Kernels \& Probabilistic Modeling

Mengye Ren

NYU

October 3, 2023

Logistics

- Oct 10 (next week): Legislative Day No Class
- Oct 17: Homework 2 Due
- Oct 24: Midterm, in class, covers everything up until Oct 17

Last Lecture

Two ways to derive the SVM optimization problem:

- Maximize the margin
- Minimize the hinge loss with ℓ_{2} regularization

Both leads to the minimum norm solution satisfying certain margin constraints.

- Hard-margin SVM: all points must be correctly classified with the margin constraints
- Soft-margin SVM: allow for margin constraint violation with some penalty

Subgradient: generalize gradient for non-differentiable convex functions
Dual problem: Lagrange multiplier α_{i} for each example.
Strong duality: For some convex problems, the primal and dual have the same solution.

Dual Problem: Dependence on x through inner products

- SVM Dual Problem:

$$
\begin{array}{ll}
\sup _{\alpha} & \sum_{i=1}^{n} \alpha_{i}-\frac{1}{2} \sum_{i, j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} x_{j}^{T} x_{i} \\
\text { s.t. } & \sum_{i=1}^{n} \alpha_{i} y_{i}=0 \\
& \alpha_{i} \in\left[0, \frac{c}{n}\right] i=1, \ldots, n .
\end{array}
$$

- Note that all dependence on inputs x_{i} and x_{j} is through their inner product: $\left\langle x_{j}, x_{i}\right\rangle=x_{j}^{\top} x_{i}$.
- We can replace $x_{j}^{T} x_{i}$ by other products...
- This is a "kernelized" objective function.

Feature Maps

The Input Space X

- Our general learning theory setup: no assumptions about X
- But $X=\mathrm{R}^{d}$ for the specific methods we've developed:
- Ridge regression
- Lasso regression
- Support Vector Machines
- Our hypothesis space for these was all affine functions on R^{d} :

$$
\mathcal{F}=\left\{x \mapsto w^{T} x+b \mid w \in \mathrm{R}^{d}, b \in \mathrm{R}\right\} .
$$

- What if we want to do prediction on inputs not natively in R^{d} ?

The Input Space X

- Often want to use inputs not natively in R^{d} :
- Text documents
- Image files
- Sound recordings
- DNA sequences
- They may be represented in numbers, but...
- The ith entry of each sequence should have the same "meaning"
- All the sequences should have the same length

Feature Extraction

Definition

Mapping an input from X to a vector in R^{d} is called feature extraction or featurization.

Raw Input
 Feature Vector

$$
\mathcal{X} \xrightarrow{x} \begin{aligned}
& \text { Feature } \\
& \text { Extraction }
\end{aligned} \xrightarrow{\phi(x)} \mathbb{R}^{d}
$$

Linear Models with Explicit Feature Map

- Input space: X (no assumptions)
- Introduce feature map $\phi: X \rightarrow \mathrm{R}^{d}$
- The feature map maps into the feature space R^{d}.
- Hypothesis space of affine functions on feature space:

$$
\mathcal{F}=\left\{x \mapsto w^{\top} \phi(x)+b \mid w \in \mathrm{R}^{d}, b \in \mathrm{R}\right\} .
$$

Geometric Example: Two class problem, nonlinear boundary

$$
\begin{aligned}
\Phi: R^{2} & \rightarrow R^{3} \\
\left(x_{1}, x_{2}\right) \mapsto\left(z_{1}, z_{2}, z_{3}\right) & :=\left(x_{1}^{2}, \sqrt{(2)} x_{1} x_{2}, x_{2}^{2}\right)
\end{aligned}
$$

- With identity feature map $\phi(x)=\left(x_{1}, x_{2}\right)$ and linear models, can't separate regions - With appropriate featurization $\phi(x)=\left(x_{1}, x_{2}, x_{1}^{2}+x_{2}^{2}\right)$, becomes linearly separable .
- Video: http://youtu.be/3liCbRZPrZA

Expressivity of Hypothesis Space

- For linear models, to grow the hypothesis spaces, we must add features.
- Sometimes we say a larger hypothesis is more expressive.
- (can fit more relationships between input and action)
- Many ways to create new features.

Handling Nonlinearity with Linear Methods

Example Task: Predicting Health

- General Philosophy: Extract every feature that might be relevant
- Features for medical diagnosis
- height
- weight
- body temperature
- blood pressure
- etc...

