DS-GA-1003: Machine Learning (Spring 2020) Midterm Exam (March 10 5:20-11:59PM)

- While the exam should take 90 minute, you have until 11:59PM on Tuesday March 10 to submit your answers on Gradescope. You have until 11:59PM on Wednesday March 11 for late submissions.
- No textbooks, notes, online resources or calculators. However you are allowed a double-sided reference sheet.
- The exam consists of 10 pages. If you are annotating the exam, then mark your answers in the provided space. If you lack space for an answer, then use the blank space on page 10. If you are typing your responses, then please follow the directions on Piazza.

Name: \qquad

NYU NetID: \qquad

NYU Email: \qquad

Question	Points	Score
Decomposing Risk	11	
Regularization	8	
Scaling	8	
Gradient Descent	11	
Loss Functions	10	
Decision Boundaries	4	
Kernels	9	
SVM	12	
Total:	73	

1. Consider input space \mathcal{X}, output space \mathcal{Y} and action space \mathcal{A}. Fix a loss function ℓ on $\mathcal{A} \times \mathcal{Y}$. Consider hypothesis space \mathcal{F} of functions from \mathcal{X} to \mathcal{A}. Fix a sample S drawn from $\mathcal{X} \times \mathcal{Y}$. Take

- $f^{*}=\underset{f}{\operatorname{argmin}} \mathbb{E}[\ell(f(x), y)]$
- $f_{\mathcal{F}}=\underset{f \in \mathcal{F}}{\operatorname{argmin}} \mathbb{E}[\ell(f(x), y)]$
- $\hat{f}=\underset{f \in \mathcal{F}}{\operatorname{argmin}} \frac{1}{m} \sum_{i=1}^{m} \ell\left(f\left(x_{i}\right), y_{i}\right)$
where m is the number of samples in S.
(a) Recall that the approximation error is the difference of risks $R\left(f_{\mathcal{F}}\right)-R\left(f^{*}\right)$.
i. (1 point) The approximation error is
Positive or Zero
Negative or ZeroCannot be Determined
ii. (1 point) The approximation error isRandomNon-Random \square Cannot be Determined
iii. (1 point) If we increase the size of \mathcal{F}, then the approximation error isIncreased or Unchanged Decreased or UnchangedCannot be Determined
iv. (1 point) If we increase the size of S, then the approximation error isChangedUnchangedCannot be Determined
v. (1 point) Do we need to know the data generating distribution to compute the approximation error?TrueFalse
(b) Recall that the estimation error is the difference of risks $R(\hat{f})-R\left(f_{\mathcal{F}}\right)$.
i. (1 point) The estimation error isPositive or ZeroNegative or ZeroCannot be Determined
ii. (1 point) For fixed sample S, the estimation error isRandomNon-RandomCannot be Determined
iii. (1 point) If we increase the size of \mathcal{F}, then the estimation error isIncreased or Unchanged Decreased or UnchangedCannot be Determined
iv. (1 point) If we increase the size of S, then the estimation error isChanged UnchangedCannot be Determined
v. (1 point) Do we need to know the data generating distribution to compute approximation errorTrueFalse
(c) (1 point) For some models like Lasso Regression, we have different approaches to fitting the training data. Each approach attempts to find \widehat{f}. Does the choice of the approach affect
\square Approximation Error \square Estimation Error \square Neither

2. (a) We have a dataset $\mathcal{D}=\{(0,1),(1,4),(2,3)\}$ that we fit by minimizing an objective function of the form:

$$
J\left(\alpha_{0}, \alpha_{1}\right)=\lambda_{1}\left(\alpha_{0}+\alpha_{1}\right)+\lambda_{2}\left(\alpha_{0}^{2}+\alpha_{1}^{2}\right)+\sum_{i=1}^{3}\left(\alpha_{0}+\alpha_{1} x_{i}-y_{i}\right)^{2}
$$

and the corresponding fitted function is given by $f(x)=\alpha_{0}+\alpha_{1} x$. We tried four different settings of λ_{1} and λ_{2}, and the results are shown below.

