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Announcement

@ Schedule your project consultation soon.

@ Use the provided template! (if your final report fails to use template then there will be
marks off)

o Homework 3 is released and due Nov 14 11:59AM.
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Recap

@ Bayesian modeling adds a prior on the parameters.
@ Models the distribution of parameters
@ Bayes Rule:

ply | x) = PX YY)
p(x)
) plo )= 2210200)
.

p(6]D) o p(D[6)p(6).
—_——  —

posterior likelihood prior

o Conjugate prior: Having the same form of distribution as the posterior.
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Bayesian Point Estimates

@ We have the posterior distribution 0 | D.
e What if someone asks us to choose a single § (i.e. a point estimate of 0)?

o Common options:
e posterior mean 6=E[0|D]
o maximum a posteriori (MAP) estimate 6 = argmaxq p(6 | D)
o Note: this is the mode of the posterior distribution
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What else can we do with a posterior?

@ Look at it: display uncertainty estimates to our client
e Extract a credible set for 0 (a Bayesian confidence interval).
e e.g. Interval [a, b] is a 95% credible set if

P(0 la bl | D) >0.95

@ Select a point estimate using Bayesian decision theory:

o Choose a loss function.
e Find action minimizing expected risk w.r.t. posterior
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Bayesian Decision Theory J
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Bayesian Decision Theory

@ Ingredients:

Parameter space O.

Prior: Distribution p(0) on ©.
Action space A.

Loss function: {: A x© — R.

@ The posterior risk of an action a€ A is

r(a) = E[(0,a)]|D]
_ Jf(@,a)p(e D) do.
e It's the expected loss under the posterior.
@ A Bayes action a* is an action that minimizes posterior risk:

r(a®) = ;52'2 r(a)
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Bayesian Point Estimation

o General Setup:

o Data D generated by p(y |6), for unknown 6 € ©.
o We want to produce a point estimate for 0.

@ Choose:
e Prior p(Ae) on ©® =R.
o Loss £(6,0)

e Find action 6 € © that minimizes the posterior risk:

r0) = E [e(é,e) | 93}

= Je(é,e)p(e | D) do
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Important Cases

A

5 2
Squared Loss : £(0,0) = ( ) = posterior mean

Zero-one Loss: £(0,0)

1[0 #£6] = posterior mode

N

Absolute Loss : £(0,0) = ‘9—9) = posterior median

Optimal decision depends on the loss function and the posterior distribution.

Example: | have a card drawing from a deck of 2,3,3,4,4,5,5,5, and you guess the value of

my card.

mean: 3.875; mode: 5; median: 4
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Bayesian Point Estimation: Square Loss

o Find action 6 € © that minimizes posterior risk

r(0) = J(@—é)zp(GID)dS

o Differentiate:

dr(6) _ J (e e) (0]D)do

2
— 2J6p9|9 d6+29J (0]D)do

Q
D>

-  —
=1

— —2|ep(0|D)do+26
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Bayesian Point Estimation: Square Loss

@ Derivative of posterior risk is

dr()
dé
@ First order condition drd(éé) =0 gives
)

e The Bayes action for square loss is

Mengye Ren (NYU)

:—QJSp(9|®)d9+2é.

= JGp(GID)dG
= E[0|D]

the posterior mean.
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Interim summary J
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Recap and Interpretation

The prior represents belief about 0 before observing data D.
The posterior represents rationally updated beliefs after seeing D.

All inferences and action-taking are based on the posterior distribution.

In the Bayesian approach,

o No issue of justifying an estimator.
e Only choices are

o family of distributions, indexed by ©, and
o prior distribution on ©

o For decision making, we need a loss function.
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Recap: Conditional Probability Models J
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Conditional Probability Modeling

Input space X

Outcome space Y

Action space A ={p(y) | p is a probability distribution on Y}.

Hypothesis space F contains prediction functions f : X — A.

Prediction function f € F takes input x € X and produces a distribution on Y

A parametric family of conditional densities is a set
{p(y1x,0):0 €0},

o where p(y | x,0) is a density on outcome space Y for each x in input space X, and
e 0 is a parameter in a [finite dimensional] parameter space O.

