
DS-GA-1003: Machine Learning (Spring 2020)

Midterm Exam (March 10 5:20-11:59PM)

• While the exam should take 90 minute, you have until 11:59PM on
Tuesday March 10 to submit your answers on Gradescope. You have until
11:59PM on Wednesday March 11 for late submissions.

• No textbooks, notes, online resources or calculators. However you are allowed
a double-sided reference sheet.

• The exam consists of 10 pages. If you are annotating the exam, then mark your
answers in the provided space. If you lack space for an answer, then use the blank
space on page 10. If you are typing your responses, then please follow the directions
on Piazza.

Name:

NYU NetID:

NYU Email:

Question Points Score

Decomposing Risk 11

Regularization 8

Scaling 8

Gradient Descent 11

Loss Functions 10

Decision Boundaries 4

Kernels 9

SVM 12

Total: 73



1. Consider input space X , output space Y and action space A. Fix a loss function ` on
A× Y . Consider hypothesis space F of functions from X to A. Fix a sample S drawn
from X × Y . Take

• f ∗ = argmin
f

E [`(f(x), y)]

• fF = argmin
f∈F

E [`(f(x), y)]

• f̂ = argmin
f∈F

1
m

∑m
i=1 `(f(xi), yi)

where m is the number of samples in S.

(a) Recall that the approximation error is the difference of risks R(fF)−R(f ∗).

i. (1 point) The approximation error is

� Positive or Zero � Negative or Zero � Cannot be Determined

ii. (1 point) The approximation error is

� Random � Non-Random � Cannot be Determined

iii. (1 point) If we increase the size of F , then the approximation error is

� Increased or Unchanged � Decreased or Unchanged
� Cannot be Determined

iv. (1 point) If we increase the size of S, then the approximation error is

� Changed � Unchanged � Cannot be Determined

v. (1 point) Do we need to know the data generating distribution to compute the
approximation error?

� True � False

(b) Recall that the estimation error is the difference of risks R(f̂)−R(fF).

i. (1 point) The estimation error is

� Positive or Zero � Negative or Zero � Cannot be Determined

ii. (1 point) For fixed sample S, the estimation error is

� Random � Non-Random � Cannot be Determined

iii. (1 point) If we increase the size of F , then the estimation error is

� Increased or Unchanged � Decreased or Unchanged
� Cannot be Determined

iv. (1 point) If we increase the size of S, then the estimation error is

� Changed � Unchanged � Cannot be Determined
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v. (1 point) Do we need to know the data generating distribution to compute
approximation error

� True � False

(c) (1 point) For some models like Lasso Regression, we have different approaches to

fitting the training data. Each approach attempts to find f̂ . Does the choice of the
approach affect

� Approximation Error � Estimation Error � Neither

2. (a) We have a dataset D = {(0, 1) , (1, 4), (2, 3)} that we fit by minimizing an objective
function of the form:

J(α0, α1) = λ1 (α0 + α1) + λ2(α
2
0 + α2

1) +
3∑

i=1

(α0 + α1xi − yi)2 ,

and the corresponding fitted function is given by f(x) = α0 + α1x. We tried four
different settings of λ1 and λ2, and the results are shown below.

For each of the following parameter settings, give the number of the plot that shows
the resulting fit.

i. (2 points) λ1 = 0 and λ2 = 2.

ii. (2 points) λ1 = 0 and λ2 = 0.

iii. (2 points) λ1 = 0 and λ2 = 10.

iv. (2 points) λ1 = 5 and λ2 = 0.
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3. Suppose we have input space X = {−1.5,−0.5, 0.5, 1.5}×{−0.001, 0.001}, output space
Y = {−1, 1} and action space R. Assume the following about the data generating
distribution

• Y coordinate has equal probability of being −1, 1

• X1 coordinate has equal probability of being {−1.5,−0.5, 0.5, 1.5}. X1 is related to
Y through X1 = Y − 0.5Z where Z = ±1 with equal probability

• X2 has equal probability of being {−0.001, 0.001}. X2 is related to Y through
X2 = Y/1000

Suppose we have Ridge Regression with m samples

J(w) = λ(w2
1 + w2

2) +
1

m

m∑
i=1

(
w1x

(i)
1 + w2x

(i)
2 − yi

)2
We’re trying to decide between weights waccurate = [0, 1000] and wsmall = [1, 0].

