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Homework 1

@ Homework 1 will be released on course website today (Sept 12). You have until Oct 3
noon (12pm) to finish.

@ Submit PDF to Gradescope.

e Course website: https://cs.nyu.edu/courses/fall23/CSCI-GA.2565-001/
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Review: ERM
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Our Machine Learning Setup

Prediction Function
A prediction function gets input x and produces an output y = f(x).

Loss Function
A loss function £(y, y) evaluates an action in the context of the outcome y.
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Risk and the Bayes Prediction Function
Definition
The risk of a prediction function f: X — Y is
R(f) =FEL(f(x),y).
In words, it's the expected loss of f on a new example (x,y) drawn randomly from Py yy.

Definition

A Bayes prediction function f* is a function that achieves the minimal risk among all
possible functions:

f* €argminR(f),
f

@ The risk of a Bayes prediction function is called the Bayes risk.
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The Empirical Risk

Let Dp=((x1,¥1),...,(Xn,¥n)) be drawn i.i.d. from Py .

Definition
The empirical risk of f with respect to D, is

@ The unconstrained empirical risk minimizer can overfit.

o i.e. if we minimize R,(f) over all functions, we overfit.
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Constrained Empirical Risk Minimization

Definition
A hypothesis space J is a set of functions mapping X — Y.
@ This is the collection of prediction functions we are choosing from.

e An empirical risk minimizer (ERM) in J is

. 1 ¢
f, € argmin 7Z€(f(x,-),y,-).
feg Ni—]

@ From now on “"ERM" always means “constrained ERM".

@ So we should always specify the hypothesis space when we're doing ERM.
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Example: Linear Least Squares Regression

Setup
o Loss: U(9,y) = (y—)?
o Hypothesis space: F={f:RY = R|f(x)=w'x, weR?}

o Given a data set D, ={(x1,%1),..., (Xn, ¥n)
o Our goal is to find the ERM fed.
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Example: Linear Least Squares Regression

Objective Function: Empirical Risk

We want to find the function in J, parametrized by w € RY, that minimizes the empirical risk:

Rolw) == 3 (W= 1)

@ How do we solve this optimization problem?

min Rp(w)
wERd

@ (For OLS there's a closed form solution, but in general there isn't.)
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Gradient Descent J
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Unconstrained Optimization

Setting

We assume that the objective function f : RY — R is differentiable.
We want to find

x* =arg min f(x)
x€Rd
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The Gradient

o Let 7:RY — R be differentiable at xp € RY.

@ The gradient of f at the poi

int xp, denoted V,f(xg), is the direction in which f(x)

increases fastest, if we start from xg.

@ The gradient of f is the partial derivatives of all dimensions:

Vf(x)=I[0f/0x1(x),...,

fr

of /0xq(x)].

contours of h(z, y)

e "-\

Figure A.111 from Newtonian Dynamics, by R

Mengye Ren (NYU)

.. . high

%\\- direction of steepest ascent

low & %

ichard Fitzpatrick.

CSCI-GA 2565 September 12, 2023

12 /60



Gradient Descent

@ To reach a local minimum as fast as possible, we want to go in the opposite direction from
the gradient.

Gradient Descent

@ Initialize x < 0.

@ Repeat:
o x+ x—1mVFf(x)

until the stopping criterion is satisfied.

@ The “step size” n is not the amount by which we update x!

(]

“Step size" is also referred to as “learning rate” in neural networks literature.
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Gradient Descent Path

-05 | 4
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Gradient Descent: Step Size

wo Gradient Descent converging

A fixed step size will work, eventually, as long
as it's small enough
o If n is too large, the optimization process
might diverge

@ In practice, it often makes sense to try
several fixed step sizes

Gradient Descent diverging (stepsize too large)

@ Intuition on when to take big steps and
when to take small steps?
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2D Divergence example
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Notes on Convergence

e Gradient descent with an appropriate step size converges to stationary point (derivative =
0) for differentiable functions.

e Stationary points can be (local) minima, (local) maxima, saddle points, etc.

@ Gradient descent can converge to global minimum for convex functions.
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Convex Sets

Definition

A set C is convex if for any x1,x; € C and any 0 with 0 <6 <1 we have

Ox1+(1—0)xx € C.

KPM Fig. 7.4
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Convex Functions

Definition

A function f :R" — R is convex if dom f is a convex set and if for all x,y € dom f, and
0< 0 <1, we have

f(Ox+(1—0)y) <O0f(x)+(1—0)f(y).

