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Linearly Separable Data

Consider a linearly separable dataset D:

Find a separating hyperplane such that

o w'x; >0 for all x; where y; =+1

o w'x; <0 for all x; where y; =—1
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The Perceptron Algorithm

Initialize w <0

@ While not converged (exists misclassified examples)
o For (xj,y;) €D
o If y;wTx; < 0 (wrong prediction)
o Update w < w+y;x;

Intuition: move towards misclassified positive examples and away from negative examples

e Guarantees to find a zero-error classifier (if one exists) in finite steps

What is the loss function if we consider this as a SGD algorithm?
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Minimize the Hinge Loss J
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Perceptron Loss

U(x,y, w) =max(0,—yw " x)

4&;0’9‘7

—
m< \&WT’X
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Maximum-Margin Separating Hyperplane

For separable data, there are infinitely many zero-error classifiers.

Which one do we pick?

(Perceptron does not return a unique solution.)
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Maximum-Margin Separating Hyperplane

We prefer the classifier that is farthest from both classes of points

e Geometric margin: smallest distance between the hyperplane and the points

@ Maximum margin: /argest distance to the closest points
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Geometric Margin

We want to maximize the distance between the separating hyperplane and the closest points.
Let's formalize the problem.

Definition (separating hyperplane)

We say (x;,y;) for i=1,...,n are linearly separable if there is a w € RY and b € R such that
yi(wTxj+b) >0 for all i. The set {v € R?|w”v+b=0}is called a separating hyperplane.

Definition (geometric margin)

Let H be a hyperplane that separates the data (x;,y;) for i=1,...,n. The geometric margin
of this hyperplane is
mind(x;, H),
1

the distance from the hyperplane to the closest data point.
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Distance between a Point and a Hyperplane

Any point on the plane p, and normal
vector w/||w||2

w

llwlly

'—p)Tw

Projection of x onto the normal: (X||W|\2

(X/—p)TW:X/TW—pTW:

x'Tw+b (since pTw+b=0)

Signed distance between x’ and

/

Hyperplane H: wix'tb

f(a:):b-‘erz:O

Taking into account of the label y:

T,/
dix’, H) = )
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Maximize the Margin

We want to maximize the geometric margin:
maximize mind(x;, H).
1
Given separating hyperplane H = {v| wliv+b= O}, we have
. _ YilwTx +b)
maximize min ———
i [wl|2
Let's remove the inner minimization problem by

maximize M

subject to yilw?x+b) >M foralli

Twil2
Note that the solution is not unique (why?).
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Maximize the Margin

Let's fix the norm ||jw||2 to 1/M to obtain:

maximize —L—
Iwll2

subject to  yj(w'xj+b)>1 forall i
It's equivalent to solving the minimization problem
. . . 1 2
minimize 5 |lwl|5

subject to  yj(w'xj+b) =1 forall i

Note that y;(w T x; + b) is the (functional) margin. The optimization finds the minimum norm
solution which has a margin of at least 1 on all examples.
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Not linearly separable

What if the data is not linearly separable?

For any w, there will be points with a negative margin.
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Soft Margin SVM

Introduce slack variables &'s to penalize small margin:

minimize  {|w|3+ <37 &
subject to  yj(wTxi+b)>1—E&; forall i
£, >0 foralli

o If £ =0Vi, it's reduced to hard SVM.

@ What does &; > 0 mean?
@ What does C control?
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Slack Variables

d(X/yH) = yi(WTXi+b) 17&"

o wllz T vl

margin:

@ &; =1: x; lies on the hyperplane

, thus &; measures the violation by multiples of the geometric

e &; =3: x; is past 2 margin width beyond the decision hyperplane
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Minimize the Hinge Loss J
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Perceptron Loss
7x)

U(x,y,w) =max(0,—yw ' x

4%

—
m< \AWT’X

If we do ERM with this loss function, what happens?
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Hinge Loss

e SVM/Hinge loss: £Hinge = max{l1—m,0} = (1—m)_

e Margin m = yf(x); “Positive part” (x)+ =x1[x > 0].