For each of the following parameter settings, give the number of the plot that shows the resulting fit.
i. (2 points) $\lambda_{1}=0$ and $\lambda_{2}=2$.
ii. (2 points) \qquad $\lambda_{1}=0$ and $\lambda_{2}=0$.
iii. (2 points) \qquad $\lambda_{1}=0$ and $\lambda_{2}=10$.
iv. (2 points) $\lambda_{1}=5$ and $\lambda_{2}=0$.
3. Suppose we have input space $\mathcal{X}=\{-1.5,-0.5,0.5,1.5\} \times\{-0.001,0.001\}$, output space $\mathcal{Y}=\{-1,1\}$ and action space \mathbb{R}. Assume the following about the data generating distribution

- Y coordinate has equal probability of being $-1,1$
- X_{1} coordinate has equal probability of being $\{-1.5,-0.5,0.5,1.5\}$. X_{1} is related to Y through $X_{1}=Y-0.5 Z$ where $Z= \pm 1$ with equal probability
- X_{2} has equal probability of being $\{-0.001,0.001\} . X_{2}$ is related to Y through $X_{2}=Y / 1000$

Suppose we have Ridge Regression with m samples

$$
J(\mathbf{w})=\lambda\left(w_{1}^{2}+w_{2}^{2}\right)+\frac{1}{m} \sum_{i=1}^{m}\left(w_{1} x_{1}^{(i)}+w_{2} x_{2}^{(i)}-y_{i}\right)^{2}
$$

We're trying to decide between weights $\mathbf{w}_{\text {accurate }}=[0,1000]$ and $\mathbf{w}_{\text {small }}=[1,0]$.
(a) (2 points) What is the value of $J\left(\mathbf{w}_{\text {accurate }}\right)$?1000入1000$1000^{2} \lambda$ \square 1000^{2}
(b) (2 points) For large values of m, the empirical risk

$$
\frac{1}{m} \sum_{i=1}^{m}\left(w_{1} x_{1}^{(i)}+w_{2} x_{2}^{(i)}-y_{i}\right)^{2}
$$

approximates the statistical risk

$$
\mathbb{E}\left[\left(w_{1} X_{1}+w_{2} X_{2}-Y\right)^{2}\right]
$$

Use the statistical risk to approximate the value $J\left(\mathbf{w}_{\text {small }}\right)$.$0.5+\lambda$$0.25+\lambda$$1+\lambda$$0.75+\lambda$
(c) (2 points) Using your answers above, determine λ^{*} such that we would choose $\mathbf{w}_{\text {small }}$ for any $\lambda>\lambda^{*}$.
(d) (2 points) For most values of λ, we would choose $\mathbf{w}_{\text {small }}$. How could we transform the features to avoid choosing the less accurate weights?

4. Momentum is a variation of gradient descent where we include the gradient at a previous iteration in the current iteration. The update rule is

$$
\mathbf{w}^{(t+1)}=\mathbf{w}^{(t)}-\alpha \frac{\partial L}{\partial \mathbf{w}}\left(\mathbf{w}^{(t)}\right)-\gamma \frac{\partial L}{\partial \mathbf{w}}\left(\mathbf{w}^{(t-1)}\right)
$$

Here L is the objective function and $\alpha, \gamma>0$ are the learning rates. Assume for iteration $t=0$ and $t=-1$, we set $\mathbf{w}^{(t)}=w_{0}$ the initial guess.

