Gradient Descent and Loss Functions

Mengye Ren

NYU

September 12, 2023

- Homework 1 will be released on course website today (Sept 12). You have until Oct 3 noon (12pm) to finish.
- Submit PDF to Gradescope.
- Course website: https://cs.nyu.edu/courses/fall23/CSCI-GA.2565-001/

Review: ERM

Our Machine Learning Setup

Prediction Function

A prediction function gets input x and produces an output $\hat{y} = f(x)$.

Loss Function

A loss function $\ell(\hat{y}, y)$ evaluates an action in the context of the outcome y.

Risk and the Bayes Prediction Function

Definition

The **risk** of a prediction function $f : \mathcal{X} \to \mathcal{Y}$ is

 $R(f) = \mathbb{E}\ell(f(x), y).$

In words, it's the expected loss of f on a new example (x, y) drawn randomly from $P_{\mathcal{X} \times \mathcal{Y}}$.

Definition

A Bayes prediction function f^* is a function that achieves the *minimal risk* among all possible functions:

 $f^* \in \underset{f}{\operatorname{arg\,min}} R(f),$

• The risk of a Bayes prediction function is called the Bayes risk.

The Empirical Risk

Let $\mathcal{D}_n = ((x_1, y_1), \dots, (x_n, y_n))$ be drawn i.i.d. from $\mathcal{P}_{\mathfrak{X} \times \mathfrak{Y}}$.

Definition

The **empirical risk** of f with respect to \mathcal{D}_n is

$$\hat{R}_n(f) = \frac{1}{n} \sum_{i=1}^n \ell(f(x_i), y_i).$$

• The unconstrained empirical risk minimizer can overfit.

• i.e. if we minimize $\hat{R}_n(f)$ over all functions, we overfit.

Constrained Empirical Risk Minimization

Definition

A hypothesis space \mathcal{F} is a set of functions mapping $\mathfrak{X} \to \mathcal{Y}$.

- This is the collection of prediction functions we are choosing from.
- An empirical risk minimizer (ERM) in \mathcal{F} is

$$\hat{f}_n \in \operatorname*{arg\,min}_{f\in\mathcal{F}} \frac{1}{n} \sum_{i=1}^n \ell(f(x_i), y_i).$$

- From now on "ERM" always means "constrained ERM".
- So we should always specify the hypothesis space when we're doing ERM.

Example: Linear Least Squares Regression

Setup

- Loss: $\ell(\hat{y}, y) = (y \hat{y})^2$
- Hypothesis space: $\mathcal{F} = \{ f : \mathbb{R}^d \to \mathbb{R} \mid f(x) = w^T x, w \in \mathbb{R}^d \}$
- Given a data set $\mathcal{D}_n = \{(x_1, y_1), \dots, (x_n, y_n)\},\$
 - Our goal is to find the ERM $\hat{f} \in \mathcal{F}$.

Example: Linear Least Squares Regression

Objective Function: Empirical Risk

We want to find the function in \mathcal{F} , parametrized by $w \in \mathbb{R}^d$, that minimizes the empirical risk:

$$\hat{R}_{n}(w) = \frac{1}{n} \sum_{i=1}^{n} (w^{T} x_{i} - y_{i})^{2}$$

• How do we solve this optimization problem?

$$\min_{w\in \mathsf{R}^d} \hat{R}_n(w)$$

• (For OLS there's a closed form solution, but in general there isn't.)

Gradient Descent

Unconstrained Optimization

Setting

We assume that the objective function $f: \mathsf{R}^d \to \mathsf{R}$ is differentiable. We want to find

$$x^* = \arg\min_{x \in \mathsf{R}^d} f(x)$$

The Gradient

- Let $f : \mathbb{R}^d \to \mathbb{R}$ be differentiable at $x_0 \in \mathbb{R}^d$.
- The gradient of f at the point x₀, denoted ∇_xf(x₀), is the direction in which f(x) increases fastest, if we start from x₀.
- The gradient of f is the partial derivatives of all dimensions: $\nabla f(x) = [\partial f / \partial x_1(x), ..., \partial f / \partial x_d(x)].$

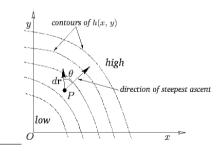


Figure A.111 from Newtonian Dynamics, by Richard Fitzpatrick.