Loss
=== Zero_One

== Hinge

Loss(m)

0
Margin m=yf(x)

Hinge is a convex, upper bound on 0—1 loss. Not differentiable at m = 1.
We have a “margin error” when m < 1.
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SVM as an Optimization Problem
@ The SVM optimization problem is equivalent to
minimize  MwiP+SY &
1M1z —||W — i
2 n 4 !
i=1
subject to &
which is equivalent to
1 ¢ w
. 2
minimize = = - ;
inimiz 2||W|| +n;£
. T .
subjectto & =max (0,1—y; [w'x+b]) fori=1,...,n.
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SVM as an Optimization Problem

. 1, > €
minimize §||W|| +nzlii
=
. T .
subject to &;2max(0,1—y; [W X,-—i—b]) fori=1,...,n.

Move the constraint into the objective:

. 1 2 C . T
min  —|lw||*+— max (0,1 —y; |w' x;+b]|).
i I+ 5 2 max (01— [+ )
@ The first term is the L2 regularizer.

@ The second term is the Hinge loss.
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Support Vector Machine

Using ERM:
o Hypothesis space = {f(x) =w'x+b|w eR? beR}.
e {5 regularization (Tikhonov style)
e Hinge loss {(m) = max{1—m,0} = (1—m)_

The SVM prediction function is the solution to

N TR - T s
Weg]dl,T)EREHWH +n;max(0,1—y, [w'xi+b]).

Not differentiable because of the max
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Summary

Two ways to derive the SVM optimization problem:
@ Maximize the margin
@ Minimize the hinge loss with £, regularization
Both leads to the minimum norm solution satisfying certain margin constraints.
e Hard-margin SVM: all points must be correctly classified with the margin constraints

@ Soft-margin SVM: allow for margin constraint violation with some penalty
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Subgradient Descent

Now that we have the objective, can we do SGD on it?

Subgradient: generalize gradient for non-differentiable convex functions

Mengye Ren (NYU) CSCI-GA 2565 September 26, 2023 23 /52



SVM Optimization Problem (no intercept)

@ SVM objective function:
J(w) = 1 i max (0 1 —y'WTX') + Allwl?
n — 1 1 1 -
=
o Not differentiable... but let's think about gradient descent anyway.

@ Hinge loss: {(m) =max(0,1—m)

Vwllw) = V, (iZf(y,-WTx,')—i-?\HWw)

i=1

= EZVWB (y,-WTX,') +2Aw
n i=1
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“Gradient” of SVM Objective

@ Derivative of hinge loss £(m) = max(0,1—m):

0 m>1
U(m=<-1 m<1
undefined m=1

@ By chain rule, we have

Val (yiwTxi) = U (yiw”x) yixi
0 yiwTx;>1
= VX yiwTx <1

undefined yjw'x =1

Mengye Ren (NYU) CSCI-GA 2565 September 26, 2023 25 /52



“Gradient” of SVM Objective

0 y,-WTx,- >1
Vil (y,-WTx,-) = —YiX; yiwTx; <1
undefined yiw'x; =1

So
_ EZH wTx 2
Vuwd(w) = V, (ni-lﬂ(y,w x,)+7\||w|| )

= %ZVW(’, (y,-WTxi) +2Aw

i=1
_ %Z,-:yiwerl(—y;X,-)—i-Z?\W all yiwTx; #1
undefined otherwise
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Gradient Descent on SVM Objective?

@ The gradient of the SVM objective is

Vadw) == 3 (—yix) +2Aw

iryiwT x;<1
when y;w T x; # 1 for all i, and otherwise is undefined.

Potential arguments for why we shouldn’t care about the points of nondifferentiability:

o If we start with a random w, will we ever hit exactly yjw T x; =17
e If we did, could we perturb the step size by € to miss such a point?

@ Does it even make sense to check y;w ' x; =1 with floating point numbers?
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Subgradient J
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First-Order Condition for Convex, Differentiable Function

@ Suppose f :R? — R is convex and differentiable Then for any x,y € RY
fly) = f(x)+VF(x) T (y—x)

@ The linear approximation to f at x is a global underestimator of f:

() /

(z, f(2))

fl@) + V@) (y-=2)

@ This implies that if Vf(x) =0 then x is a global minimizer of f.

