain nonlinear ones:
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Discussion: Review

Decision trees are:
Non-linear: the decision boundary that results from splitting may end up being quite
complicated

Non-metric: they do not rely on the geometry of the space (inner products or distances)

Non-parametric: they make no assumptions about the distribution of the data

Additional pros:
Interpretable and simple to understand

Cons:
Struggle to capture linear decision boundaries

They have high variance and tend to overfit: they are sensitive to small changes in the
training data (The ensemble techniques we discuss next can mitigate these issues)
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