Mengye Ren (NYU)

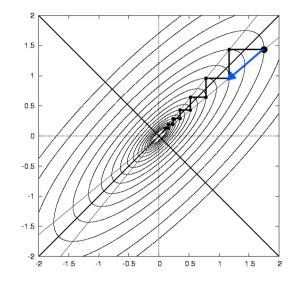
Gradient Descent

• To reach a local minimum as fast as possible, we want to go in the opposite direction from the gradient.

Gradient Descent

- Initialize $x \leftarrow 0$.
- Repeat:
 - $x \leftarrow x \eta \nabla f(x)$
- until the stopping criterion is satisfied.
- The "step size" η is not the amount by which we update x!
- "Step size" is also referred to as "learning rate" in neural networks literature.

Gradient Descent Path



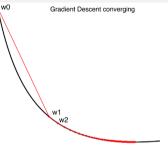
Mengye Ren (NYU)

CSCI-GA 2565

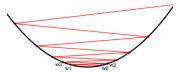
Gradient Descent: Step Size

A fixed step size will work, eventually, as long as it's small enough

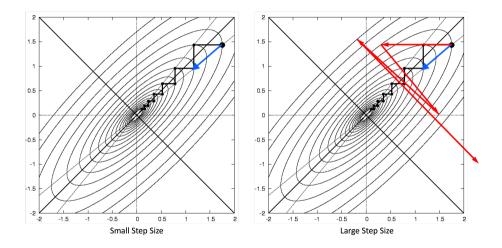
- If η is too large, the optimization process might diverge
- In practice, it often makes sense to try several fixed step sizes
- Intuition on when to take big steps and when to take small steps?



Gradient Descent diverging (stepsize too large)



2D Divergence example



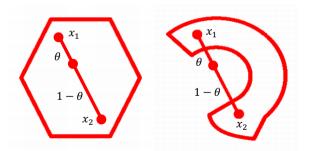
- Gradient descent with an appropriate step size converges to stationary point (derivative = 0) for differentiable functions.
- Stationary points can be (local) minima, (local) maxima, saddle points, etc.
- Gradient descent can converge to global minimum for convex functions.

Convex Sets

Definition

A set C is **convex** if for any $x_1, x_2 \in C$ and any θ with $0 \leq \theta \leq 1$ we have

 $\theta x_1 + (1-\theta)x_2 \in C.$

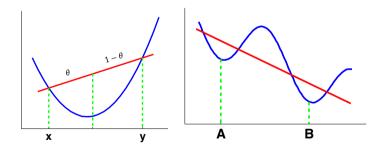


Convex Functions

Definition

A function $f : \mathbb{R}^n \to \mathbb{R}$ is **convex** if **dom** f is a convex set and if for all $x, y \in \mathbf{dom} f$, and $0 \leq \theta \leq 1$, we have

$$f(\theta x + (1-\theta)y) \leq \theta f(x) + (1-\theta)f(y).$$



Convergence Theorem for Fixed Step Size

Theorem

Suppose $f : \mathbb{R}^d \to \mathbb{R}$ is convex and differentiable, and ∇f is **Lipschitz continuous** with constant L > 0 (L-smooth), i.e.

$$\|\nabla f(x) - \nabla f(x')\| \leq L \|x - x'\|$$

for any $x, x' \in \mathbb{R}^d$. Then gradient descent with fixed step size $\eta \leq 1/L$ converges. In particular,

$$f(x^{(k)}) - f(x^*) \leq \frac{\|x^{(0)} - x^*\|^2}{2\eta k}.$$

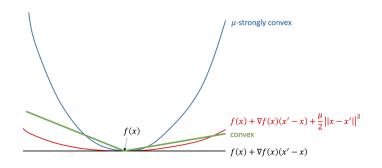
This says that gradient descent is guaranteed to converge and that it converges with rate O(1/k).

Strongly Convex Functions

Definition

A function f is $\mu\text{-strongly convex}$ if

$$f(x') \ge f(x) + \nabla f(x) \cdot (x' - x) + \frac{\mu}{2} ||x - x'||^2$$



Convergence Theorem for Strongly Convex Functions

Theorem

If f is L-smooth and μ -strongly convex, and step size $0 < \eta \leq \frac{1}{L}$, then gradient descent converges with the following inequality:

$$\|x^{(k)} - x^*\|^2 \leq (1 - \eta\mu)^k \|x^{(0)} - x^*\|^2$$

This means we can get linear convergence, but it depends on μ . If the estimate of μ is bad then the rate is not great.