Feature Issues for Linear Predictors

- For linear predictors, it's important how features are added
- The relation between a feature and the label may not be linear
- There may be complex dependence among features
- Three types of nonlinearities can cause problems:
- Non-monotonicity
- Saturation
- Interactions between features

Non-monotonicity: The Issue

- Feature Map: $\phi(x)=[1$, temperature $(x)]$
- Action: Predict health score $y \in \mathrm{R}$ (positive is good)
- Hypothesis Space $\mathcal{F}=\{$ affine functions of temperature $\}$
- Issue:
- Health is not an affine function of temperature.
- Affine function can either say
- Very high is bad and very low is good, or
- Very low is bad and very high is good,
- But here, both extremes are bad.

Non-monotonicity: Solution 1

- Transform the input:

$$
\phi(x)=\left[1,\{\text { temperature }(x)-37\}^{2}\right]
$$

where 37 is "normal" temperature in Celsius.

- Ok, but requires manually-specified domain knowledge
- Do we really need that?
- What does $w^{T} \phi(x)$ look like?

Non-monotonicity: Solution 2

- Think less, put in more:

$$
\phi(x)=\left[1, \text { temperature }(x),\{\text { temperature }(x)\}^{2}\right] .
$$

- More expressive than Solution 1.

General Rule

Features should be simple building blocks that can be pieced together.

Saturation: The Issue

- Setting: Find products relevant to user's query
- Input: Product x
- Output: Score the relevance of x to user's query
- Feature Map:

$$
\phi(x)=[1, N(x)],
$$

where $N(x)=$ number of people who bought x.

- We expect a monotonic relationship between $N(x)$ and relevance, but also expect diminishing return.

Saturation: Solve with nonlinear transform

- Smooth nonlinear transformation:

$$
\phi(x)=[1, \log \{1+N(x)\}]
$$

- $\log (\cdot)$ good for values with large dynamic ranges
- Discretization (a discontinuous transformation):

$$
\phi(x)=(\mathbb{1}[0 \leqslant N(x)<10], \mathbb{1}[10 \leqslant N(x)<100], \ldots)
$$

- Small buckets allow quite flexible relationship

Interactions: The Issue

- Input: Patient information x
- Action: Health score $y \in R$ (higher is better)
- Feature Map

$$
\phi(x)=[\operatorname{height}(x), \text { weight }(x)]
$$

- Issue: It's the weight relative to the height that's important.
- Impossible to get with these features and a linear classifier.
- Need some interaction between height and weight.

Interactions: Approach 1

- Google "ideal weight from height"
- J. D. Robinson's "ideal weight" formula:

$$
\text { weight }(\mathrm{kg})=52+1.9[\text { height }(\mathrm{in})-60]
$$

- Make score square deviation between height (h) and ideal weight (w)

$$
f(x)=(52+1.9[h(x)-60]-w(x))^{2}
$$

- WolframAlpha for complicated Mathematics:

$$
f(x)=3.61 h(x)^{2}-3.8 h(x) w(x)-235.6 h(x)+w(x)^{2}+124 w(x)+3844
$$

Interactions: Approach 2

- Just include all second order features:

$$
\phi(x)=[1, h(x), w(x), h(x)^{2}, w(x)^{2}, \underbrace{h(x) w(x)}_{\text {cross term }}]
$$

- More flexible, no Google, no WolframAlpha.

General Principle

Simpler building blocks replace a single "smart" feature.

Monomial Interaction Terms

Interaction terms are useful building blocks to model non-linearities in features.

- Suppose we start with $x=\left(1, x_{1}, \ldots, x_{d}\right) \in \mathrm{R}^{d+1}=X$.
- Consider adding all monomials of degree $M: x_{1}^{p_{1}} \cdots x_{d}^{p_{d}}$, with $p_{1}+\cdots+p_{d}=M$.
- Monomials with degree 2 in 2D space: $x_{1}^{2}, x_{2}^{2}, x_{1} x_{2}$
- How many features will we end up with?

$$
\begin{aligned}
x_{1}^{3} & \mapsto * *|\mid \\
x_{1}^{2} x_{2} & \mapsto *|*| \\
x_{1}^{2} x_{3} & \mapsto *|\mid * \\
x_{1} x_{2}^{2} & \mapsto+|*+| \\
x_{1} x_{2} x_{3} & \mapsto+|*| * \\
x_{1} x_{3}^{2} & \mapsto|\mid * * \\
x_{2}^{3} & \mapsto|* *| \\
x_{2}^{2} x_{3} & \mapsto * * * \\
x_{2} x_{3}^{2} & \mapsto|*| * * \\
x_{3}^{3} & \mapsto|\mid * * *
\end{aligned}
$$

Big Feature Spaces

This leads to extremely large data matrices

- For $d=40$ and $M=8$, we get 314457495 features.