Figure 1: Graph of objective function L
(a) Refer to the chart in Figure 1.
i. (1 point) Assuming that \mathbf{w} starts in a flat region that is not a minimum and $\alpha>0$, will the basic gradient descent algorithm terminate at a minimum? Note that the basic gradient descent algorithm is the momentum gradient descent algorithm with $\gamma=0$Yes with enough iterationsMaybeNever
ii. (1 point) Assuming that \mathbf{w} starts in a sloped region and $\alpha>0$, will the basic gradient descent algorithm terminate at a minimum?Yes with enough iterationsMaybeNever
iii. (1 point) Assuming that \mathbf{w} starts in a flat region that is not a minimum and both $\alpha>0$ and $\gamma>0$, will the momentum gradient descent algorithm terminate at a minimum?Yes with enough iterationsMaybeNever
iv. (1 point) Assuming that \mathbf{w} starts in a sloped region and both $\alpha>0$ and $\gamma>0$, will the momentum gradient descent algorithm terminate at a minimum?

Yes with enough iterations $\quad \square$ Maybe \square Never
v. (1 point) Is $L(\mathbf{w})$ convex?

Yes \square No \squareNo, but $-L(\mathbf{w})$ is convexNo, but $L(-\mathbf{w})$ is convex
(b) (6 points) Fill in the twelve blanks in the code with the following variables to implement gradient descent with momentum.

w	X	y	w_prev	num_iter	w0
temp	alpha	gamma	range	len	t

Note that the same variable can be used multiple times. Some variables may not be used at all. Only use one variable per blank.

```
def grad(X, y, w):
    ,,, Returns gradient dL/dw at w
    X: matrix, training data features
    y: vector, training data labels
    w: vector, weights , ,,
def grad_desc_momentum(X, y, num_iter, alpha, gamma, w0):
    ,,, Returns weights w computed after num_iter iterations.
    X: matrix, training data features
    y: vector, training data labels
    num_iter: number, number of iterations to run
    alpha: number, learning rate
    gamma: number, learning rate for momentum
    w0: weights for t=0 and t=-1 ,',
    w, w_prev = ------<i>_------ , _------<ii>_------
    for ___<iii>______ in _____<iv>_____(__________<v>________-_):
        g}=\operatorname{grad}(\textrm{X},\textrm{y},\textrm{w}
        m = grad(X, y, _---_-<vi>__--_- )
```



```
    return w
```

i. \qquad V. \qquad ix. \qquad
ii. \qquad vi. \qquad X. \qquad
iii. \qquad vii. \qquad xi. \qquad
iv. \qquad viii. \qquad xii. \qquad
5. Consider input space $\mathcal{X}=\{1,2,3,4\}$, output space $\mathcal{Y}=\{1,2,3,4\}$ and action space \mathbb{R}. Take the square loss: $\ell(\hat{y}, y)=(\hat{y}-y)^{2}$.
(a) (3 points) Fix x. Determine the constant c such that $\mathbb{E}\left[(Y-c)^{2} \mid X=x\right]$ is minimized. Note that you need to take a derivative.
\square
(b) (3 points) Assume the following about the data generating distribution

- The coordinate X is uniformly distributed on \mathcal{X}. So equal probability $\frac{1}{4}$ to features $\{1,2,3,4\}$.
- The coordinate Y given the coordinate X is uniformly distributed on $\{1, \ldots, x\}$. So equal probabilities $\frac{1}{x}$ to labels $\{1, \ldots, x\}$ conditional on feature x.
What is the target function? In other words, for fixed x how should we choose $f^{*}(x)$ to minimize the expected square loss.
\square
(c) (4 points) What is the expected square loss of the target function?

6. (a) (2 points) Figure 2 contains a training set $\left\{x_{1}, x_{2}, \ldots, x_{25}\right\}$. Below we have several feature transformations. By themselves, which might allow us to separate the transformed data with a linear decision boundary? Select all possible choices.

Figure 2:
Training
Data

Centering the data
\square Add a feature x^{2}
\square Add a feature that is 1 if $x \leq 50$ or -1 if $x>50$Add two features x^{2} and x^{3}
(b) (2 points) Figure 3 contains a training set $\left\{\left(x_{1}^{(1)}, x_{2}^{(1)}\right), \ldots,\left(x_{1}^{(100)}, x_{2}^{(100)}\right)\right\}$. Below we have several feature transformations. By themselves, which might allow us to separate the transformed data with a linear decision boundary? Select all possible choices.