Gradient Descent: When to Stop?

- Wait until $\|\nabla f(x)\|_2 \leq \varepsilon$, for some ε of your choosing.
 - (Recall $\nabla f(x) = 0$ at a local minimum.)
- Early stopping:
 - evalute loss on validation data (unseen held out data) after each iteration;
 - stop when the loss does not improve (or gets worse).

Gradient Descent for Empirical Risk - Scaling Issues

Quick recap: Gradient Descent for ERM

- We have a hypothesis space of functions $\mathcal{F} = \left\{ f_w : \mathfrak{X} \to \mathcal{Y} \mid w \in \mathsf{R}^d \right\}$
 - Parameterized by $w \in \mathbb{R}^d$.
- Finding an empirical risk minimizer entails finding a w that minimizes

$$\hat{R}_n(w) = \frac{1}{n} \sum_{i=1}^n \ell(f_w(x_i), y_i)$$

- Suppose $\ell(f_w(x_i), y_i)$ is differentiable as a function of w.
- Then we can do gradient descent on $\hat{R}_n(w)$

• At every iteration, we compute the gradient at the current w:

$$\nabla \hat{R}_n(w) = \frac{1}{n} \sum_{i=1}^n \nabla_w \ell(f_w(x_i), y_i)$$

- How does this scale with *n*?
- We have to iterate over all n training points to take a single step. [O(n)]
- Can we make progress without looking at all the data before updating w?

Stochastic Gradient Descent

- Instead of using the gradient, we use a noisy estimate of the gradient.
- Turns out this can work just fine!
- Intuition:
 - Gradient descent is an iterative procedure anyway.
 - At every step, we have a chance to recover from previous missteps.

Minibatch Gradient

• The full gradient is

$$\nabla \hat{R}_n(w) = \frac{1}{n} \sum_{i=1}^n \nabla_w \ell(f_w(x_i), y_i)$$

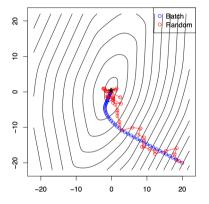
- It's an average over the full batch of data $\mathcal{D}_n = \{(x_1, y_1), \dots, (x_n, y_n)\}$.
- Let's take a random subsample of size N (called a minibatch):

$$(x_{m_1}, y_{m_1}), \ldots, (x_{m_N}, y_{m_N})$$

• The minibatch gradient is

$$\nabla \hat{R}_{N}(w) = \frac{1}{N} \sum_{i=1}^{N} \nabla_{w} \ell(f_{w}(x_{m_{i}}), y_{m_{i}})$$

Batch vs Stochastic Methods



(Slide adapted from Ryan Tibshirani)

Rule of thumb for stochastic methods:

- Stochastic methods work well far from the optimum
- But struggle close the the optimum

Minibatch Gradient Properties

• The minibatch gradient is an **unbiased estimator** for the [full] batch gradient. What does that mean?

$$\mathbb{E}\left[\nabla\hat{R}_{N}(w)\right] = \nabla\hat{R}_{n}(w)$$

• The bigger the minibatch, the better the estimate.

$$\operatorname{Var}\left[\nabla\hat{R}_{N}(w)\right] = \operatorname{Var}\left[\frac{1}{N}\sum_{i}\nabla\hat{R}_{i}(w)\right] = \frac{1}{N^{2}}\operatorname{Var}\left[\sum_{i}\nabla\hat{R}_{i}(w)\right] = \frac{1}{N}\operatorname{Var}\left[\nabla\hat{R}_{i}(w)\right]$$

- Tradeoffs of minibatch size:
 - Bigger $N \implies$ Better estimate of gradient, but slower (more data to process)
 - Smaller $N \implies$ Worse estimate of gradient, but can be quite fast
- ${\ensuremath{\, \bullet }}$ Because of vectorization, the computation cost of minibatches is sublinear

Mengye Ren (NYU)

CSCI-GA 2565

- For convergence guarantee, use **diminishing step sizes**, e.g. $\eta_k = 1/k$
- Theoretically, GD is much faster than SGD in terms of convergence rate and number of steps:
 - much faster to add a digit of accuracy (more details later)
 - costlier to compute a single step
 - but most of that advantage comes into play once we're already pretty close to the minimum
 - in many ML problems we don't care about optimizing to high accuracy (why?)