Very large feature spaces have two potential issues:

- Overfitting
- Memory and computational costs

Solutions:

- Overfitting we handle with regularization.
- Kernel methods can help with memory and computational costs when we go to high (or infinite) dimensional spaces.

The Kernel Trick

SVM with Explicit Feature Map

- Let $\psi: X \rightarrow \mathrm{R}^{d}$ be a feature map.
- The SVM objective (with explicit feature map):

$$
\min _{w \in \mathrm{R}^{d}} \frac{1}{2}\|w\|^{2}+\frac{c}{n} \sum_{i=1}^{n} \max \left(0,1-y_{i} w^{T} \psi\left(x_{i}\right)\right) .
$$

- Computation is costly if d is large (e.g. with high-degree monomials)
- Last time we mentioned an equivalent optimization problem from Lagrangian duality.

SVM Dual Problem

- By Lagrangian duality, it is equivalent to solve the following dual problem:

$$
\begin{aligned}
\operatorname{maximize} & \sum_{i=1}^{n} \alpha_{i}-\frac{1}{2} \sum_{i, j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} \psi\left(x_{j}\right)^{T} \psi\left(x_{i}\right) \\
\text { s.t. } & \sum_{i=1}^{n} \alpha_{i} y_{i}=0 \quad \text { and } \quad \alpha_{i} \in\left[0, \frac{c}{n}\right] \quad \forall i .
\end{aligned}
$$

- If α^{*} is an optimal value, then

$$
w^{*}=\sum_{i=1}^{n} \alpha_{i}^{*} y_{i} \psi\left(x_{i}\right) \quad \text { and } \quad \hat{f}(x)=\sum_{i=1}^{n} \alpha_{i}^{*} y_{i} \psi\left(x_{i}\right)^{T} \psi(x) .
$$

- Key observation: $\psi(x)$ only shows up in inner products with another $\psi\left(x^{\prime}\right)$ for both training and inference.

Compute the Inner Products

Consider 2D data. Let's introduce degree-2 monomials using $\psi: R^{2} \rightarrow R^{3}$.

$$
\left(x_{1}, x_{2}\right) \mapsto\left(x_{1}^{2}, \sqrt{2} x_{1} x_{2}, x_{2}^{2}\right)
$$

The inner product is

$$
\begin{aligned}
\psi(x)^{T} \psi\left(x^{\prime}\right) & =x_{1}^{2} x_{1}^{\prime 2}+\left(\sqrt{2} x_{1} x_{2}\right)\left(\sqrt{2} x_{1}^{\prime} x_{2}^{\prime}\right)+x_{2}^{2} x_{2}^{\prime 2} \\
& =\left(x_{1} x_{1}^{\prime}\right)^{2}+2\left(x_{1} x_{1}^{\prime}\right)\left(x_{2} x_{2}^{\prime}\right)+\left(x_{2} x_{2}^{\prime}\right)^{2} \\
& =\left(x_{1} x_{1}^{\prime}+x_{2} x_{2}^{\prime}\right)^{2} \\
& =\left(x^{\top} x^{\prime}\right)^{2}
\end{aligned}
$$

We can calculate the inner product $\psi(x)^{T} \psi\left(x^{\prime}\right)$ in the original input space without accessing the features $\psi(x)$!

Compute the Inner Products

Now, consider monomials up to degree-2:

$$
\left(x_{1}, x_{2}\right) \mapsto\left(1, \sqrt{2} x_{1}, \sqrt{2} x_{2}, x_{1}^{2}, \sqrt{2} x_{1} x_{2}, x_{2}^{2}\right) .
$$

The inner product can be computed by

$$
\left.\psi(x)^{T} \psi\left(x^{\prime}\right)=\left(1+x^{T} x^{\prime}\right)^{2} \quad \text { (check }\right) .
$$

More generally, for features maps producing monomials up to degree- p, we have

$$
\psi(x)^{T} \psi\left(x^{\prime}\right)=\left(1+x^{T} x^{\prime}\right)^{p} .
$$

(Note that the coefficients of each monomial in ψ may not be 1)
Kernel trick: we do not need explicit features to calculate inner products.

- Using explicit features: $O\left(d^{p}\right)$
- Using implicit computation: $O(d)$

Kernel Function

The Kernel Function

- Input space: X
- Feature space: \mathcal{H} (a Hilbert space, e.g. R^{d})
- Feature map: $\psi: X \rightarrow \mathcal{H}$
- The kernel function corresponding to ψ is

$$
k\left(x, x^{\prime}\right)=\left\langle\psi(x), \psi\left(x^{\prime}\right)\right\rangle
$$

where $\langle\cdot, \cdot\rangle$ is the inner product associated with \mathcal{H}.
Why introduce this new notation $k\left(x, x^{\prime}\right)$?