KPM Fig. 7.5
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Convergence Theorem for Fixed Step Size

Theorem

Suppose f : RY — R is convex and differentiable, and Vf is Lipschitz continuous with
constant L >0 (L-smooth), i.e.

IVFf(x)=VF(x)| < L||x—x'|

for any x,x’ € R9. Then gradient descent with fixed step size < 1/L converges. In particular,

(0)_X*||2
£ KDY F (et <||X _
(4 — ) <

This says that gradient descent is guaranteed to converge and that it converges with rate

O(1/k).
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Strongly Convex Functions

Definition

A function f is p-strongly convex if

f(x") > f(x)+VF(x)- (x'—X)+%L||X—x’H2

p-strongly convex

)+ @G =) +5lx - 2]
f) convex

g FO) + V(' —x)
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Convergence Theorem for Strongly Convex Functions

Theorem

If f is L-smooth and w-strongly convex, and step size 0 <n < % then gradient descent
converges with the following inequality:

[x ) —x*]12 < (1 —mp)k|[x© —x*|)2

This means we can get linear convergence, but it depends on . If the estimate of w is bad
then the rate is not great.
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Gradient Descent: When to Stop?

e Wait until ||[Vf(x)]|2 < ¢, for some ¢ of your choosing.
o (Recall Vf(x) =0 at a local minimum.)

o Early stopping:
o evalute loss on validation data (unseen held out data) after each iteration;

o stop when the loss does not improve (or gets worse).
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Gradient Descent for Empirical Risk - Scaling Issues J
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Quick recap: Gradient Descent for ERM

@ We have a hypothesis space of functions F = {fw X —=Ylwe Rd}
o Parameterized by w € RY.

e Finding an empirical risk minimizer entails finding a w that minimizes
1 n
Rn(w) = n;e(fw(x,-),y,-)

@ Suppose £(fy(x;),y;) is differentiable as a function of w.

@ Then we can do gradient descent on R,(w)
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Gradient Descent: Scalability

@ At every iteration, we compute the gradient at the current w:
1 n

VRo(w) = nzlvwe(fw(x;),y;)
1=

@ How does this scale with n?
@ We have to iterate over all n training points to take a single step. [O(n)]

e Can we make progress without looking at all the data before updating w?
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Stochastic Gradient Descent J
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“Noisy” Gradient Descent

@ Instead of using the gradient, we use a noisy estimate of the gradient.
@ Turns out this can work just finel

e Intuition:
o Gradient descent is an iterative procedure anyway.

o At every step, we have a chance to recover from previous missteps.
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Minibatch Gradient

@ The full gradient is
1 n
= EZVWf(fw(Xi),y/')
i=1

@ It's an average over the full batch of data D, ={(x1,y1),..., (Xn, ¥n) 1}
@ Let's take a random subsample of size N (called a minibatch):

(Xmlvyml)v---y(XvaymN)

@ The minibatch gradient is

Zv e Xm, )/m,-)
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Batch vs Stochastic Methods

17

Rule of thumb for stochastic methods:

@ Stochastic methods work well far from the optimum

@ But struggle close the the optimum

A

T T T T T
-20 -10 0 10 20

(Slide adapted from Ryan Tibshirani)
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Minibatch Gradient Properties

@ The minibatch gradient is an unbiased estimator for the [full] batch gradient. What does
that mean?
E|[VRu(w)] = VRy(w)

@ The bigger the minibatch, the better the estimate.

Var ZVR

~ Lvar [VR (w )}

Var[vé,\,( } Var[ ZVR .

@ Tradeoffs of minibatch size:
o Bigger N = Better estimate of gradient, but slower (more data to process)

o Smaller N = Worse estimate of gradient, but can be quite fast

@ Because of vectorization, the computation cost of minibatches is sublinear
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Convergence of SGD

@ For convergence guarantee, use diminishing step sizes, e.g. N, =1/k

@ Theoretically, GD is much faster than SGD in terms of convergence rate and number of
steps:

o much faster to add a digit of accuracy (more details later)
o costlier to compute a single step

o but most of that advantage comes into play once we're already pretty close to the
minimum

o in many ML problems we don't care about optimizing to high accuracy (why?)
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Step Sizes in Minibatch Gradient Descent

Minibatch Gradient Descent (minibatch size N)

@ initialize w =0

@ repeat
o randomly choose N points {(x,-,y,-)},’-V:1 c D,

o W w—n [ﬁ >N, wa(fw(xi),y,’)]

@ For SGD, fixed step size can work well in practice.