Step Sizes in Minibatch Gradient Descent

Minibatch Gradient Descent (minibatch size N)

- initialize w = 0
- repeat
 - randomly choose N points $\{(x_i, y_i)\}_{i=1}^N \subset \mathcal{D}_n$

•
$$w \leftarrow w - \eta \left[\frac{1}{N} \sum_{i=1}^{N} \nabla_{w} \ell(f_{w}(x_{i}), y_{i}) \right]$$

- For SGD, fixed step size can work well in practice.
- Typical approach: Fixed step size reduced by constant factor whenever validation performance stops improving (staircase decay).
- \bullet Other schedules: inverse time decay (1/t) etc.

Convergence of SGD Theorem (Optional)

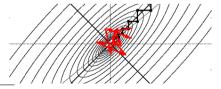
More on why we need a diminishing step size.

Theorem

If f is L-smooth and convex, and SGD has bounded variance $Var(\nabla f(x^{(k)})) \leq \sigma^2$ for all k, then SGD with step size $\eta \leq \frac{1}{I}$ satisifies:

$$\min_{k} \mathbb{E}[\|f(x^{(k)}\|^2] \leq \frac{f(x^{(0)} - f(x^*))}{\sum_{k} \eta_k} + \frac{L\sigma^2}{2} \frac{\sum_{k} \eta_k^2}{\sum_{k} \eta_k}$$

The extra term of variance will dominate if the step size does not decrease. ¹



¹https://www.cs.ubc.ca/~schmidtm/Courses/540-W19/L11.pdf

Convergence of SGD Theorem (Optional)

Theorem

If f is L-smooth and convex, and SGD has bounded variance $Var(\nabla f(x^{(k)})) \leq \sigma^2$ for all k, then SGD with step size $\eta \leq \frac{1}{L}$ satisifies:

$$\min_{k} \mathbb{E}[\|f(x^{(k)}\|^2] \leq \frac{f(x^{(0)} - f(x^*))}{\sum_{k} \eta_k} + \frac{L\sigma^2}{2} \frac{\sum_{k} \eta_k^2}{\sum_{k} \eta_k}$$

• If
$$\eta_k = \eta$$
, then $\sum_k \eta_k = k\eta$, $\sum_k \eta_k^2 = k\eta^2$, error= $O(1/k) + O(\eta)$.

• If $\eta_k = \eta/k$, then $\sum_k \eta_k = O(\log(k)), \sum_k \eta_k^2 = O(1)$, error= $O(1/\log(k))$.

• If
$$\eta_k = \eta/\sqrt{k}$$
, then $\sum_k \eta_k = O(\sqrt{k})$, $\sum_k \eta_k^2 = O(\log(k))$,
error= $O(\log(k)/\sqrt{k}) = \tilde{O}(1/\sqrt{k})$.

Summary

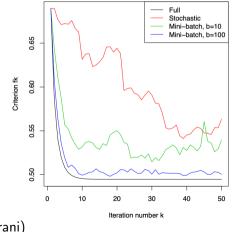
- Gradient descent or "full-batch" gradient descent
 - Use full data set of size *n* to determine step direction
- Minibatch gradient descent
 - Use a random subset of size N to determine step direction
- Stochastic gradient descent
 - Minibatch with N = 1.
 - Use a single randomly chosen point to determine step direction.

These days terminology isn't used so consistently, so when referring to SGD, always clarify the [mini]batch size.

SGD is much more efficient in time and memory cost and has been quite successful in large-scale ML.

Example: Logistic regression with ℓ_2 regularization

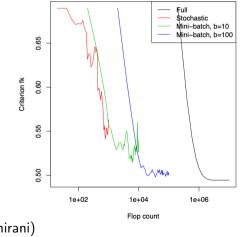
Batch methods converge faster :



(Example from Ryan Tibshirani)

Example: Logistic regression with ℓ_2 regularization

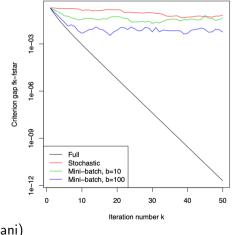
Stochastic methods are computationally more efficient:



(Example from Ryan Tibshirani)