- We can often evaluate $k\left(x, x^{\prime}\right)$ without explicitly computing $\psi(x)$ and $\psi\left(x^{\prime}\right)$. When can we use the kernel trick?

Some Methods Can Be "Kernelized"

Definition

A method is kernelized if every feature vector $\psi(x)$ only appears inside an inner product with another feature vector $\psi\left(x^{\prime}\right)$. This applies to both the optimization problem and the prediction function.

The SVM Dual is a kernelization of the original SVM formulation.
Optimization:

$$
\begin{aligned}
\operatorname{maximize} & \sum_{i=1}^{n} \alpha_{i}-\frac{1}{2} \sum_{i, j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} \psi\left(x_{j}\right)^{T} \psi\left(x_{i}\right) \\
\text { s.t. } & \sum_{i=1}^{n} \alpha_{i} y_{i}=0 \quad \text { and } \quad \alpha_{i} \in\left[0, \frac{c}{n}\right] \quad \forall i .
\end{aligned}
$$

Prediction:

$$
\hat{f}(x)=\sum_{i=1}^{n} \alpha_{i}^{*} y_{i} \psi\left(x_{i}\right)^{T} \psi(x)
$$

The Kernel Matrix

Definition

The kernel matrix for a kernel k on $x_{1}, \ldots, x_{n} \in X$ is

$$
K=\left(k\left(x_{i}, x_{j}\right)\right)_{i, j}=\left(\begin{array}{ccc}
k\left(x_{1}, x_{1}\right) & \cdots & k\left(x_{1}, x_{n}\right) \\
\vdots & \ddots & \cdots \\
k\left(x_{n}, x_{1}\right) & \cdots & k\left(x_{n}, x_{n}\right)
\end{array}\right) \in \mathrm{R}^{n \times n} .
$$

- In ML this is also called a Gram matrix, but traditionally (in linear algebra), Gram matrices are defined without reference to a kernel or feature map.

The Kernel Matrix

- The kernel matrix summarizes all the information we need about the training inputs x_{1}, \ldots, x_{n} to solve a kernelized optimization problem.
- In the kernelized SVM, we can replace $\psi\left(x_{i}\right)^{T} \psi\left(x_{j}\right)$ with $K_{i j}$:

$$
\begin{aligned}
\operatorname{maximize}_{\alpha} & \sum_{i=1}^{n} \alpha_{i}-\frac{1}{2} \sum_{i, j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} K_{i j} \\
\text { s.t. } & \sum_{i=1}^{n} \alpha_{i} y_{i}=0 \quad \text { and } \quad \alpha_{i} \in\left[0, \frac{c}{n}\right] i=1, \ldots, n .
\end{aligned}
$$

Kernel Methods

Given a kernelized ML algorithm (i.e. all $\psi(x)$'s show up as $\left.\left\langle\psi(x), \psi\left(x^{\prime}\right)\right\rangle\right)$,

- Can swap out the inner product for a new kernel function.
- New kernel may correspond to a very high-dimensional feature space.
- Once the kernel matrix is computed, the computational cost depends on number of data points n, rather than the dimension of feature space d.
- Useful when $d \gg n$.
- Computing the kernel matrix may still depend on d and the essence of the trick is getting around this $O(d)$ dependence.

Example Kernels

Kernels as Similarity Scores

- Often useful to think of the $k\left(x, x^{\prime}\right)$ as a similarity score for x and x^{\prime}.
- We can design similarity functions without thinking about the explicit feature map, e.g. "string kernels", "graph kernels".
- How do we know that our kernel functions actually correspond to inner products in some feature space?

How to Get Kernels?

- Explicitly construct $\psi(x): X \rightarrow \mathrm{R}^{d}$ (e.g. monomials) and define $k\left(x, x^{\prime}\right)=\psi(x)^{T} \psi\left(x^{\prime}\right)$.
- Directly define the kernel function $k\left(x, x^{\prime}\right)$ ("similarity score"), and verify it corresponds to $\left\langle\psi(x), \psi\left(x^{\prime}\right)\right\rangle$ for some ψ.

There are many theorems to help us with the second approach.