@ Typical approach: Fixed step size reduced by constant factor whenever validation
performance stops improving (staircase decay).

@ Other schedules: inverse time decay (1/t) etc.
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Convergence of SGD Theorem (Optional)

More on why we need a diminishing step size.

Theorem

If f is L-smooth and convex, and SGD has bounded variance Var(Vf(x'%))) < o2 for all k,
then SGD with step size < % satisifies:

f (0)__f * L 2 2
minE[|F () < L0 =0 | Lo 2 i
ks 2 kMk 2 ) Mk

The extra term of variance will dominate if the step size does not decrease. 1

Ihttps://www.cs.ubc.ca/ schmidtm/Courses/540-W19/L11. pdf
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Convergence of SGD Theorem (Optional)

Theorem

If f is L-smooth and convex, and SGD has bounded variance Var(Vf(x'¥))) < o2 for all k,
then SGD with step size | < % satisifies:

f (0) — f(x* L 2 2
min B[ (x 02 < TP | L7 2
K P 2 ) Mk

o If ng=m, then } Ny = kn,an%( = kn?, error=0(1/k)+ O(n).

o If nx=n/k, then >, nx = O(log(k)),Y_,m% = O(1), error=0(1/log(k)).

o Ifnge=n/Vk, then 3, ni = O(Vk), ¥, n3 = O(log(k)),
error=0(log(k)/Vk) = O(1/V'k).
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Summary

o Gradient descent or “full-batch” gradient descent
o Use full data set of size n to determine step direction

@ Minibatch gradient descent

o Use a random subset of size N to determine step direction

@ Stochastic gradient descent
o Minibatch with N =1.

o Use a single randomly chosen point to determine step direction.

These days terminology isn't used so consistently, so when referring to SGD, always clarify the
[mini]batch size.

SGD is much more efficient in time and memory cost and has been quite successful in
large-scale ML.
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Example: Logistic regression with {» regularization

Batch methods converge faster :

— Full
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(Example from Ryan Tibshirani)
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Example: Logistic regression with {» regularization

Stochastic methods are computationally more efficient:

ull
tochastic
ini-batch, b=10

© ini-batch, b=100
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(Example from Ryan Tibshirani)
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Example: Logistic regression with {» regularization

Batch methods are much faster close to the optimum:

@
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Iteration number k

(Example from Ryan Tibshirani)
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Loss Functions: Regression J
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Regression Problems

@ Examples:
o Predicting the stock price given history prices

o Predicting medical cost of given age, sex, region, BMI etc.

o Predicting the age of a person based on their photos

e Notation:
o y is the predicted value (the action)

o y is the actual observed value (the outcome)
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Loss Functions for Regression

@ A loss function in general:
(7.y) =ty y)eR

@ Regression losses usually only depend on the residual r=y— 7.
o what you have to add to your prediction to get the correct answer.

@ Aloss £(y,y) is called distance-based if:
@ It only depends on the residual:

Uy.y)=Uv(y—y) forsome Pp:R—R

@ It is zero when the residual is 0:

P(0)=0
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Distance-Based Losses are Translation Invariant

o Distance-based losses are translation-invariant. That is,

Uy+b,y+b)=L(9,y) Vb e R.

@ When might you not want to use a translation-invariant loss?
@ Sometimes the relative error yy;y is a more natural loss (but not translation-invariant)

@ Often you can transform response y so it's translation-invariant (e.g. log transform)
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Some Losses for Regression
@ Residual: r=y—y

@ Square or {, Loss: £(r)=r

2

@ Absolute or Laplace or {; Loss: £(r) =|r|

Ly [y ]Il=ly=9l]|rP=(y—9)7]
110 1 1
510 5 25
10| 0 10 100
50| 0 50 2500

@ An outlier is a data point that differs significantly from other observations.

@ Outliers typically have large residuals.

@ Square loss much more affected by outliers than absolute loss.
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Loss Function Robustness

@ Robustness refers to how affected a learning algorithm is by outliers.

