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Complexity of Hypothesis Spaces

What is the trade-off between approximation error and estimation error?

Bigger F: better approximation but can overfit (need more samples)

Smaller F: less likely to overfit but can be farther from the true function

To control the “size” of F, we need some measure of its complexity:

Number of variables / features

Degree of polynomial
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General Approach to Control Complexity

1. Learn a sequence of models varying in complexity from the training data

F1 ⊂ F2 ⊂ Fn · · · ⊂ F

Example: Polynomial Functions
F = {all polynomial functions}

Fd = {all polynomials of degree ⩽ d}

2. Select one of these models based on a score (e.g. validation error)
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Feature Selection in Linear Regression

Nested sequence of hypothesis spaces: F1 ⊂ F2 ⊂ Fn · · · ⊂ F

F = {linear functions using all features}

Fd = {linear functions using fewer than d features}

Best subset selection:

Choose the subset of features that is best according to the score (e.g. validation error)
Example with two features: Train models using {}, {X1}, {X2}, {X1,X2}, respectively

Not an efficient search algorithm; iterating over all subsets becomes very expensive with a
large number of features
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Greedy Selection Methods

Forward selection:

1. Start with an empty set of features S

2. For each feature i not in S

Learn a model using features S ∪ i
Compute score of the model: αi

3. Find the candidate feature with the highest score: j = argmaxi αi

4. If αj improves the current best score, add feature j : S ← S ∪ j and go to step 2; return S
otherwise.

Backward Selection:

Start with all features; in each iteration, remove the worst feature
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Feature Selection: Discussion

Number of features as a measure of the complexity of a linear prediction function

General approach to feature selection:
Define a score that balances training error and complexity

Find the subset of features that maximizes the score

Forward & backward selection do not guarantee to find the best solution.

Forward & backward selection do not in general result in the same subset.

Could there be a more consistent way of formulating feature selection as an optimization
problem?
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ℓ2 and ℓ1 Regularization
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Complexity Penalty

An objective that balances number of features and prediction performance:

score(S) = training_loss(S)+λ|S | (1)

λ balances the training loss and the number of features used.

Adding an extra feature must be justified by at least λ improvement in training loss

Larger λ → complex models are penalized more heavily
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Complexity Penalty

Goal: Balance the complexity of the hypothesis space F and the training loss

Complexity measure: Ω : F→ [0,∞), e.g. number of features

Penalized ERM (Tikhonov regularization)

For complexity measure Ω : F→ [0,∞) and fixed λ⩾ 0,

min
f∈F

1
n

n∑
i=1

ℓ(f (xi ),yi )+λΩ(f )

As usual, we find λ using the validation data.

Number of features as complexity measure is not differentiable and hard to optimize—other
measures?
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Soft Selection

We can imagine having a weight for each feature dimension.

In linear regression, the model weights multiply each feature dimension:

f (x) = w⊤x

If wi is zero or close to zero, then it means that we are not using the i-th feature.
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Weight Shrinkage: Intuition

Why would we prefer a regression line with smaller slope (unless the data strongly supports
a larger slope)?

More stable: small change in the input does not cause large change in the output

If we push the estimated weights to be small, re-estimating them on a new dataset
wouldn’t cause the prediction function to change dramatically (less sensitive to noise in
data)
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Weight Shrinkage: Polynomial Regression

n-th feature dimension is the n-th power of x: 1,x ,x2, ...

Large weights are needed to make the curve wiggle sufficiently to overfit the data

ŷ = 0.001x7+0.003x3+1 less likely to overfit than ŷ = 1000x7+500x3+1

(Adapated from Mark Schmidt’s slide)
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Linear Regression with ℓ2 Regularization

We have a linear model

F =
{
f : Rd → R | f (x) = wT x for w ∈ Rd

}
Square loss: ℓ(ŷ ,y) = (y − ŷ)2

Training data Dn = ((x1,y1), . . . ,(xn,yn))

Linear least squares regression is ERM for square loss over F:

ŵ = argmin
w∈Rd

1
n

n∑
i=1

(wT xi − yi )
2

This often overfits, especially when d is large compared to n (e.g. in NLP one can have
1M features for 10K documents).

Mengye Ren (NYU) CSCI-GA 2565 September 19, 2023 13 / 47



Linear Regression with L2 Regularization

Penalizes large weights:

ŵ = argmin
w∈Rd

1
n

n∑
i=1

{
wT xi − yi

}2
+λ∥w∥22,

where ∥w∥22 = w2
1 + · · ·+w2

d is the square of the ℓ2-norm.

Also known as ridge regression.

Equivalent to linear least square regression when λ= 0.