Figure 3: Training DataScaling the dataAdding features $x_{1}^{2}, x_{2}^{2}, x_{1} x_{2}$Adding a feature that is 1 if $x_{2} \geq 10$ or -1 if $x_{2}<10$Adding a feature $\left|x_{1}\right|$
7. Define the Huber loss function $h: \mathbb{R} \rightarrow \mathbb{R}$ by

$$
h(x)= \begin{cases}x^{2} / 2 & \text { if }|x| \leq 1 \\ |x|-1 / 2 & \text { if }|x|>1\end{cases}
$$

Consider the objective function

$$
J(w)=\lambda\|w\|_{2}^{2}+\frac{1}{n} \sum_{i=1}^{n} h\left(w^{T} x_{i}-y_{i}\right)
$$

where $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right) \in \mathbb{R}^{d} \times \mathbb{R}$. Fix $\lambda>0$. Note that the function is differentiable.
(a) (3 points) We want to minimize $J(w)$ using stochastic gradient descent. Assume the current data point is $\left(x_{i}, y_{i}\right)$. The step direction is given by $v=-\nabla_{w} G(w)$, for
some function $G(w)$. Give an explicit expression for $G(w)$ in terms of h, λ, and the given data. You do not have to expand the function h.
(b) (3 points) Assume $J(w)$ has a minimizer w^{*}. Give an expression for w^{*} in terms of a vector $\alpha \in \mathbb{R}^{n}$ that is guaranteed by the representer theorem. You may use the design matrix $X \in \mathbb{R}^{n \times d}$.
\square
(c) (3 points) Let $k: \mathbb{R}^{d} \times \mathbb{R}^{d} \rightarrow \mathbb{R}$ be a Mercer kernel, and let $K \in \mathbb{R}^{n \times n}$ denote the Gram matrix $K_{i j}=k\left(x_{i}, x_{j}\right)$. Give a kernelized form of the objective J in terms of K. Recall that $w^{T} x_{i}=(X w)_{i}$ where $X \in \mathbb{R}^{n \times d}$ is the matrix with i th row x_{i}^{T}.

Figure 4 shows a training set in \mathbb{R}^{2}. Suppose that we use perceptron algorithm for classifi8. cation. We record the total number of times each point occurs in the update step. Remember that if a point is misclassified, then it occurs in the update step.

x_{1}	x_{2}	y	times misclassified
-3	2	+1	0
-1	1	+1	0
-1	-1	-1	2
2	2	-1	1
1	-1	-1	0

Figure 4: Training Data
(a) i. (3 points) Assume that the initial weight is $w^{(0)}=[-3,2,1]$ where 1 is the offset term. So the feature $x_{3}=1$ is constant. What is the equation of the separating line expressed in terms of x_{1} and x_{2} determined by the algorithm ?

ii. (1 point) In some cases, removing a single point can change the decision boundary. Here would removing a single point from the training set change the decision boundary? Please explain your answer.
\square
iii. (2 points) If we added the point $[2,-2]$ with label +1 to the training set, then would we obtain different results? In particular, would the algorithm converge?

Figure 5 shows training data with two classes. We want to use hard-margin support vector machine. Remember that we choose the decision boundary to maximize the margin.

Figure 5: Training Data
(b) i. (2 points) Draw the decision boundary obtained by the hard-margin SVM method with a solid line. Draw the margins on either side with dashed lines.
ii. (1 point) What are the possible support vectors. Please indicate the number.
\square
iii. (1 point) What is the classification error on the training set? In other words, how many points are incorrectly classified?
\square
iv. (1 point) Would the removal of a single point change the decision boundary? If so, then what points?
\square
v. (1 point) Suppose we use leave-one-out cross validation meaning we use 7 -fold cross validation with a split of 6 to 1 between training set and validating set. Compute the average classification error over the 7 -folds.