Example: Logistic regression with ℓ_2 regularization

Batch methods are much faster close to the optimum:



(Example from Ryan Tibshirani)

Loss Functions: Regression

Regression Problems

- Examples:
 - Predicting the stock price given history prices
 - Predicting medical cost of given age, sex, region, BMI etc.
 - Predicting the age of a person based on their photos
- Notation:
 - \hat{y} is the predicted value (the action)
 - y is the actual observed value (the outcome)

Loss Functions for Regression

• A loss function in general:

$$(\hat{y}, y) \mapsto \ell(\hat{y}, y) \in \mathsf{R}$$

- Regression losses usually only depend on the residual $r = y \hat{y}$.
 - what you have to add to your prediction to get the correct answer.
- A loss $\ell(\hat{y}, y)$ is called **distance-based** if:
 - **1** It only depends on the residual:

$$\ell(\hat{y}, y) = \psi(y - \hat{y})$$
 for some $\psi: \mathsf{R} \to \mathsf{R}$

2 It is zero when the residual is 0:

 $\psi(0) = 0$

Distance-Based Losses are Translation Invariant

• Distance-based losses are translation-invariant. That is,

$$\ell(\hat{y}+b,y+b) = \ell(\hat{y},y) \qquad \forall b \in \mathsf{R}.$$

- When might you not want to use a translation-invariant loss?
- Sometimes the relative error $\frac{\hat{y}-y}{y}$ is a more natural loss (but not translation-invariant)
- Often you can transform response y so it's translation-invariant (e.g. log transform)

Some Losses for Regression

- Residual: $r = y \hat{y}$
- Square or ℓ_2 Loss: $\ell(r) = r^2$
- Absolute or Laplace or ℓ_1 Loss: $\ell(r) = |r|$

у	ŷ	$ r = y - \hat{y} $	$r^2 = (y - \hat{y})^2$
1	0	1	1
5	0	5	25
10	0	10	100
50	0	50	2500

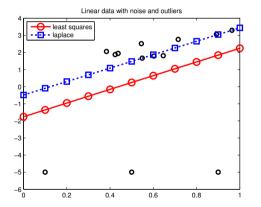
- An outlier is a data point that differs significantly from other observations.
- Outliers typically have large residuals.
- Square loss much more affected by outliers than absolute loss.

Mengye Ren (NYU)

CSCI-GA 2565

Loss Function Robustness

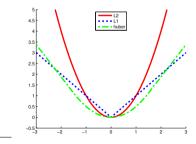
• Robustness refers to how affected a learning algorithm is by outliers.



KPM Figure 7.6

Some Losses for Regression

- Square or ℓ_2 Loss: $\ell(r) = r^2$ (not robust)
- Absolute or Laplace Loss: $\ell(r) = |r|$ (not differentiable)
 - gives median regression
- Huber Loss: Quadratic for |r| ≤ δ and linear for |r| > δ (robust and differentiable)
 Equal values and slopes at r = δ



KPM Figure 7.6

Classification Loss Functions

The Classification Problem

- Examples:
 - Predict whether the image contains a cat
 - Predict whether the email is spam
- Classification spaces:
 - Input space R^d
 - Outcome space $\mathcal{Y} = \{-1,1\}$
- Inference:

$$f(x) > 0 \implies \text{Predict } 1$$

 $f(x) < 0 \implies \text{Predict } -1$

How can we optimize the model output?

The Score Function

- Output space $\mathcal{Y} = \{-1, 1\}$
- Real-valued prediction function $f : \mathfrak{X} \to \mathsf{R}$

Definition

The value f(x) is called the **score** for the input *x*.

- In this context, f may be called a score function.
- The magnitude of the score can be interpreted as our confidence of our prediction.

The Margin

Definition

The margin (or functional margin) for a predicted score \hat{y} and the true class $y \in \{-1, 1\}$ is $y\hat{y}$.

- The margin is often written as yf(x), where f(x) is our score function.
- The margin is a measure of how **correct** we are:
 - If y and \hat{y} are the same sign, prediction is **correct** and margin is **positive**.
 - If y and \hat{y} have different sign, prediction is **incorrect** and margin is **negative**.
- We want to maximize the margin.
- Most classification losses depend only on the margin (they are margin-based losses).