Linear Algebra Review: Positive Semidefinite Matrices

Definition

A real, symmetric matrix $M \in \mathrm{R}^{n \times n}$ is positive semidefinite (psd) if for any $x \in \mathrm{R}^{n}$,

$$
x^{\top} M x \geqslant 0 .
$$

Theorem

The following conditions are each necessary and sufficient for a symmetric matrix M to be positive semidefinite:

- M can be factorized as $M=R^{T} R$, for some matrix R.
- All eigenvalues of M are greater than or equal to 0 .

Positive Definite Kernel

Definition

A symmetric function $k: X \times X \rightarrow \mathrm{R}$ is a positive definite (pd) kernel on X if for any finite set $\left\{x_{1}, \ldots, x_{n}\right\} \in \mathcal{X}(n \in \mathbb{N})$, the kernel matrix on this set

$$
K=\left(k\left(x_{i}, x_{j}\right)\right)_{i, j}=\left(\begin{array}{ccc}
k\left(x_{1}, x_{1}\right) & \cdots & k\left(x_{1}, x_{n}\right) \\
\vdots & \ddots & \cdots \\
k\left(x_{n}, x_{1}\right) & \cdots & k\left(x_{n}, x_{n}\right)
\end{array}\right)
$$

is a positive semidefinite matrix.

- Symmetric: $k\left(x, x^{\prime}\right)=k\left(x^{\prime}, x\right)$
- The kernel matrix needs to be positive semidefinite for any finite set of points.
- Equivalent definition: $\sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} k\left(x_{i}, x_{j}\right) \geqslant 0$ given $\alpha_{i} \in \mathrm{R} \forall i$.

Mercer's Theorem

Theorem

A symmetric function $k\left(x, x^{\prime}\right)$ can be expressed as an inner product

$$
k\left(x, x^{\prime}\right)=\left\langle\psi(x), \psi\left(x^{\prime}\right)\right\rangle
$$

for some ψ if and only if $k\left(x, x^{\prime}\right)$ is positive definite.

- Proving a kernel function is positive definite is typically not easy.
- But we can construct new kernels from valid kernels.

Generating New Kernels from Old

- Suppose $k, k_{1}, k_{2}: X \times X \rightarrow \mathrm{R}$ are pd kernels. Then so are the following:

$$
\begin{aligned}
& k_{\text {new }}\left(x, x^{\prime}\right)=\alpha k\left(x, x^{\prime}\right) \quad \text { for } \alpha \geqslant 0 \quad \text { (non-negative scaling) } \\
& k_{\text {new }}\left(x, x^{\prime}\right)=k_{1}\left(x, x^{\prime}\right)+k_{2}\left(x, x^{\prime}\right) \quad \text { (sum) } \\
& k_{\text {new }}\left(x, x^{\prime}\right)=k_{1}\left(x, x^{\prime}\right) k_{2}\left(x, x^{\prime}\right) \quad \text { (product) } \\
& k_{\text {new }}\left(x, x^{\prime}\right)=k\left(\psi(x), \psi\left(x^{\prime}\right)\right) \text { for any function } \psi(\cdot) \quad \text { (recursion) } \\
& k_{\text {new }}\left(x, x^{\prime}\right)=f(x) f\left(x^{\prime}\right) \text { for any function } f(\cdot) \quad(f \text { as 1D feature map) }
\end{aligned}
$$

- Lots more theorems to help you construct new kernels from old.

Linear Kernel

- Input space: $X=\mathrm{R}^{d}$
- Feature space: $\mathcal{H}=\mathrm{R}^{d}$, with standard inner product
- Feature map

$$
\psi(x)=x
$$

- Kernel:

$$
k\left(x, x^{\prime}\right)=x^{\top} x^{\prime}
$$

Quadratic Kernel in R^{d}

- Input space $X=\mathrm{R}^{d}$
- Feature space: $\mathcal{H}=\mathrm{R}^{D}$, where $D=d+\binom{d}{2} \approx d^{2} / 2$.
- Feature map:

$$
\psi(x)=\left(x_{1}, \ldots, x_{d}, x_{1}^{2}, \ldots, x_{d}^{2}, \sqrt{2} x_{1} x_{2}, \ldots, \sqrt{2} x_{i} x_{j}, \ldots \sqrt{2} x_{d-1} x_{d}\right)^{T}
$$

- Then for $\forall x, x^{\prime} \in \mathrm{R}^{d}$

$$
\begin{aligned}
k\left(x, x^{\prime}\right) & =\left\langle\psi(x), \psi\left(x^{\prime}\right)\right\rangle \\
& =\left\langle x, x^{\prime}\right\rangle+\left\langle x, x^{\prime}\right\rangle^{2}
\end{aligned}
$$

- Computation for inner product with explicit mapping: $O\left(d^{2}\right)$
- Computation for implicit kernel calculation: $O(d)$.