Figure from Boyd & Vandenberghe Fig. 3.2; Proof in Section 3.1.3
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Subgradient Descent

@ Move along the negative subgradient:
xt =xt—ng where g € df(x?) and >0
@ This can increase the objective but gets us closer to the minimizer if f is convex and n is

small enough:

I — x| < [lx" = x|

@ Subgradients don't necessarily converge to zero as we get closer to x*, so we need
decreasing step sizes.

@ Subgradient methods are slower than gradient descent.
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Subgradient descent for SVM

SVM objective function:

J(w) = %Z max (0,1—y;w " x;) +Allw|?.
i—1

Pegasos: stochastic subgradient descent with step size 1 = 1/(tA)

Input: A > 0. Choose w; =0,t =0
While termination condition not met

For j =1,...,n (assumes data is randomly permuted)
t=t+1
ne =1/ (tA);

If yj’thCL‘j <1

Wip1 = (1 = meA)ws + ey
Else

wiy1 = (1 —neA)wy
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Summary

@ Subgradient: generalize gradient for non-differentiable convex functions

@ Subgradient “descent’:
o General method for non-smooth functions
o Simple to implement

o Slow to converge
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The Dual Problem

@ In addition to subgradient descent, we can directly solve the optimization problem using a
QP solver.

@ For convex optimization problem, we can also look into its dual problem.
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The Lagrangian
The general [inequality-constrained| optimization problem is:
minimize fo(x)

subject to fi(x)<0, i=1,....m

Definition
The Lagrangian for this optimization problem is

L(x,A) = fo(x +Z?\f

@ A;'s are called Lagrange multipliers (also called the dual variables).
@ Weighted sum of the objective and constraint functions

@ Hard constraints — soft penalty (objective function)
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Lagrange Dual Function

Definition

The Lagrange dual function is

g(\) = infL(x,\) = inf <f0(x) —l—Z?x;f;(x))

i=1

@ g(A) is concave

e Lower bound property: if A =0, g(A) < p* where p* is the optimal value of the
optimization problem.

@ g(A) can be —oco (uninformative lower bound)
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The Primal and the Dual

@ For any primal form optimization problem,

minimize fo(x)
subject to fi(x)<0, i=1,....,m,

there is a recipe for constructing a corresponding Lagrangian dual problem:

maximize  g(A)

subject to Ai=0, i=1,....m,

@ The dual problem is always a convex optimization problem.
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Weak Duality

We always have weak duality: p* > d*.

Jfo q
fo(z)

Plot courtesy of Brett Bernstein.
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Strong Duality

For some problems, we have strong duality: p* = d*.

foll
fo(z)

For convex problems, strong duality is fairly typical.

Plot courtesy of Brett Bernstein.
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Complementary Slackness

@ Assume strong duality. Let x* be primal optimal and A* be dual optimal. Then:

fo(x*) = g(A")=inf L(x,A\*) (strong duality and definition)

< L(x*,A")

= flx*)+ ) AFfi(x)
i=1

< folx®).

Each term in sum }_;_; A'fi(x*) must actually be 0. That is
Ai>0=— £(x*)=0 and fi(x")<0=— A, =0 Vi

This condition is known as complementary slackness.
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The SVM Dual Problem J
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SVM Lagrange Multipliers

. 1 c o
minimize *||W||2+*ZE,,'
2 n—

subject to —&, <0 fo:izl,...,n
(1*)0 [WTX;+b])—E;<0 fori=1,...,n

Lagrange Multiplier \ Constraint ‘
Ai &£ <0
o (1—y,- [WTX;+b])—E,i<0

L(w,b,& o) = f||w||2+ Za,+Zoc, (1—yi[wxi+b] - +ZA

i=1

Dual optimum value: d* =supy a=qinfw beLl(w,b, & o, A)
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Strong Duality by Slater's Constraint Qualification

The SVM optimization problem:

o 1, 5 €
minimize §||W|| + - Zl &i
=
subject to —&; <0fori=1,...,n
(1—y,~ [WTX;+b])—£,- <0fori=1,...,n
Slater's constraint qualification:
@ Convex problem + affine constraints = strong duality iff problem is feasible
@ Do we have a feasible point?