@ This is the common starting point for either classical or Bayesian regression.
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Classical treatment: Likelihood Function

e Data: D=1(y1,...,,Vn)
@ The probability density for our data D is

n

p(DIx1,....x.,0) = []plyilx.0).
i=1
@ For fixed D, the function 8 — p(D | x,0) is the likelihood function:
Lp(0) =p(D|x,0),

where x = (xq, ..., Xn).
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Maximum Likelihood Estimator

@ The maximum likelihood estimator (MLE) for 0 in the family {p(y | x,0) |0 € B©} is

Bue = argmax Ly (0).
0€cO
@ MLE corresponds to ERM, if we set the loss to be the negative log-likelihood.
@ The corresponding prediction function is

N

f(x) =ply | x,0mLE)-
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Bayesian Conditional Probability Models J
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Bayesian Conditional Models

@ Input space X =R¢ Outcome space Y =R

@ The Bayesian conditional model has two components:
e A parametric family of conditional densities:

{p(y|x,0):0 €06}

o A prior distribution p(0) on 0 € ©.
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The Posterior Distribution

The prior distribution p(0) represents our beliefs about 0 before seeing D.

The posterior distribution for 0 is

p(O[D,x) o p(D]0O,x)p(6)
= Lp(0) p(6)
——
likelihood prior

Posterior represents the rationally updated beliefs after seeing D.
Each 0 corresponds to a prediction function,
e i.e. the conditional distribution function p(y | x,0).
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Point Estimates of Parameter

o What if we want point estimates of 07
@ We can use Bayesian decision theory to derive point estimates.

@ We may want to use

° é: E[0|D,x] (the posterior mean estimate)
° Q = median[0 | D, x]
o 0 =argmaxgcg p(0]D,x) (the MAP estimate)

@ depending on our loss function.
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Back to the basic question - Bayesian Prediction Function

Find a function takes input x € X and produces a distribution on Y

In the frequentist approach:
o Choose family of conditional probability densities (hypothesis space).

o Select one conditional probability from family, e.g. using MLE.

In the Bayesian setting:
e We choose a parametric family of conditional densities

{plyx,0):0 €06},

e and a prior distribution p(8) on this set.

Having set our Bayesian model, how do we predict a distribution on y for input x?

We don't need to make a discrete selection from the hypothesis space: we maintain
uncertainty.
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The Prior Predictive Distribution

@ Suppose we have not yet observed any data.

In the Bayesian setting, we can still produce a prediction function.

The prior predictive distribution is given by

x5 ply | %) =jp(y | x;0)p(0) do.

This is an average of all conditional densities in our family, weighted by the prior.
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The Posterior Predictive Distribution

@ Suppose we've already seen data D.

@ The posterior predictive distribution is given by

xs ply | x,D) = [p(y |x;0)p(6 | D) d6.

@ This is an average of all conditional densities in our family, weighted by the posterior.

Mengye Ren (NYU) CSCI-GA 2565 Oct 31, 2023 24 /69



Comparison to Frequentist Approach

@ In Bayesian statistics we have two distributions on ©:

o the prior distribution p(0)
o the posterior distribution p(6 | D).

@ These distributions over parameters correspond to distributions on the hypothesis space:
{p(y|x,0):0 €O}
e In the frequentist approach, we choose 8 € ©, and predict

ply |x,8(D)).

@ In the Bayesian approach, we integrate out over © w.r.t. p(6|D) and predict with

ply | x, D) = jp(y |;6)p(6| D) d6
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What if we don't want a full distribution on y?

Once we have a predictive distribution p(y | x, D),
e we can easily generate single point predictions.

x — E[y | x, D], to minimize expected square error.

@ x — medianly | x, D], to minimize expected absolute error
® x > argmax,cyp(y | x,D), to minimize expected 0/1 loss

Each of these can be derived from p(y | x,D).
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Gaussian Regression Example J
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Example in 1-Dimension: Setup

Input space X =[—1,1] Output space Yy =R

Given x, the world generates y as
Yy = wyt+wix+eg,

where £ ~N(0,0.22).