ℓ2 regularization can be used for other models too (e.g. neural networks).
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ℓ2 regularization reduces sensitivity to changes in input

f̂ (x) = ŵT x is Lipschitz continuous with Lipschitz constant L= ∥ŵ∥2: when moving
from x to x +h, f̂ changes no more than L∥h∥.

ℓ2 regularization controls the maximum rate of change of f̂ .

Proof: ∣∣∣f̂ (x +h)− f̂ (x)
∣∣∣ = |ŵT (x +h)− ŵT x |=

∣∣ŵTh
∣∣

⩽ ∥ŵ∥2∥h∥2 (Cauchy-Schwarz inequality)

Other norms also provide a bound on L due to the equivalence of norms:
∃C > 0 s.t. ∥ŵ∥2 ⩽ C∥ŵ∥p
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Linear Regression vs. Ridge Regression

Objective:
Linear: L(w) = 1

2∥Xw − y∥22
Ridge: L(w) = 1

2∥Xw − y∥22+ λ
2 ∥w∥

2
2

Gradient:
Linear: ∇L(w) = XT (Xw − y)

Ridge: ∇L(w) = XT (Xw − y)+λw

Also known as weight decay in neural networks

Closed-form solution:
Linear: XTXw = XT y -> w = (XTX )−1XT y

Ridge: (XTX +λI )w = XT y -> w = (XTX +λI )−1XT y

(XTX +λI ) is always invertible
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Constrained Optimization

L2 regularizer is a term in our optimization objective.

w∗ = argmin
w

1
2
∥Xw − y∥22+

λ

2
∥w∥22

This is also called the Tikhonov form.

The Lagrangian theory allows us to interpret the second term as a constraint.

w∗ = argmin
w :||w ||22⩽r

1
2
∥Xw − y∥22

At optimum, the gradients of the main objective and the constraint cancel out.

This is also called the Ivanov form.
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Ivanov vs. Tikhonov Regularization

Let L : F→ R be any performance measure of f
e.g. L(f ) could be the empirical risk of f

For many L and Ω, Ivanov and Tikhonov are equivalent:
Any solution f ∗ we can get from Ivanov, we can also get from Tikhonov.

Any solution f ∗ we can get from Tikhonov, we can also get from Ivanov.

The conditions for this equivalence can be derived from the Lagrangian theory.

In practice, both approaches are effective: we will use whichever one is more convenient
for training or analysis.
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Ridge Regression: Regularization Path

Modified from Hastie, Tibshirani, and Wainwright’s Statistical Learning with Sparsity, Fig 2.1. About predicting crime in 50 US cities.
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Lasso Regression

Penalize the ℓ1 norm of the weights:

Lasso Regression (Tikhonov Form, soft penalty)

ŵ = argmin
w∈Rd

1
n

n∑
i=1

{
wT xi − yi

}2
+λ∥w∥1,

where ∥w∥1 = |w1|+ · · ·+ |wd | is the ℓ1-norm.
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Ridge vs. Lasso: Regularization Paths

Lasso yields sparse weights.

Modified from Hastie, Tibshirani, and Wainwright’s Statistical Learning with Sparsity, Fig 2.1. About predicting crime in 50 US cities.
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The Benefits of Sparsity

The coefficient for a feature is 0 =⇒ the feature is not needed for prediction. Why is that
useful?

Faster to compute the features; cheaper to measure or annotate them

Less memory to store features (deployment on a mobile device)

Interpretability: identifies the important features

Prediction function may generalize better (model is less complex)
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Why does ℓ1 Regularization Lead to Sparsity?
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Lasso Regression

Penalize the ℓ1 norm of the weights:

Lasso Regression (Tikhonov Form, soft penalty)

ŵ = argmin
w∈Rd

1
n

n∑
i=1

{
wT xi − yi

}2
+λ∥w∥1,

where ∥w∥1 = |w1|+ · · ·+ |wd | is the ℓ1-norm.
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Regularization as Constrained ERM

Constrained ERM (Ivanov regularization)

For complexity measure Ω : F→ [0,∞) and fixed r ⩾ 0,

min
f∈F

1
n

n∑
i=1

ℓ(f (xi ),yi )

s.t. Ω(f )⩽ r

Lasso Regression (Ivanov Form, hard constraint)

The lasso regression solution for complexity parameter r ⩾ 0 is

ŵ = argmin
∥w∥1⩽r

1
n

n∑
i=1

{
wT xi − yi

}2
.

r has the same role as λ in penalized ERM (Tikhonov).
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The ℓ1 and ℓ2 Norm Constraints

Let’s consider F = {f (x) = w1x1+w2x2} space)

We can represent each function in F as a point (w1,w2) ∈ R2.

Where in R2 are the functions that satisfy the Ivanov regularization constraint for ℓ1 and
ℓ2?