(a) (2 points) What is the value of J(waccurate)?

� 1000λ � 1000 � 10002λ � 10002

(b) (2 points) For large values of m, the empirical risk

1

m

m∑
i=1

(
w1x

(i)
1 + w2x

(i)
2 − yi

)2
approximates the statistical risk

E
[
(w1X1 + w2X2 − Y )2

]
.

Use the statistical risk to approximate the value J(wsmall).

� 0.5 + λ � 0.25 + λ � 1 + λ � 0.75 + λ

(c) (2 points) Using your answers above, determine λ∗ such that we would choose wsmall

for any λ > λ∗.
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(d) (2 points) For most values of λ, we would choose wsmall. How could we transform
the features to avoid choosing the less accurate weights?

4. Momentum is a variation of gradient descent where we include the gradient at a previous
iteration in the current iteration. The update rule is

w(t+1) = w(t) − α ∂L
∂w

(
w(t)

)
− γ ∂L

∂w

(
w(t−1))

Here L is the objective function and α, γ > 0 are the learning rates. Assume for iteration
t = 0 and t = −1, we set w(t) = w0 the initial guess.

Figure 1: Graph
of objective func-
tion L

(a) Refer to the chart in Figure 1.

i. (1 point) Assuming that w starts in a flat region that is not a minimum and
α > 0, will the basic gradient descent algorithm terminate at a minimum? Note
that the basic gradient descent algorithm is the momentum gradient descent
algorithm with γ = 0

� Yes with enough iterations � Maybe � Never

ii. (1 point) Assuming that w starts in a sloped region and α > 0, will the basic
gradient descent algorithm terminate at a minimum?

� Yes with enough iterations � Maybe � Never

iii. (1 point) Assuming that w starts in a flat region that is not a minimum and
both α > 0 and γ > 0, will the momentum gradient descent algorithm termi-
nate at a minimum?

� Yes with enough iterations � Maybe � Never
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iv. (1 point) Assuming that w starts in a sloped region and both α > 0 and γ > 0,
will the momentum gradient descent algorithm terminate at a minimum?

� Yes with enough iterations � Maybe � Never

v. (1 point) Is L(w) convex?

� Yes � No � No, but −L(w) is convex � No, but L(−w) is convex

(b) (6 points) Fill in the twelve blanks in the code with the following variables to im-
plement gradient descent with momentum.

w X y w prev num iter w0
temp alpha gamma range len t

Note that the same variable can be used multiple times. Some variables may not
be used at all. Only use one variable per blank.

1 def grad(X, y, w):

2 ’’’ Returns gradient dL/dw at w

3 X: matrix , training data features

4 y: vector , training data labels

5 w: vector , weights ’’’

6

7 def grad_desc_momentum(X, y, num_iter , alpha , gamma , w0):

8 ’’’ Returns weights w computed after num_iter iterations.

9 X: matrix , training data features

10 y: vector , training data labels

11 num_iter: number , number of iterations to run

12 alpha: number , learning rate

13 gamma: number , learning rate for momentum

14 w0: weights for t=0 and t=-1 ’’’

15

16 w, w_prev = ______ <i>_______ , ______ <ii >______

17 for ___ <iii >_____ in ____ <iv >____(_________ <v>_______):

18 g = grad(X, y, w)

19 m = grad(X, y, ______ <vi>_____)

20 __ <vii >___ , ___ <viii >___ = ___ <ix>____ - ___ <x>___ * g \

21 - __ <xi >___ * m, ____ <xii >___

22 return w

i.

ii.

iii.

iv.

v.

vi.

vii.

viii.

ix.

x.

xi.

xii.
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5. Consider input space X = {1, 2, 3, 4}, output space Y = {1, 2, 3, 4} and action space R.
Take the square loss: `(ŷ, y) = (ŷ − y)2.

(a) (3 points) Fix x. Determine the constant c such that E [(Y − c)2|X = x] is mini-
mized. Note that you need to take a derivative.