Written another way, the conditional probability model is
ylIx,wo,wy  ~ N(W0+ WiX, 0.22) .

What's the parameter space? R2.
Prior distribution: w = (wg,wy) ~N (0, 5/)
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Example in 1-Dimension: Prior Situation

e Prior distribution: w = (wo, w1) ~ N (0,3/) (lllustrated on left)

prior/posterior data space
U Y
0 0
-1 -1
-1 0 Wo 1 -1 0 x 1

@ Onright, y(x) =El[y | x, w] = wg + wyx, for randomly chosen w ~ p(w) = N(O, %I)

Bishop’'s PRML Fig 3.7
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Example in 1-Dimension: 1 Observation

-1 0 qg 1 A 0z 1

@ On left: posterior distribution; white cross indicates true parameters
@ On right:
e blue circle indicates the training observation
o red lines, y(x) =El[y | x, w] = wp + wy x, for randomly chosen w ~ p(w|D) (posterior)

Bishop’'s PRML Fig 3.7
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Example in 1-Dimension: 2 and 20 Observations

Y

0 (&)
-1

-1 0 =z 1
1
Yy

0 o g2

o
o ©

-1

-1 0 =z 1

Bishop’'s PRML Fig 3.7
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Gaussian Regression: Closed form J
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Closed Form for Posterior

o Model:
w ~  N(0,Xp)
yilx,w iid. N(w'x;, 0?)
@ Design matrix X Response column vector y

o Posterior distribution is a Gaussian distribution:

w|D ~ N(up,Zp)
wp = (XTX+025h) ' xTy
Sp = (0 2XTX+1)

e Posterior Variance Xp gives us a natural uncertainty measure.
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Closed Form for Posterior

@ Posterior distribution is a Gaussian distribution:
w|D ~ N(up,Zp)
11
wp = (XTX+0°Lyt)  XTy
o = (o 2XTX+1h) "
o If we want point estimates of w, MAP estimator and the posterior mean are given by

W =pp = (XTX+02551) " XTy

@ For the prior variance Lo = "72/, we get
W =pp = (XTX+A) " XTy,

which is of course the ridge regression solution.
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Connection the MAP to Ridge Regression

@ The Posterior density on w for Ly = %21:

T

plw|D) exp( Hw|!2>Hexp( w XJZ)

prior likelihood

o To find the MAP, we minimize the negative log posterior:

WMAPp = argmjn [—logp(w | D)]
weR

= argman i—w! )%+ A|wl?
weERd i=1 VT
log-prior

log-likelihood

@ Which is the ridge regression objective.
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Predictive Posterior Distribution

@ Given a new input point Xnew, how do we predict yhew 7

@ Predictive distribution
Pnew | 0w D) = | By | X, w, D)l | D) i
= JP(Ynew |Xn8Wv W)P(W | D) dw

o For Gaussian regression, predictive distribution has closed form.

Mengye Ren (NYU) CSCI-GA 2565 Oct 31, 2023 36 /69



Closed Form for Predictive Distribution
o Model:
w ~  N(0,Xp)

yilx,w iid. N(wTx,0?)

@ Predictive Distribution

p()/new |XneW:®) JP(YneW |XnerW)p(W| ®)dW-

o Averages over prediction for each w, weighted by posterior distribution.
@ Closed form:

Ynew | Xnew: D ~ N (TlnewV Gﬁew)

T
Mhew = Hp Xnew
2 T 2
Ohew = XneWZPXneW + \0;_/
—_————

from variance in w  inherent variance in y
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Bayesian Regression Provides Uncertainty Estimates

e With predictive distributions, we can give mean prediction with error bands:

output, y

input, x

Rasmussen and Williams' Gaussian Processes for Machine Learning, Fig.2.1(b)
Oct 31, 2023 38 /69
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Multi-class Overview J
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Motivation

@ So far, most algorithms we've learned are designed for binary classification.
o Sentiment analysis (positive vs. negative)
e Spam filter (spam vs. non-spam)
@ Many real-world problems have more than two classes.
e Document classification (over 10 classes)
o Object recognition (over 20k classes)
o Face recognition (millions of classes)
@ What are some potential issues when we have a large number of classes?
e Computation cost
e Class imbalance
o Different cost of errors
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Today's lecture