@ For SVM, we have strong duality.
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SVM Dual Function: First Order Conditions

Lagrange dual function is the inf over primal variables of L:

glo,A) = WizfgL(w, b, &, o, N\)

R B R
AT

onl=0 <— W—Z(X,'y,'X,'ZO e

0pl=0 —

O0g,L =0 <+
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SVM Dual Function

@ Substituting these conditions back into L, the second term disappears.

@ First and third terms become

1 T 1 ¢ -
EW w = 5 Z Xi&jyiyiX; Xj
ij=1
n n n n
ZOL;(l—y,' [WTX,'—i-b]) = ZO(,'— Z oc,-ocjy,-ijij,-—bZ oG Y.
i=1 i=1 ij=1 i=1
0
o Putting it together, the dual function is
n .15 n vy Ty > i1 xiyi=0
o) = 4 =1 T2 Zaj SOV X o e all
—00 otherwise.

Mengye Ren (NYU) CSCI-GA 2565 September 26, 2023 44 /52



SVM Dual Problem

@ The dual function is

n
n 1 n T Z,’:1 o;yi=0
L — Y e KiOGYiViX; X )
g(o) = D i1 221,171 iGYYiX Xi i n=¢, all i
—00 otherwise.

e The dual problem is sup, -og(a,A):

n n
1 T
sup E Xi—3 E XiljyiyjXj Xi
oA .7 2 S

i=1 ij=1

n
s.t. ZO(,'y,'ZO
i=1
C .
x+Ai=— o« ,Ai=0,i=1,...,n
n
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Insights from the Dual Problem J
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KKT Conditions

For convex problems, if Slater's condition is satisfied, then KKT conditions provide necessary
and sufficient conditions for the optimal solution.

@ Primal feasibility: f;(x) <0 Vi
@ Dual feasibility: A =0
o Complementary slackness: A;fj(x) =0

o First-order condition: 3
—L(x,A\)=0
0x
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The SVM Dual Solution

o We found the SVM dual problem can be written as:

sup
x

s.t.

n n
1 T
E &%= E XiX;YiyjXj Xi
i=1 ij=1

n
Z a;y; =0
i—1

oc,-E[O,E} i=1...n
n

e Given solution o* to dual, primal solution is w* =Y 7 | ofyix;.

@ The solution is in the space spanned by the inputs.

e Note o € [0, ¢]. So ¢ controls max weight on each example. (Robustness!)

o What's the relation between ¢ and regularization?
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Complementary Slackness Conditions

@ Recall our primal constraints and Lagrange multipliers:

’ Lagrange Multiplier ‘ Constraint ‘
)\i 'E»i X
Xi (1 Yi ( I)) E»/ X

@ Recall first order condition V¢, L =0 gave us A7 = < — o}

@ By strong duality, we must have complementary slackness:
of (L=yif*(x)— &) =0
NEr=(S-ag) g =0
n
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Consequences of Complementary Slackness

By strong duality, we must have complementary slackness.
of (L=yif*(x)—&) =0

c * *
(5-o)ei=0

Recall “slack variable” &F = max (0,1 —y;f*(x;)) is the hinge loss on (x;, ;).
o If y;f*(x;) > 1 then the margin loss is £ =0, and we get ocf =0.
o If y;f*(x;) <1 then the margin loss is £; >0, so of = 7.

o If af =0, then &F =0, which implies no loss, so y;f*(x) > 1.

o If af € (0,€), then £F =0, which implies 1—y;f*(x;) =0.
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Complementary Slackness Results: Summary

If o* is a solution to the dual problem, then primal solution is

n
c
w = 'Zloc}ky,-x; wherea € [0, ;]
=

Relation between margin and example weights («;'s):

o =0 = yf'(x)=>1
o € (O, %) = yiff(x) =1

o :% = yif"(x) <1
yif*(x) <1l = oc?‘:%
yif'(x)=1 = o € [0, %]
yiff(xj)>1 = «of =0
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Support Vectors

o If o* is a solution to the dual problem, then primal solution is

n

* *

w :E X YiXi
i=1

with off € [0, £].
@ The x;'s corresponding to «} > 0 are called support vectors.

@ Few margin errors or “on the margin” examples = sparsity in input examples.
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