(b) (3 points) Assume the following about the data generating distribution

• The coordinate X is uniformly distributed on X . So equal probability 1
4

to
features {1, 2, 3, 4}.
• The coordinate Y given the coordinate X is uniformly distributed on {1, . . . , x}.

So equal probabilities 1
x

to labels {1, . . . , x} conditional on feature x.

What is the target function? In other words, for fixed x how should we choose
f ∗(x) to minimize the expected square loss.

(c) (4 points) What is the expected square loss of the target function?

6. (a) (2 points) Figure 2 contains a training set {x1, x2, . . . , x25}. Below we have sev-
eral feature transformations. By themselves, which might allow us to separate the
transformed data with a linear decision boundary? Select all possible choices.
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Figure 2:
Training
Data

� Centering the data

� Add a feature x2

� Add a feature that is 1 if x ≤ 50 or −1 if x > 50

� Add two features x2 and x3

(b) (2 points) Figure 3 contains
a training set
{(x(1)1 , x

(1)
2 ), . . . , (x

(100)
1 , x

(100)
2 )}.

Below we have several feature
transformations. By them-
selves, which might allow us
to separate the transformed
data with a linear decision
boundary? Select all possible
choices.

Figure 3: Training Data� Scaling the data

� Adding features x21, x
2
2, x1x2

� Adding a feature that is 1 if x2 ≥ 10 or −1 if x2 < 10

� Adding a feature |x1|

7. Define the Huber loss function h : R→ R by

h(x) =

{
x2/2 if |x| ≤ 1,
|x| − 1/2 if |x| > 1.

Consider the objective function

J(w) = λ‖w‖22 +
1

n

n∑
i=1

h(wTxi − yi)

where (x1, y1), . . . , (xn, yn) ∈ Rd×R. Fix λ > 0. Note that the function is differentiable.

(a) (3 points) We want to minimize J(w) using stochastic gradient descent. Assume
the current data point is (xi, yi). The step direction is given by v = −∇wG(w), for
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some function G(w). Give an explicit expression for G(w) in terms of h, λ, and the
given data. You do not have to expand the function h.

(b) (3 points) Assume J(w) has a minimizer w∗. Give an expression for w∗ in terms of
a vector α ∈ Rn that is guaranteed by the representer theorem. You may use the
design matrix X ∈ Rn×d.

(c) (3 points) Let k : Rd × Rd → R be a Mercer kernel, and let K ∈ Rn×n denote the
Gram matrix Kij = k(xi, xj). Give a kernelized form of the objective J in terms of
K. Recall that wTxi = (Xw)i where X ∈ Rn×d is the matrix with ith row xTi .

8.

Figure 4 shows a training set in R2. Suppose
that we use perceptron algorithm for classifi-
cation. We record the total number of times
each point occurs in the update step. Remem-
ber that if a point is misclassified, then it oc-
curs in the update step.

Figure 4: Training Data

(a) i. (3 points) Assume that the initial weight is w(0) = [−3, 2, 1] where 1 is the
offset term. So the feature x3 = 1 is constant. What is the equation of the
separating line expressed in terms of x1 and x2 determined by the algorithm ?

Page 8 of 10



ii. (1 point) In some cases, removing a single point can change the decision bound-
ary. Here would removing a single point from the training set change the deci-
sion boundary? Please explain your answer.

iii. (2 points) If we added the point [2,−2] with label +1 to the training set, then
would we obtain different results? In particular, would the algorithm converge?

Figure 5 shows training
data with two classes. We
want to use hard-margin
support vector machine.
Remember that we choose
the decision boundary to
maximize the margin.

Figure 5: Training Data
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(b) i. (2 points) Draw the decision boundary obtained by the hard-margin SVM
method with a solid line. Draw the margins on either side with dashed lines.

ii. (1 point) What are the possible support vectors. Please indicate the number.

iii. (1 point) What is the classification error on the training set? In other words,
how many points are incorrectly classified?

iv. (1 point) Would the removal of a single point change the decision boundary?
If so, then what points?

v. (1 point) Suppose we use leave-one-out cross validation meaning we use 7-fold
cross validation with a split of 6 to 1 between training set and validating set.
Compute the average classification error over the 7-folds.
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