Polynomial Kernel in R^{d}

- Input space $X=\mathrm{R}^{d}$
- Kernel function:

$$
k\left(x, x^{\prime}\right)=\left(1+\left\langle x, x^{\prime}\right\rangle\right)^{M}
$$

- Corresponds to a feature map with all monomials up to degree M.
- For any M, computing the kernel has same computational cost
- Cost of explicit inner product computation grows rapidly in M.

Radial Basis Function (RBF) / Gaussian Kernel

Input space $X=\mathrm{R}^{d}$

$$
k\left(x, x^{\prime}\right)=\exp \left(-\frac{\left\|x-x^{\prime}\right\|^{2}}{2 \sigma^{2}}\right)
$$

where σ^{2} is known as the bandwidth parameter.

- Probably the most common nonlinear kernel.
- Does it act like a similarity score?
- Have we departed from our "inner product of feature vector" recipe?
- Yes and no: corresponds to an infinite dimensional feature vector

Remaining Questions

Our current recipe:

- Recognize kernelized problem: $\psi(x)$ only occur in inner products $\psi(x)^{T} \psi\left(x^{\prime}\right)$
- Pick a kernel function ("similarity score")
- Compute the kernel matrix (n by n where n is the dataset size)
- Optimize the model and make predictions by accessing the kernel matrix

Next: When can we apply kernelization?

SVM solution is in the "span of the data"

- We found the SVM dual problem can be written as:

$$
\begin{aligned}
\sup _{\alpha \in \mathrm{R}^{n}} & \sum_{i=1}^{n} \alpha_{i}-\frac{1}{2} \sum_{i, j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} x_{j}^{T} x_{i} \\
\text { s.t. } & \sum_{i=1}^{n} \alpha_{i} y_{i}=0 \\
& \alpha_{i} \in\left[0, \frac{c}{n}\right] i=1, \ldots, n .
\end{aligned}
$$

- Given dual solution α^{*}, primal solution is $w^{*}=\sum_{i=1}^{n} \alpha_{i}^{*} y_{i} x_{i}$.
- Notice: w^{*} is a linear combination of training inputs x_{1}, \ldots, x_{n}.
- We refer to this phenomenon by saying " w^{*} is in the span of the data."
- Or in math, $w^{*} \in \operatorname{span}\left(x_{1}, \ldots, x_{n}\right)$.

Ridge regression solution is in the "span of the data"

- The ridge regression solution for regularization parameter $\lambda>0$ is

$$
w^{*}=\underset{w \in \mathrm{R}^{d}}{\arg \min } \frac{1}{n} \sum_{i=1}^{n}\left\{w^{T} x_{i}-y_{i}\right\}^{2}+\lambda\|w\|_{2}^{2} .
$$

- This has a closed form solution:

$$
w^{*}=\left(X^{T} X+\lambda I\right)^{-1} X^{T} y
$$

where X is the design matrix, with x_{1}, \ldots, x_{n} as rows.

Ridge regression solution is in the "span of the data"

- Rearranging $w^{*}=\left(X^{\top} X+\lambda I\right)^{-1} X^{\top} y$, we can show that:

$$
\begin{aligned}
w^{*} & =X^{T} \underbrace{\left(\frac{1}{\lambda} y-\frac{1}{\lambda} X w^{*}\right)}_{\alpha^{*}} \\
& =X^{T} \alpha^{*}=\sum_{i=1}^{n} \alpha_{i}^{*} x_{i}
\end{aligned}
$$

- So w^{*} is in the span of the data.
- i.e. $w^{*} \in \operatorname{span}\left(x_{1}, \ldots, x_{n}\right)$

If solution is in the span of the data, we can reparameterize

- The ridge regression solution for regularization parameter $\lambda>0$ is

$$
w^{*}=\underset{w \in \mathrm{R}^{d}}{\arg \min } \frac{1}{n} \sum_{i=1}^{n}\left\{w^{T} x_{i}-y_{i}\right\}^{2}+\lambda\|w\|_{2}^{2} .
$$

- We now know that $w^{*} \in \operatorname{span}\left(x_{1}, \ldots, x_{n}\right) \subset \mathrm{R}^{d}$.
- So rather than minimizing over all of R^{d}, we can minimize over $\operatorname{span}\left(x_{1}, \ldots, x_{n}\right)$.

$$
w^{*}=\underset{w \in \operatorname{span}\left(x_{1}, \ldots, x_{n}\right)}{\arg \min } \frac{1}{n} \sum_{i=1}^{n}\left\{w^{T} x_{i}-y_{i}\right\}^{2}+\lambda\|w\|_{2}^{2} .
$$

- Let's reparameterize the objective by replacing w as a linear combination of the inputs.