@ How to reduce multiclass classification to binary classification?

o We can think of binary classifier or linear regression as a black box. Naive ways:
o E.g. multiple binary classifiers produce a binary code for each class (000, 001, 010)
o E.g. a linear regression produces a numerical value for each class (1.0, 2.0, 3.0)

e How do we generalize binary classification algorithm to the multiclass setting?
e We also need to think about the loss function.
o Example of very large output space: structured prediction.

o Multi-class: Mutually exclusive class structure.
o Text: Temporal relational structure.
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Reduction to Binary Classification J
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One-vs-All / One-vs-Rest

Setting @ Input space: X

@ Output space: Y={1,..., k}
Training e Train k binary classifiers, one for each class: hq,..., hg: X —R.
o Classifier h; distinguishes class i (+1) from the rest (-1).

Prediction @ Majority vote:
h(x) = argmax h;(x)

Ties can be broken arbitrarily.
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OvA: 3-class example (linear classifier)

Consider a dataset with three classes:

o % Assumption: each class is linearly separable from the
® [ ] rest.
o %o Ideal case: only target class has positive score.
oo °
[ J
V.
Train OVA classifiers:
OOO OOO
O O
O ko) o O ko) °
O @]
T TTe— gy o |og
[ ] @]
e ® © O )
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OVA: 4-class non linearly separable example

Consider a dataset with four classes:

° .
: ° Cannot separate red points from the rest.
d & o0 Which classes might have low accuracy?
[ @)
o © ©

o
Train OVA classifiers:

0% 0% 0% 0%
o © o © o © o ©
€ o ®  og € log %o
o Op T Te—o0g o |ep o 0Op

) [ d (@]
oO .. OO

(o)e}
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All vs All / One vs One / All pairs

Setting @ Input space: X
@ Output space: Y={1,..., k}

Training @ Train (&) binary classifiers, one for each pair: h;: X — R
forie[l,k] and je [i+1, k]
o Classifier hj; distinguishes class i (+1) from class j (-1).

Prediction @ Majority vote (each class gets k —1 votes)

h(x) = arg maxZ hij(x)I{i < j}—hji(x)I{j < i}
ie{1,..., k}J?él

class i is +1 class i is -1

@ Tournament
@ Ties can be broken arbitrarily.
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AvVA: four-class example

Consider a dataset with four classes:

° . : .
: ° Assumption: each pair of classes are linearly separable.
e @ More expressive than OvA.
%o
e 09
o ©

What's the decision region for the red class?

0%
o ©
® o,
e 0
o ©
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OvA vs AvA

OvA AVA
. train  O(kBiain(n))  O(k?Birain(n/k))
computation test O(kBtest) O(k2 BteSt)

train  class imbalance small training set
calibration / scale
tie breaking

challenges
test

Lack theoretical justification but simple to implement and works well in practice (when #
classes is small).
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Code word for labels

Using the reduction approach, can you train fewer than k binary classifiers?

Key idea: Encode labels as binary codes and predict the code bits directly.
OvA encoding:

class h1 h2 h3 h4
1 110100
2 0O(1]0]O0
3 00| 1]0
4 00|01

OvA uses k bits to encode each label, what's the minimal number of bits you can use?
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Error correcting output codes (ECOC)

Example: 8 classes, 6-bit code

class h1 h2 h3 h4 h5 h6
1 0jo0ojo0oyj1{0]O0
2 1,0]0]0|O0]|O
3 oj1(1,0/|1]O0
4 1,100 0}|O0
5 1,100 1/|0
6 0011|011
7 ojo0o|1(0|0]O0
8 oj1,0(1(0]O0

Mengye Ren (NYU)

Training Binary classifier h;:

@ +1: classes whose /-th bit is 1
@ -1: classes whose i-th bit is 0

Prediction Closest label in terms of Hamming

distance.