ℓ2 contour:
w2

1 +w2
2 = r

ℓ1 contour:
|w1|+ |w2|= r

Where are the sparse solutions?
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Visualizing Regularization

f ∗r = argminw∈R2
∑n

i=1
(
wT xi − yi

)2 subject to w2
1 +w2

2 ⩽ r

Blue region: Area satisfying complexity constraint: w2
1 +w2

2 ⩽ r

Red lines: contours of the empirical risk R̂n(w) =
∑n

i=1
(
wT xi − yi

)2.

KPM Fig. 13.3
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Why Does ℓ1 Regularization Encourage Sparse Solutions?

f ∗r = argminw∈R2
1
n

∑n
i=1

(
wT xi − yi

)2 subject to |w1|+ |w2|⩽ r

Blue region: Area satisfying complexity constraint: |w1|+ |w2|⩽ r

Red lines: contours of the empirical risk R̂n(w) =
∑n

i=1
(
wT xi − yi

)2.

ℓ1 solution tends to touch the corners.
KPM Fig. 13.3
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Why Does ℓ1 Regularization Encourage Sparse Solutions?

Suppose the loss contour is growing like a perfect circle/sphere.
Geometric intuition: Projection onto diamond encourages solutions at corners.

ŵ in red/green regions are closest to corners in the ℓ1 “ball”.

Fig from Mairal et al.’s Sparse Modeling for Image and Vision Processing Fig 1.6
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Why Does ℓ1 Regularization Encourage Sparse Solutions?

Suppose the loss contour is growing like a perfect circle/sphere.
Geometric intuition: Projection onto ℓ2 sphere favors all directions equally.

Fig from Mairal et al.’s Sparse Modeling for Image and Vision Processing Fig 1.6
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Why does ℓ2 Encourage Sparsity? Optimization Perspective

For ℓ2 regularization,

As wi becomes smaller, there is less and less penalty
What is the ℓ2 penalty for wi = 0.0001?

The gradient—which determines the pace of optimization—decreases as wi approaches
zero

Less incentive to make a small weight equal to exactly zero

For ℓ1 regularization,

The gradient stays the same as the weights approach zero

This pushes the weights to be exactly zero even if they are already small
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(
ℓq
)

Regularization

We can generalize to ℓq : (∥w∥q)q = |w1|
q+ |w2|

q.

Note: ∥w∥q is only a norm if q ⩾ 1, but not for q ∈ (0,1)

When q < 1, the ℓq constraint is non-convex, so it is hard to optimize; lasso is good
enough in practice

ℓ0 (∥w∥0) is defined as the number of non-zero weights, i.e. subset selection
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Minimizing the lasso objective
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Minimizing the lasso objective

The ridge regression objective is differentiable (and there is a closed form solution)

Lasso objective function:

min
w∈Rd

n∑
i=1

(
wT xi − yi

)2
+λ∥w∥1

∥w∥1 = |w1|+ . . .+ |wd | is not differentiable!

We will briefly review three approaches for finding the minimum:
Quadratic programming

Projected SGD

Coordinate descent
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Rewriting the Absolute Value

Consider any number a ∈ R.

Let the positive part of a be
a+ = a1[a⩾ 0].

Let the negative part of a be
a− =−a1[a⩽ 0].

Is it always the case that a+ ⩾ 0 and a− ⩾ 0?

How do you write a in terms of a+ and a−?

How do you write |a| in terms of a+ and a−?
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The Lasso as a Quadratic Program

Substituting w = w+−w− and |w |= w++w− results in an equivalent problem:

min
w+,w−

n∑
i=1

((
w+−w−

)T
xi − yi

)2
+λ1T

(
w++w−

)
subject to w+

i ⩾ 0 for all i and w−
i ⩾ 0 for all i ,

This objective is differentiable (in fact, convex and quadratic)

How many variables does the new objective have?

This is a quadratic program: a convex quadratic objective with linear constraints.

Quadratic programming is a very well understood problem; we can plug this into a generic
QP solver.
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Are we missing some constraints?

We have claimed that the following objective is equivalent to the lasso problem:

min
w+,w−

n∑
i=1

((
w+−w−

)T
xi − yi

)2
+λ1T

(
w++w−

)
subject to w+

i ⩾ 0 for all i w−
i ⩾ 0 for all i ,

When we plug this optimization problem into a QP solver,
it just sees 2d variables and 2d constraints.

Doesn’t know we want w+
i and w−

i to be positive and negative parts of wi .

Turns out that these constraints will be satisfied anyway!

To make it clear that the solver isn’t aware of the constraints of w+
i and w−

i , let’s denote
them ai and bi
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The Lasso as a Quadratic Program

(Trivially) reformulating the lasso problem:

min
w

min
a,b

n∑
i=1

(
(a−b)T xi − yi

)2
+λ1T (a+b)

subject to ai ⩾ 0 for all i bi ⩾ 0 for all i ,
a−b = w

a+b = |w |

Claim: Don’t need the constraint a+b = |w |.