If solution is in the span of the data, we can reparameterize

- Note that for any $w \in \operatorname{span}\left(x_{1}, \ldots, x_{n}\right)$, we have $w=X^{\top} \alpha$, for some $\alpha \in \mathrm{R}^{n}$.
- So let's replace w with $X^{\top} \alpha$ in our optimization problem:

$$
\begin{aligned}
\text { [original] } w^{*} & =\underset{w \in \mathrm{R}^{d}}{\arg \min } \frac{1}{n} \sum_{i=1}^{n}\left\{w^{\top} x_{i}-y_{i}\right\}^{2}+\lambda\|w\|_{2}^{2} \\
\text { [reparameterized] } \alpha^{*} & =\underset{\alpha \in \mathrm{R}^{n}}{\arg \min } \frac{1}{n} \sum_{i=1}^{n}\left\{\left(X^{\top} \alpha\right)^{T} x_{i}-y_{i}\right\}^{2}+\lambda\left\|X^{T} \alpha\right\|_{2}^{2} .
\end{aligned}
$$

- To get w^{*} from the reparameterized optimization problem, we just take $w^{*}=X^{\top} \alpha^{*}$.
- We changed the dimension of our optimization variable from d to n. Is this useful?

Consider very large feature spaces

- Suppose we have a 300-million dimension feature space [very large]
- (e.g. using high order monomial interaction terms as features, as described last lecture)
- Suppose we have a training set of 300,000 examples [fairly large]
- In the original formulation, we solve a 300 -million dimension optimization problem.
- In the reparameterized formulation, we solve a 300,000-dimension optimization problem.
- This is why we care about when the solution is in the span of the data.
- This reparameterization is interesting when we have more features than data $(d \gg n)$.

More General

- For SVM and ridge regression, we found that the solution is in the span of the data.
- The Representer Theorem shows that this "span of the data" result occurs far more generally.

The Representer Theorem (Optional)

- Generalized objective:

$$
w^{*}=\underset{w \in \mathcal{H}}{\arg \min } R(\|w\|)+L\left(\left\langle w, x_{1}\right\rangle, \ldots,\left\langle w, x_{n}\right\rangle\right)
$$

- Representer theorem tells us we can look for w^{*} in the span of the data:

$$
w^{*}=\underset{w \in \operatorname{span}\left(x_{1}, \ldots, x_{n}\right)}{\arg \min } R(\|w\|)+L\left(\left\langle w, x_{1}\right\rangle, \ldots,\left\langle w, x_{n}\right\rangle\right)
$$

- So we can reparameterize as before:

$$
\alpha^{*}=\underset{\alpha \in \mathrm{R}^{n}}{\arg \min } R\left(\left\|\sum_{i=1}^{n} \alpha_{i} x_{i}\right\|\right)+L\left(\left\langle\sum_{i=1}^{n} \alpha_{i} x_{i}, x_{1}\right\rangle, \ldots,\left\langle\sum_{i=1}^{n} \alpha_{i} x_{i}, x_{n}\right\rangle\right) .
$$

- Our reparameterization trick applies much more broadly than SVM and ridge.

Summary

- We formualte the kernelized verions of SVM and ridge regression.
- Many other algorithms can be kernelized.
- Our principled tool for kernelization is reparameterization by the representer theorem.
- Representer theorem says that all norm-regularized linear models can be kernelized.
- Once kernelized, we can apply the kernel trick: doesn't need to represent $\phi(x)$ explicitly.

Overview

Why probabilistic modeling?

- A unified framework that covers many models, e.g., linear regression, logistic regression
- Learning as statistical inference
- Principled ways to incorporate your belief on the data generating distribution (inductive biases)

Two ways of generating data

- Two ways to model how the data is generated:
- Conditional: $p(y \mid x)$
- Generative: $p(x, y)$
- How to estimate the parameters of our model? Maximum likelihood estimation.
- Compare and contrast conditional and generative models.

Conditional models

Linear regression

Linear regression is one of the most important methods in machine learning and statistics.
Goal: Predict a real-valued target y (also called response) from a vector of features x (also called covariates).

Examples:

- Predicting house price given location, condition, build year etc.
- Predicting medical cost of a person given age, sex, region, BMI etc.
- Predicting age of a person based on their photos.