h

ho

hs

ha

hs

he

0

1

1

0

1

1

Code design Want good binary classifiers.
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Error correcting output codes: summary

e Computationally more efficient than OvA (a special case of ECOC). Better for large k.
@ Why not use the minimal number of bits (log, k)7

o If the minimum Hamming distance between any pair of code word is d, then it can correct
| 42| errors.
e In plain words, if rows are far from each other, ECOC is robust to errors.
@ Trade-off between code distance and binary classification performance.

o Nice theoretical results [Allwein et al., 2000] (also incoporates AvA).
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http://www.jmlr.org/papers/volume1/allwein00a/allwein00a.pdf

Review

Reduction-based approaches:
@ Reducing multiclass classification to binary classification: OvA, AvA

e Key is to design “natural” binary classification problems without large computation cost.
But,

@ Unclear how to generalize to extremely large # of classes.
o ImageNet: >20k labels; Wikipedia: >1M categories.

Next, generalize previous algorithms to multiclass settings.
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Multiclass Loss J
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Binary Logistic Regression

@ Given an input x, we would like to output a classification between (0,1).

. . 1 1
f(x) = sigmoid(z) = T+exp(—z)  1+exp(—wTx—b)’ g

@ The other class is represented in 1—f(x):

1 flx) = exp(—w | x — b) B 1
~ 14exp(—wTx—b) 1+4+exp(w'x+b)

= sigmoid(—2z). (2)

@ Another way to view: one class has (+w,+b) and the other class has (—w,—b).
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Multi-class Logistic Regression

o Now what if we have one w, for each class c?

exp(w, x) + be
> cexp(wd x+ be)

fe(x) =

Also called “softmax” in neural networks.
Loss function: L = Z,-—yc(') log f(x (7))

Gradient: % =f —y. Recall: MSE loss.
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Comparison to OvA

Base Hypothesis Space: H{ ={h:X — R} (score functions).
e Multiclass Hypothesis Space (for k classes):

?:{xv—)argmaxh;(x)lhl ..... thJ-C}

1

Intuitively, hj(x) scores how likely x is to be from class i.

OvVA objective: h;(x) > 0 for x with label 7 and h;(x) < 0 for x with all other labels.

At test time, to predict (x, i) correctly we only need

h,(X)>hJ(X) V_j;lél (4)
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Multiclass Perceptron

o Base linear predictors: h;(x) = w."x (w € R9).
@ Multiclass perceptron:
Given a multiclass dataset D ={(x, y)};
Initialize w < 0;
for iter=1,2,..., T do
for (x,y) € D do
y =argmax,cy WyT,x;
if  #y then // We’ve made a mistake
Wy < wy, +Xx ; // Move the target-class scorer towards x
wy <~ wp—x ; // Move the wrong-class scorer away from x
end
end

end
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Rewrite the scoring function

@ Remember that we want to scale to very large # of classes and reuse algorithms and
analysis for binary classification

e — a single weight vector is desired

@ How to rewrite the equation such that we have one w instead of k?

w; x =wTP(x, 1) (5)
hi(x) = h(x,i) (6)

e Encode labels in the feature space.
o Score for each label — score for the “compatibility’ of a label and an input.
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The Multivector Construction

How to construct the feature map {7
o What if we stack w;'s together (e.g., x € R?,Y ={1,2,3})

@ And then do the following: W:R? x {1,2,3} — RO defined by

¥Y(x,1) = (x1,%,0,0,0,0)
W(X,2) = (0,0,X1,X2,0,0)
Y(x,3) := (0,0,0,0,x1,x2)

@ Then (w,¥(x,y)) = (w,,x), which is what we want.
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Rewrite multiclass perceptron

Multiclass perceptron using the multivector construction.
Given a multiclass dataset D ={(x, y)};
Initialize w « 0;
for iter=1,2,..., T do
for (x,y) € D do
y=argmax,,cyw P(x,y’) ; // Equivalent to argmax,cy WyT,x
if y #y then // We’ve made a mistake
w < w+VP(x,y); // Move the scorer towards \(x,y)

w <+ w—1P(x,y) ; // Move the scorer away from \(x,y)
end

end
end

Exercise: What is the base binary classification problem in multiclass perceptron?
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Features

Toy multiclass example: Part-of-speech classification

@ X ={All possible words}

e Y={NOUN,VERB,ADJECTIVE,...}.

o Features of x € X: [The word itself], ENDS_IN Iy, ENDS IN ness, ...
How to construct the feature vector?