Exercise: Prove by showing that the optimal solutions a∗ and b∗ satisfies min(a∗,b∗) = 0,
hence a∗+b∗ = |w |.
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The Lasso as a Quadratic Program

min
w

min
a,b

n∑
i=1

(
(a−b)T xi − yi

)2
+λ1T (a+b)

subject to ai ⩾ 0 for all i bi ⩾ 0 for all i ,
a−b = w

Claim: Can remove minw and the constraint a−b = w .

Exercise: Prove by switching the order of the minimization.
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Second Option: Projected SGD

Now that we have a differentiable objective, we could also use gradient descent

But how do we handle the constraints?

min
w+,w−∈Rd

n∑
i=1

((
w+−w−

)T
xi − yi

)2
+λ1T

(
w++w−

)
subject to w+

i ⩾ 0 for all i
w−
i ⩾ 0 for all i

Projected SGD is just like SGD, but after each step
We project w+ and w− into the constraint set.

In other words, if any component of w+ or w− becomes negative, we set it back to 0.
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Third Option: Coordinate Descent Method

Goal: Minimize L(w) = L(w1, . . . ,wd) over w = (w1, . . . ,wd) ∈ Rd .

In gradient descent or SGD, each step potentially changes all entries of w .

In coordinate descent, each step adjusts only a single coordinate wi .

wnew
i = argmin

wi

L(w1, . . . ,wi−1,wi,wi+1, . . . ,wd)

Solving the argmin for a particular coordinate may itself be an iterative process.

Coordinate descent is an effective method when it’s easy (or easier) to minimize w.r.t. one
coordinate at a time
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Coordinate Descent Method

Goal: Minimize L(w) = L(w1, . . .wd) over w = (w1, . . . ,wd) ∈ Rd .
Initialize w (0) = 0

while not converged:
Choose a coordinate j ∈ {1, . . . ,d}

wnew
j ← argminwj

L(w
(t)
1 , . . . ,w

(t)
j−1,wj,w

(t)
j+1, . . . ,w

(t)
d )

w (t+1)← w (t) and w
(t+1)
j ← wnew

j

t← t+1

Random coordinate choice =⇒ stochastic coordinate descent

Cyclic coordinate choice =⇒ cyclic coordinate descent
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Coordinate Descent Method for Lasso

ŵj = argmin
wj∈R

n∑
i=1

(
wT xi − yi

)2
+λ |w |1

Set the gradient of wj to 0. Let w−j denote w without the j-th component, and xi ,−j denote xi
without the j-th component.

2
∑
i

(wT xi − yi )xi ,j +λ
|ŵj |

ŵj
= 0

2
∑
i

(ŵjxi ,j +wT
−jxi ,−j − yi )xi ,j +λ

|ŵj |

ŵj
= 0

ŵj2
∑
i

x2
i ,j +2

∑
i

(wT
−jxi ,−j − yi )xi ,j +λ

|ŵj |

ŵj
= 0
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Coordinate Descent Method for Lasso

ŵj2
∑
i

x2
i ,j︸ ︷︷ ︸

aj

−2
∑
i

(yi −wT
−jxi ,−j)xi ,j︸ ︷︷ ︸

cj

+λ
|ŵj |

ŵj
= 0

ŵjaj − cj +λsgn(ŵj) = 0

ŵj =


cj−λ

aj
if ŵj > 0

cj+λ

aj
if ŵj < 0

[cj −λ,cj +λ] if ŵj = 0
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Coordinate Descent Method for Lasso

ŵj =


cj−λ

aj
if ŵj > 0

cj+λ

aj
if ŵj < 0

[−cj −λ,−cj +λ] if ŵj = 0

Because aj =
∑

i x
2
i ,j ⩾ 0, so

ŵj =


cj−λ

aj
if cj −λ > 0

cj+λ

aj
if cj +λ < 0

0 if −λ⩽ cj ⩽ λ

The lasso objective coordinate minimization has a closed form.
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Coordinate Descent in General

In general, coordinate descent is not competitive with gradient descent: its convergence
rate is slower and the iteration cost is similar

But it works very well for certain problems

Very simple and easy to implement

Example applications: lasso regression, SVMs

Mengye Ren (NYU) CSCI-GA 2565 September 19, 2023 46 / 47



Summary

Controlling the complexity of the hypothesis space

Feature selection

Regularization

L2 vs. L1 regularization (ridge and lasso)

Tikhonov vs. Ivanov (soft penalty vs. hard constraint)

Three ways of optimizing lasso regression: QP, Project SGD, Coordinate Descent
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