Classification Losses: 0-1 Loss

- If \tilde{f} is the inference function (1 if f(x) > 0 and -1 otherwise), then
- The 0-1 loss for $f : \mathcal{X} \to \{-1, 1\}$:

$$\ell(f(x), y) = \mathbb{1}(\tilde{f}(x) \neq y)$$

• Empirical risk for 0-1 loss:

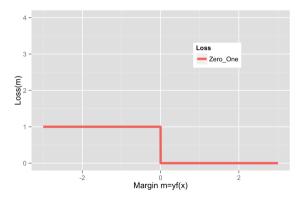
$$\hat{R}_n(f) = \frac{1}{n} \sum_{i=1}^n \mathbb{1}(y_i f(x_i) \leq 0)$$

Minimizing empirical 0-1 risk not computationally feasible.

 $\hat{R}_n(f)$ is non-convex, not differentiable, and even discontinuous.

Classification Losses

Zero-One loss: $\ell_{0-1} = 1 (m \leq 0)$



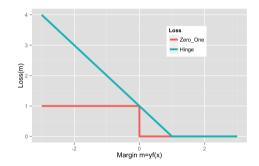
• x-axis is margin: $m > 0 \iff$ correct classification

Mengye Ren (NYU)

CSCI-GA 2565

Hinge Loss

SVM/Hinge loss: $\ell_{\text{Hinge}} = \max(1 - m, 0)$



Hinge is a convex, upper bound on 0-1 loss. Not differentiable at m = 1.

We will cover SVM and Hinge loss in more details in future lectures.

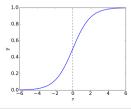
Mengye Ren (NYU)

CSCI-GA 2565

Logistic Regression

- Also known as linear classification. Logistic regression is not actually "regression."
- Two equivalent types of logistic regression losses, depending on the labels.
- If the label is 0 or 1:
- $\hat{y} = \sigma(z)$, where σ is the sigmoid function, and $z = f(x) = w^{\top}x$.

$$\sigma(z) = \frac{1}{1 + \exp(-z)}$$



Logistic Regression

- If the label is 0 or 1:
- $\hat{y} = \sigma(z)$, where σ is the sigmoid function.

$$\sigma(z) = \frac{1}{1 + \exp(-z)}$$

• The loss is binary cross entropy:

$$\ell_{\text{Logistic}} = -y \log(\hat{y}) - (1-y) \log(1-\hat{y})$$

• Remember the negative sign!

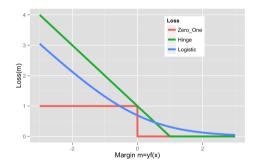
Logistic Regression

- If the label is -1 o 1:
- Note: $1 \sigma(z) = \sigma(-z)$
- Now we can derive an equivalent loss form:

$$\begin{split} \ell_{\text{Logistic}} &= \begin{cases} -\log(\sigma(z)) & \text{if } y = 1\\ -\log(\sigma(-z)) & \text{if } y = -1 \end{cases} \\ &= -\log(\sigma(yz)) \\ &= -\log(\frac{1}{1+e^{-yz}}) \\ &= \log(1+e^{-m}). \end{split}$$

Logistic Loss

Logistic/Log loss: $\ell_{\text{Logistic}} = \log(1 + e^{-m})$



Logistic loss is differentiable. Logistic loss always rewards a larger margin (the loss is never 0).

What About Square Loss for Classification?

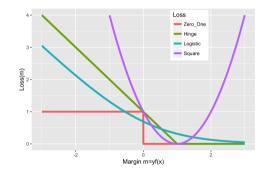
• Loss
$$\ell(f(x), y) = (f(x) - y)^2$$
.

- Turns out, can write this in terms of margin m = f(x)y:
- Using fact that $y^2 = 1$, since $y \in \{-1, 1\}$.

$$\ell(f(x), y) = (f(x) - y)^{2}$$

= $f^{2}(x) - 2f(x)y + y^{2}$
= $f^{2}(x)y^{2} - 2f(x)y + 1$
= $(1 - f(x)y)^{2}$
= $(1 - m)^{2}$

What About Square Loss for Classification?



Heavily penalizes outliers (e.g. mislabeled examples).

- Gradient descent: step size/learning rate, batch size, convergence
- Loss functions for regression and classification problems.
- Regression: Squared (L2) loss, Absolute (L1) loss, Huber loss.
- Classification: Hinge loss, Logistic loss.
- Residual, margin
- Logistic regression