Problem setup

Data Training examples $\mathcal{D}=\left\{\left(x^{(n)}, y^{(n)}\right)\right\}_{n=1}^{N}$, where $x \in \mathbb{R}^{d}$ and $y \in \mathbb{R}$.
Model A linear function h (parametrized by θ) to predict y from x :

$$
\begin{equation*}
h(x)=\sum_{i=0}^{d} \theta_{i} x_{i}=\theta^{T} x \tag{1}
\end{equation*}
$$

where $\theta \in \mathbb{R}^{d}$ are the parameters (also called weights).
Note that

- We incorporate the bias term (also called the intercept term) into x (i.e. $x_{0}=1$).
- We use superscript to denote the example id and subscript to denote the dimension id.

Parameter estimation

Loss function We estimate θ by minimizing the squared loss (the least square method):

$$
\begin{equation*}
J(\theta)=\frac{1}{N} \sum_{n=1}^{N}\left(y^{(n)}-\theta^{T} x^{(n)}\right)^{2} .(\text { empirical risk }) \tag{2}
\end{equation*}
$$

Matrix form - Let $X \in \mathbb{R}^{N \times d}$ be the design matrix whose rows are input features.

- Let $\mathrm{y} \in \mathbb{R}^{N}$ be the vector of all targets.
- We want to solve

$$
\begin{equation*}
\hat{\theta}=\underset{\theta}{\arg \min }(X \theta-y)^{T}(X \theta-y) . \tag{3}
\end{equation*}
$$

Solution Closed-form solution: $\hat{\theta}=\left(X^{\top} X\right)^{-1} X^{\top} y$.

Review questions

- Derive the solution for linear regression.
- What if $X^{\top} X$ is not invertible?

Review

We've seen

- Linear regression: response is a linear function of the inputs
- Estimate parameters by minimize the squared loss

But...

- Why squared loss is a reasonable choice for regression problems?
- What assumptions are we making on the data? (inductive bias)

Next,

- Derive linear regression from a probabilistic modeling perspective.

Assumptions in linear regression

- x and y are related through a linear function:

$$
\begin{equation*}
y=\theta^{T} x+\epsilon, \tag{4}
\end{equation*}
$$

where ϵ is the residual error capturing all unmodeled effects (e.g., noise).

- The errors are distributed iid (independently and identically distributed):

$$
\begin{equation*}
\epsilon \sim \mathcal{N}\left(0, \sigma^{2}\right) \tag{5}
\end{equation*}
$$

What's the distribution of $Y \mid X=x$?

$$
\begin{equation*}
p(y \mid x ; \theta)=\mathcal{N}\left(\theta^{\top} x, \sigma^{2}\right) . \tag{6}
\end{equation*}
$$

Imagine putting a Gaussian bump around the output of the linear predictor.

Maximum likelihood estimation (MLE)

Given a probabilistic model and a dataset \mathcal{D}, how to estimate the model parameters θ ?
The maximum likelihood principle says that we should maximize the (conditional) likelihood of the data:

$$
\begin{align*}
L(\theta) & \stackrel{\text { def }}{=} p(\mathcal{D} ; \theta) \tag{7}\\
& =\prod_{n=1}^{N} p\left(y^{(n)} \mid x^{(n)} ; \theta\right) . \quad \text { (examples are distributed iid) } \tag{8}
\end{align*}
$$

In practice, we maximize the \log likelihood $\ell(\theta)$, or equivalently, minimize the negative log likelihood (NLL).

MLE for linear regression

Let's find the MLE solution for our model. Recall that $Y \mid X=x \sim \mathcal{N}\left(\theta^{T} x, \sigma^{2}\right)$.

$$
\begin{align*}
\ell(\theta) & \stackrel{\text { def }}{=} \log L(\theta) \tag{9}\\
& =\log \prod_{n=1}^{N} p\left(y^{(n)} \mid x^{(n)} ; \theta\right) \tag{10}\\
& =\sum_{n=1}^{N} \log p\left(y^{(n)} \mid x^{(n)} ; \theta\right) \tag{11}\\
& =\sum_{n=1}^{N} \log \frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{\left(y^{(n)}-\theta^{T} x^{(n)}\right)^{2}}{2 \sigma^{2}}\right) \tag{12}\\
& =N \log \frac{1}{\sqrt{2 \pi} \sigma}-\frac{1}{2 \sigma^{2}} \sum_{n=1}^{N}\left(y^{(n)}-\theta^{T} x^{(n)}\right)^{2} \tag{13}
\end{align*}
$$