@ Multivector construction: w € R?*k—doesn't scale.

@ Directly design features for each class.

W(Xry) = (11’1(X:Y)vll)2(X:Y):1b3(Xv)/):---vll’d(XvY)) (7)

e Size can be bounded by d.
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Features

Sample training data:

The boy grabbed the apple and ran away quickly .

Feature:
P1(x,y) = 1[x =apple AND y = NOUN]
Pa(x,y) = 1[x=run AND y = NOUN]
P3(x,y) = 1[x=run AND y =VERB]
Ps(x,y) = 1[x ENDS_IN_ ly AND y =ADVERB]

e Eg., ¥(x=run,y =NOUN)=(0,1,0,0,...)
o After training, what's wy, wo, wz, wy?

@ No need to include features unseen in training data.
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Feature templates: implementation

o Flexible, e.g., neighboring words, suffix/prefix.
@ “Read off” features from the training data.
o Often sparse—efficient in practice, e.g., NLP problems.

@ Can use a hash function: template —{1,2,...,d}.
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Review

Ingredients in multiclass classification:

@ Scoring functions for each class (similar to ranking).

@ Represent labels in the input space = single weight vector.
We've seen

@ How to generalize the perceptron algorithm to multiclass setting.

@ Very simple idea. Was popular in NLP for structured prediction (e.g., tagging, parsing).
Next,

@ How to generalize SVM to the multiclass setting.

e Concept check: Why might one prefer SVM / perceptron?
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Margin for Multiclass

Binary e Margin for (x("), y(m):
)y Tl ®

Tx(n) has same sign as y(")

(]

Want margin to be large and positive (w

Multiclass e Class-specific margin for (x("), y("):
h(x!",y)—h(x"), y). 9)

Difference between scores of the correct class and each other class
Want margin to be large and positive for all y # y(").
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Multiclass SVM: separable case

Binary
) 1 5
min *HWH (10)
w
s.t. y()w xM>1 vy y)yen (11)
—_—
margin

Multiclass As in the binary case, take 1 as our target margin.

My (W) & (w, Wy D)) — (w w(x(™), ) (12)
score of correct class score of other class

min 2w’ (13)

st. mpy,(w)>1 V(xM ytmy e D,y £y (14)

Exercise: write the objective for the non-separable case
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Recap: hingle loss for binary classification

@ Hinge loss: a convex upperbound on the 0-1 loss

Mengye Ren (NYU)

Loss(m)

ehinge(}/v)?) = max(O, 1—yh(x))

Loss
= Zero_One

== Hinge

0
Margin m=yf(x)
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Generalized hinge loss

@ What's the zero-one loss for multiclass classification?

Aly,y)=T{y#y'} (16)

@ In general, can also have different cost for each class.
e Upper bound on A(y,y’).

y e argmax<w‘1’ x,y')) (17)
y'ey

— (w,¥(x,y)) < (w,¥(x,7)) (18)

= Ay, y) <Ay,y)—(w,(¥(x,y)—Y¥(x,¥))) When are they equal? (19)

@ Generalized hinge loss:

Chinge(y.x, w) & max (Aly.y") = (w, (Yoo y) = ¥(x.y)))) (20)
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Multiclass SVM with Hinge Loss

@ Recall the hinge loss formulation for binary SVM (without the bias term):

N
1
min f||W||2+CZ max | 0,1—y(MwTx(")
weRd 2 —
n=1 margin
@ The multiclass objective:
1 N
: 2 / !
min =|lw||+ C max | A(y, —(w, (Y(x,y)—V¥Y(x,
min Sl Zly,ey oy )= (w, (Yx,y) = ¥(x,y")))
n= margin

e A(y,y’) as target margin for each class.
o If margin m, ,/(w) meets or exceeds its target A(y" y") Yy €Y, then no loss on example n.
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