Linear data with noise and outliers

—O— least squares m
3+ = -EF - laplace _--G-‘e’

0 0.2 0.4 0.6 0.8 1

KPM Figure 7.6
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Some Losses for Regression

@ Square or {, Loss: {(r) = r? (not robust)

e Absolute or Laplace Loss: {(r) =|r| (not differentiable)
o gives median regression

e Huber Loss: Quadratic for |r| < 6 and linear for |r| > & (robust and differentiable)
o Equal values and slopes at r =9

5
45
4
35
3
R
25
2

15

KPM Figure 7.6
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Classification Loss Functions J
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The Classification Problem

@ Examples:
o Predict whether the image contains a cat

o Predict whether the email is spam

o Classification spaces:
o Input space RY

o Outcome space Y ={-1,1}
@ Inference:
f(x) >0 = Predict 1
f(x) <0 = Predict —1

How can we optimize the model output?
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The Score Function

e Output space Y ={—1,1}

@ Real-valued prediction function f: X — R
Definition
The value f(x) is called the score for the input x.

@ In this context, f may be called a score function.

@ The magnitude of the score can be interpreted as our confidence of our prediction.
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The Margin

Definition
The margin (or functional margin) for a predicted score y and the true class y € {—1,1} is yy.
@ The margin is often written as yf(x), where f(x) is our score function.

@ The margin is a measure of how correct we are:
o If y and y are the same sign, prediction is correct and margin is positive.

o If y and y have different sign, prediction is incorrect and margin is negative.
e We want to maximize the margin.

@ Most classification losses depend only on the margin (they are margin-based losses).
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Classification Losses: 0—1 Loss

o If 7 is the inference function (1 if f(x) >0 and —1 otherwise), then

@ The 0-1 loss for f: X — {—1,1}

LF(x),y) = LF(x) #y)

e Empirical risk for 0—1 loss:

Minimizing empirical 0 —1 risk not computationally feasible.

R,(f) is non-convex, not differentiable, and even discontinuous.
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Classification Losses

Zero-One loss: {p.1 =1(m < 0)

Loss
3-

=== Zero_One

0
Margin m=yf(x)

@ x-axis is margin: m >0 <= correct classification
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Hinge Loss

SVM/Hinge loss: {Hinge = max(1—m,0)

Loss

== Zero_One

w
|

== Hinge

Loss(m)

Marginom=yf(x)

Hinge is a convex, upper bound on 0—1 loss. Not differentiable at m = 1.

We will cover SVM and Hinge loss in more details in future lectures.
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Logistic Regression

@ Also known as linear classification. Logistic regression is not actually “regression.”
@ Two equivalent types of logistic regression losses, depending on the labels.

o If the label is 0 or 1:

@ y = 0(z), where o is the sigmoid function, and z = f(x) =w x.
1
o(z) = 1+exp(—2)
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Logistic Regression

o If the label is 0 or 1:

@ ¥y =0(z), where o is the sigmoid function.

@ The loss is binary cross entropy:

eLogistic = —y|0g()7) - (1 —Y) |Og(1 _}7)

@ Remember the negative sign!
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Logistic Regression

o If the label is -1 o 1:
@ Note: 1—o0(z) =0(—2)

@ Now we can derive an equivalent loss form:
o —log(o(z)) if y=1
HEHE T ) —log(o(—2)) if y=—1
= —log(o(yz))
1
— _log(———
Og(1+e*yz)
=log(l4+e™ ™).
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Logistic Loss

Logistic/Log loss: £ ogistic = log (1+e~™)

N

Loss
== Zero_One
= Hinge

== Logistic

0
Margin m=yf(x)

Logistic loss is differentiable. Logistic loss always rewards a larger margin (the loss is never 0).
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What About Square Loss for Classification?

o Loss £(f(x),y) = (f(x)—y)%.
@ Turns out, can write this in terms of margin m=f(x)y:

o Using fact that y?> =1, since y € {—1,1}.

UF(x)y) = (F(x)—y)

1
- Ny
I % %
L2 xx
P}

X

<

=

N
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What About Square Loss for Classification?

Loss
= Zero_One

= Hinge

w

= Logistic

= Square

Loss(m)
N

0
Margin m=yf(x)

Heavily penalizes outliers (e.g. mislabeled examples).
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Summary

o Gradient descent: step size/learning rate, batch size, convergence

Loss functions for regression and classification problems.
@ Regression: Squared (L2) loss, Absolute (L1) loss, Huber loss.

e Classification: Hinge loss, Logistic loss.

Residual, margin

Logistic regression

Mengye Ren (NYU) CSCI-GA 2565 September 12, 2023 60 / 60



	Review: ERM
	Gradient Descent
	Gradient Descent for Empirical Risk - Scaling Issues
	Stochastic Gradient Descent
	Loss Functions: Regression
	Classification Loss Functions

